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The neural representations of prior information about the state of the world are
poorly understood'. Here, to investigate them, we examined brain-wide Neuropixels
recordings and widefield calcium imaging collected by the International Brain
Laboratory. Mice were trained to indicate the location of a visual grating stimulus,
which appeared on the left or right with a prior probability alternating between 0.2
and 0.8 inblocks of variable length. We found that mice estimate this prior probability
and thereby improve their decision accuracy. Furthermore, we report that this
subjective prioris encoded in atleast 20% to 30% of brain regions that, notably, span
alllevels of processing, from early sensory areas (the lateral geniculate nucleus and
primary visual cortex) to motor regions (secondary and primary motor cortex and
gigantocellular reticular nucleus) and high-level cortical regions (the dorsal anterior
cingulate area and ventrolateral orbitofrontal cortex). This widespread representation
of'the prior is consistent with a neural model of Bayesian inference involving loops
between areas, as opposed to amodel in which the priorisincorporated onlyin
decision-making areas. This study offers a brain-wide perspective on prior encoding
at cellular resolution, underscoring the importance of using large-scale recordings
onasingle standardized task.

The ability to combine sensory information with prior knowledge
through probabilisticinference is crucial for perceptionand cognition.
Insimple cases, inference is performed near-optimally by the brain, fol-
lowing key precepts of Bayesian decision theory'>. For example, when
interpreting a visual scene, we assume a priori that light comes from
above—a sensible assumption that enables us to interpret otherwise
ambiguous images*.

Although much theoretical work has been devoted to the neural rep-
resentation of Bayesianinference®”, it remains unclear where and how
priorknowledge is represented in the brain. At one extreme, the brain
might combine prior information with sensory evidence in high-level

decision-makingbrainregions, right before decisions are turnedinto
actions. This would predict that prior information is encoded only
in late stages of processing, as has indeed been reported in parietal,
orbitofrontal and prefrontal cortical areas'®'®. At the other extreme,
the brain might operate like a very large Bayesian network, in which
probabilistic inference is the modus operandiin all brain regions and
inference canbe performed inall directions” % This would allow neural
circuits to infer beliefs over variables from observations of arbitrary
combinations of other variables. For example, after seeing an object,
thebrainmightbe able toinferitsauditory andtactile properties; but
couldjust as well perform the reverse inference, that s, predicting its
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Fig.1|Miceuse theblock prior toimprove performance. a, Mice had to move
a35°peripheralvisual grating to the centre of the screen by turning awheel with
their front paws. The contrast of the visual stimulus varied from trial to trial.
Adapted fromref.33, eLife,undera CC BY 4.0 license.b, The prior probability
that the stimulus appeared on theright side was maintained ateither 0.20r 0.8
overblocks, after aninitial block of 90 trials during which the prior was set to
0.5.Theblocklengthwas drawn from a truncated exponential distribution
(20-100 trials, scale = 60). After awheel turn, the mice were provided with
positive feedback (water reward) or negative feedback (white noise pulse and
timeout). The next trial began after a delay and a quiescence period that was
uniformly sampled between 400-700 ms during which the mice had to hold
the wheelstill. ¢, Psychometric curves averaged across animals and sessions
and conditioned on block identity, plotted as a function of signed contrast
(negative values corresponding to stimulus on the left, positive values to
stimulus on the right). The proportion of right choices on zero-contrast trials

visual appearance after hearing or touching it. Such a model would
predict that priorinformation should be available throughout the brain,
even in low-level cortical sensory areas'®**?2, The current literature
offers a contradictory and, therefore, inconclusive perspective on
whether the prior is indeed encoded in brain regions associated with
early processing!'¢1*-3% This is because past studies have collectively
recorded fromonly alimited set of areas and, as they use different tasks,
even these results cannot be fully integrated.

Toaddress this problem, we analysed brain-wide data from the Inter-
national Brain Laboratory—electrophysiological recordings from 242
brainregions and wide-field imaging (WFI) from layers 2/3 of cortex
in mice performing the same decision-making task—all registered to
the Allen Common Coordinate Framework®., Our results suggest that
the priorisencoded cortically and subcortically, across all levels of the
brain, including early sensory regions.

Mice use the prior to optimize their performance

Mice were trained to discriminate whether a visual stimulus, of different
contrasts, appeared in theright or left visual field (Fig. 1a). Importantly,
the prior probability that the stimulus appeared ontheright side switched
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was different across blocks (Wilcoxonsigned-rank test: t=15,P=2.04 x107%,
n=139)and displacedinthe direction predicted by the true block prior (double
arrow). Inset: the difference between curves. d, Reversal curves showing the
percentage of correct responses after the block switches. The average
performance across allanimals and all contrasts is shown (dark green). The
lightgreenline shows the same as the dark greenline, but for zero-contrast
trials. The performance of an observer generating choices stochastically
accordingto the Bayes-optimal estimate of the prioris shown (blue). This
simulation was limited to zero-contrast trials to focus on the influence of prior
knowledge without stimulus information. Dashed curves are exponential fits
(Extended DataFig.1and Methods). Shaded region shows the s.e.m.across
mice for the curves showing mouse behaviour (light and dark green curves) and
thes.d. for the Bayes-optimal model (blue curve), as thereisnointerindividual
variability to account for.

inarandomand uncued manner between 0.2and 0.8 inblocks 0f20-100
trials (Fig.1b). Knowledge of the current prior would help the mice to per-
formwell;in particular, the prioris the only source ofinformation onzero
contrast trials, as the probability of reward on these trials is determined
by the block probability. We refer to the experimentally determined prior
asthe ‘true block prior’. As the presence of the blocks was not explicitly
cued, mice could formonly asubjective estimate of the true block prior
fromthetrial history. Atbest, they could compute the estimate of the true
block prior given full knowledge of the task structure and the sequence
of previous stimulus sides since the start of asession. Hereafter, we refer
to this as the Bayes-optimal prior (Methods and Figs. 1b and 2a).
Analysing choice behaviour revealed that mice used the block struc-
turetoimprove their performance. Psychometric curves conditioned
on right and left blocks, averaged across all animals and all sessions,
were displaced relative to each other, in a direction consistent with
thetrueblock prior (two-tailed signed-rank Wilcoxon paired test com-
paring the proportion of right choices on zero-contrast trials: £ =15,
P=2.0x10%*, n =139 mice; Fig. 1c). The shift was most pronounced at
zero contrast and nearly disappeared at signed contrasts of -1and 1
(Fig.1c (inset)), suggesting that it stemmed froma prior-based mecha-
nism rather than an action bias (for example, a perseverative motor
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Fig.2|See next page for caption.

bias), which would have produced the same shift at all contrasts. As
aresult, the mice performed at 58.7 + 0.4% (mean + s.e.m.) correct
for zero-contrast trials. This is statistically significantly better than

194 | Nature | Vol 645 | 4 September 2025

mm Significant decoding Not significant Not decoded

-}

° 7’
0.10 {R=052,P=0.0024 R=079,P=264x10""/

f
- &
E 2 03 o
2 5 !
Q 13
[ = i
5 S 0.2
3 o
E g 0.1
£ 5 014
3 3
Q (o}
3 3 o-
©
2 3
S " 2 -0.14 ' .
w ° n = 32 regions 2 P n = 806 region-sessions
T T T T T T T
0 0.01 0.02 0.03 0 0.2 0.4
WFI decoding (corrected Fr‘z) Ephys decoding (corrected RZ)
e
0.7 A
1] [
jol @
REN) Q0
28 22 06
S = 5=
58 58
= c = c 4
58 58 0.5
59 §¢
£ o T 0
S N SN 04
Q Q Cc
e o e o
o o
Ephys 1 WFI
03/ phy 03
T T T T T T T T T T
03 04 05 06 07 0.3 0.4 0.5 0.6 0.7

Decoded prior Decoded prior

Pseudopercentage of significant loops

Significant directed pairs to VISp Empirical percentage of significant loops

(P < 0.05, Bonferroni corrected)
400 WFI
5 =
d:' WFI @
g & 3 300 |
e & s 3
() R N
& O S 200
Q° £
=y g
.65‘)’“ S 100
0 ‘ ‘ ‘
0 10 20 30 40
® MOp 800
Mog z Ephys
@ 600 +
) ®
Tga g
Ys, S 400 -
©
7 £
<]
=
° S 200
'»(5’, P (pseudo > empirical)
3 y  =0011
O
Q 0 - T T T
0 10 20 30

Percentage of directed pairs (A>B) that
lead to a three-loop (A>B>A)

chance (two-tailed signed-rank Wilcoxon t =89, P=1.5x10"%,n =139
mice), albeit significantly worse thanan observer that generates actions
by sampling from the Bayes-optimal prior, which would perform at



Fig.2|Priordecoding during theITI. a, The Bayes-optimal prior versus the
priordecoded from the ORBvlin one session. b, Swanson maps of cross-validated
corrected R*for significant areas (Methods) Left, the Ephys map. Right, Ephys
and WFIcombined. Aregionissignificantif the Fisher combined P<0.05onthe
leftmap and passes Benjamini-Hochberg correction (1% false-discovery rate) on
theright.DN, dentate nucleus; MOp, primary motor area; PAG, periaqueductal
gray; PPN, pedunculopontine nucleus; PRNc, pontine reticular nucleus caudal
part; PRNr, pontine reticular nucleus. A full list of region names and their
abbreviationsis available online (https://github.com/int-brain-lab/paper-brain-
wide-map/blob/plotting/brainwidemap/meta/region_info.csv). c, Ephys versus
WFlresults for the dorsal cortex. All areas significantly encode the Bayes-optimal
priorinthe WFldata (Fisher combined P < 0.05). Blue, significant; orange,
notsignificant; grey, not decoded because we lack quality-controlled data
(Methods); white, not decoded due to alack of recordings or because it was out
ofthe scope of analysis (although both hemispheres were recorded in WFI, only
theleftis decoded here to match Ephys).d, The corrected R* for Ephys and WFI
aresignificantly correlated (the colour schemeis shownin Extended Data

Fig.5b;shading represents the 95% confidence intervals). e, The proportion of
right choices on zero-contrast trials versus cross-validated decoded Bayes-
optimal prior from neural activity: higher decoded priors are associated with
moreright choices (Methods; the shading shows the s.e.m.).f, The corrected R?
fordecoding the prior from neural activity correlates with the corrected R*for
decoding theresidual prior (prior minus prior decoded from DLC), indicating
that the prior decoded from neural activity is not explained by DLC motor
features (the colour schemeis provided in Extended Data Fig. 5a; shading
shows the 95% confidenceintervals). g, Granger graph at the Cosmos level
(Methods and Extended Data Fig. 5) in Ephys showing the bidirectional flow of
priorinformation between the subcortical and cortical regions (right). Left,
directed pairs targeting the VISp in WFl data reveal significant feedback from
higher-order areas (grey circles) to early sensory regions. h, The proportion of
significant directed pairs forming loops of size 3 (orange dashed line) in the
WFI (top) and Ephys (bottom) data. The flow of prior information forms more
loopsthan expected by chance (blue null distribution).

61.1+1.8% (mean + s.d.; two-tailed signed-rank Wilcoxon paired test,
t=2,171,P=1.5x10"%, n =139 mice).

Tracking performance around block switches provided further evi-
dence that the animals estimated and used the prior. Indeed, around
block switches, the performance dropped, presumably due to the mis-
match between the subjective and true block prior. Thereafter, the
performance on zero-contrast trials recovered with a decay constant of
4.97 trials (jackknife median; Methods). This is slower than an observer
that generates actions by sampling the Bayes-optimal prior (jackknife
median: 2.43 trials, two-tailed paired t-test, t =3.35, P=0.001, n =139
jackknife replicates; Extended Data Fig. 1).

Decoding the prior during the ITI

To determine where the prior is encoded in the mouse’s brain, we
used linear regression to decode the Bayes-optimal prior from neu-
ral activity during the intertrial interval (ITI) when wheel movements
are minimized* (from —600 ms to -100 ms before stimulus onset;
Methods). Note that decoding the Bayes-optimal prior is more sensi-
ble than decoding the true block prior, as mice are not explicitly cued
about block identity and therefore cannot possibly know this latter
quantity. We assess the quality of the decoding with an R* measure.
However, to assess the statistical significance of this value, we cannot
use standard linear regression methods, as these assume independence
oftrials, while both neural activity (for example, from slow driftin the
recordings stemming from movements of the probes across trials)
and the prior exhibit temporal correlations. Instead, we use a pseu-
dosession method**: we first construct anull distribution by decoding
the (counterfactual) Bayes-optimal priors computed from stimulus
sequences generated by sampling from the same process as that used to
generate the stimulus sequence that was actually shown to the mouse
(Methods). A session was deemed to encode the prior significantly if
R?computed for the actual stimuliis larger than the 95th percentile of
the null distribution generated from pseudosessions; effect sizes are
reported as a corrected R?, the difference between the actual R? and
the median R? of the null distribution. All values of R? reported in this
paper are corrected R* unless specified otherwise.

For completeness, we decoded the Bayes-optimal prior, p, its log odds
ratio(log(p/(1- p)) (totest whether neural activityislinearly related to
log probabilities as assumed by the theory of probabilistic population
codes®), the true block prior (Fig. 1b) and the Bayes-optimal priorona
narrower decoding time window (from =400 ms to —100 ms). For the
Bayes-optimal prior, the analysis of the electrophysiological data (Ephys)
revealed that around 30.2% of brain areas (73 out of 242 regions), span-
ning the forebrain, midbrain and hindbrain, encoded the prior signifi-
cantly (P< 0.05, pseudosession test; Fisher’'s method to combine Pvalues
from multiple recordings of one region, no multiple-comparison

correction; sagittal slices are showninFig.2b and Extended DataFig. 3).
Forexample, we could decode the Bayes-optimal prior from a population
of 160 neuronsin the ventrolateral orbitofrontal cortex (ORBvI) withan
accuracy of R*=0.28 (Fig. 2a, P= 0.001, uncorrected R? = 0.35). Regions
with significant prior encoding include associative cortical areas like
the ORBvland the dorsal anterior cingulate area (ACAd), as well as early
sensory areas such as the primary visual cortex (VISp) and the lateral
geniculate nucleus (LGd). The Bayes-optimal prior could alsobe decoded
from corticaland subcortical motor areas, such as primary and second-
ary motor cortex, theintermediate layer of the superior colliculus (SCm),
the gigantocellular reticular nucleus and the pontine reticular nucleus,
eventhoughwe decodedactivity during the ITI, when wheel movements
were minimal (Extended Data Fig.2). The encoding of the Bayes-optimal
priorisalsovisibleinthe peristimulus time histogram of single neurons
(Extended DataFig.4). Decoding the log odds ratio of the Bayes-optimal
prior, as opposed to the linear version, revealed consistent findings,
with 38.0% (92 out of 242 regions) of regions encoding it significantly
across allbrain processing levels (Extended DataFig. 6). When decoded
fromanarrower time window (-400 ms to-100 ms), the Bayes-optimal
prior was still significantly decoded across all brain processing levels,
albeit with a reduced overall decodability (25.6% of regions, 62 out of
242regions; Extended DataFig. 6). Aneven smaller percentage of regions
(19.4%,47 out of 242 regions; Extended DataFig. 6) was found to encode
the prior significantly when decoding the true block prior, suggesting
that the animal’s subjective prior aligns more closely with the
Bayes-optimal prior than with the true block prior. This observation is
supported by abehavioural analysis, which revealed thatamodel using
thetrueblockasaprior wasless effective at explaining behaviour com-
pared with the Bayes-optimal model (Extended Data Fig. 6d). An analy-
sisto determine the necessary number of recordings per regionindicated
thataroundtenrecordings per region are required to reach the obtained
significancelevels (Extended DataFig. 5e). Given that the median num-
ber of sessions per region in Ephys is 6 (Extended Data Fig. 5¢,d), it is
likely that the reported levels of significance are underestimated.

The analysis of WFIl data suggests an even more widespread encod-
ing of the priorin cortical regions. Indeed, the Bayes-optimal prior was
found to besignificantly reflected in alldorsal cortical regions (Fig. 2c).
This result may reflect a better signal-to-noise ratio, but it might also
be due to the calcium signal from axons arising outside these specific
areas. However, we also found that the corrected region-specific R?
values for the WFl and Ephys modalities were significantly correlated
(Spearman correlation, R=0.52, P=0.0024, n =32 regions; Fig. 2d).
Interpreting the effect size in both Ephys and WFI modalities is chal-
lenging due to confounding factors such as the number of sessions
and units in Ephys, and the number of pixels in WFI (Extended Data
Fig.7c,d). To control for correlations between these confounds across
modalities (Extended Data Fig. 7e), we corrected the widefield effect
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size for region sizes. Despite this correction, the correlation between
effect sizes across modalities remained significant and even strength-
ened (Extended DataFig. 7f), therefore suggesting that the effect sizes
that we decode are at least partly specific to the decoded regions.

A quarter of the regions (24.0%, 58 out of 242), still at all levels of
brain processing, were found to be significant when merging this larger
Ephys dataset and WFI data into a single map (using Fisher’s method
to combine Pvalues across Ephys and WFI (Methods) and applying
Benjamini-Hochberg correction for multiple comparisons witha con-
servative false-discovery rate of 1%; sagittal slices are shown in Fig. 2b
and Extended Data Fig. 3).

If the decoded prior is truly related to the subjective prior inferred
and used by the animal, the amplitude of the decoded prior should
be correlated with the animals’ performance on zero-contrast trials.
Figure 2e shows that this is indeed the case for both the Ephys and
WFI data: on zero-contrast trials, the probability that the mice chose
therightside was proportional to the cross-validated decoded Bayes-
optimal prior of the stimulus appearing on the right (Methods). Impor-
tantly, this relationship remained significant even after controlling for
possibledriftinthe recordings (Extended DataFig. 8a) and was sensitive
to contrast strength (Extended Data Fig. 8b,c): consistent with Fig. 1c,
thisrelationship was strongest at zero contrast and nearly vanished at
the highest contrasts. Further analysis at the regional level (Extended
DataFig.8d) showsasignificant relationshipin17.8% of Ephys regions
and 90.1% of WFIregions across all hierarchical levels: LGd, SCm, cau-
doputamen (CP), medial secondary motor cortex (MOs) and ACAd.
Moreover, regions that more strongly reflect the prior were more pre-
dictive of the animal’s decisions, suggesting the behavioural relevance
of the decoded prior (Extended Data Fig. 8e).

Our resultsindicate that the Bayes-optimal prior wasencoded in mul-
tiple areas throughout the brain. However, it is conceivable that mice
adjusted their body posture or movement according to the subjective
prior and that neural activity in some areas simply reflected these body
adjustments. We call thisan embodied prior. To test for this possibility,
we analysed video recordings using Deep Lab Cut (DLC)**?¢ to estimate
the position of multiple body parts, whisking motionenergy and licking
duringtheITI(Methods). We then trained adecoder of the Bayes-optimal
prior from these features, and found significant decoding in 38.0% (65
out of 171) of sessions. For these sessions, we found that the R for the
prior decoded from video features was correlated with the R? for the
prior decoded from neural activity (at the brainregion level), therefore
suggesting that the prior signal might be an embodied prior related to
body posture (Pearson correlation,R=0.18,P=1.6 x107,n=806 region
sessions; Extended Data Fig. 9a). To test for this possibility further, we
decodedthe prior residual, defined as the Bayes-optimal prior minus the
Bayes-optimal prior estimated from video features, from neural activ-
ity (again, at the session-region level). If the neural prior simply reflects
the embodiment of features extracted by DLC, we should not be able to
decode the prior residual from the neural activity and the R* of the prior
residual should not be correlated with the R? of the full prior decoded
from neural activity. Crucially, this is not what we observed. Instead,
these two values of R?are strongly correlated (Fig. 2f; Pearson correlation,
R=0.89,P=8x1077°,n =806 region sessions), therefore suggesting that
the neural prior is not an embodied prior or, at least, that it cannot be
fully explained by the motor features extracted from the video.

To enhance the robustness of our analysis further, we repeated the
embodiment study, this time also including eye position data (on ses-
sions onwhich these were available). This additional step demonstrated
that the neural prior could not be entirely attributed to acombination
of both motor features and eye position (the feature importance is
shownin Extended DataFig. 9b,c). We also specifically checked whether
changesineye positionacross blocks could account for the significant
results in early visual areas such as VISp or LGd. It is indeed conceiv-
able that mice look in the direction of the expected stimulus before
atrial. If so, what we interpret as a prior signal in these early sensory
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areas might simply be due to a signal related to eye position. Consist-
ent with this possibility, we found a significant correlation (Pearson
correlation R =0.36, P=0.0163, n =44 region sessions) between the
neural decoding R? and the eye position decoding R?, that is, the R* for
decoding the Bayes-optimal prior from eye position (using sessionsin
which video was available and recordings were performed in the VISp
and LGd; n =44 region sessions; Extended Data Fig. 9d). Following the
same approach as for the body posture and motion features, we next
decoded the prior residual (Bayes-optimal prior minus Bayes-optimal
prior estimated from eye position) from neural activity and found
that the residual decoding R* was correlated with the neural decoding
R? (Pearson correlation, R=0.8,P=7 x10™", n = 44 region sessions;
Extended Data Fig. 9d). Thus, the prior signals found in the VISp and
LGd did not simply reflect subtle changesin eye positionacross blocks.
Our decoding analysis reveals arobust, distributed representation
of the Bayes-optimal prior throughout the brain, suggesting a com-
plex network of information flow. To investigate the dynamics of the
priorinformation network, we conducted a Granger causality analysis
during theITI, between the time series of the decoded prior from one
brainregion and that of another (Methods and Extended Data Fig. 10).
This analysis revealed several key findings: (1) the flow of prior infor-
mation between brain areas is significantly greater than expected by
chance (Extended Data Fig. 10a); (2) this prior flow includes compre-
hensive communications across the entire brain, from subcortical to
cortical areas and vice versa (Fig. 2g, left); (3) itincludes significant
feedback connections from higher-order areas to early sensory areas
(Fig. 2g, right); and (4) thereis a higher prevalence of loops within this
communication network than would be anticipated by chance (Fig. 2h),
including between higher-order and early sensory areas (Extended
DataFig.10e). These results collectively highlight aloopy and intricate
interarea communication of prior information within the brain.

Post-stimulus prior

We also decoded the Bayes-optimal prior during the 100 ms interval
after stimulus onset and found similarities between the encoding of
the prior before and after stimulus onset. To avoid confounding the
prior with the stimulus identity, two variables that are highly correlated
(Spearman correlation, R=0.40, P<1x107%), we first trained alinear
decoder of signed contrast from neural activity in each region. We used
the output of this decoder to fit two neurometric curves (the proportion
of decoded right stimulus as a function of contrast; Methods) condi-
tioned onthe Bayes-optimal prior being above 0.7 or below 0.3. We next
computed the vertical displacement of the fitted neurometric curves
for zero contrast. If an area encodes the prior beyond the stimulus,
we expect a shift between these two curves (an example is shown in
Fig. 3a). The null distribution was generated using the pseudosession
method previously described®. Note that the same analysis can be per-
formed during theITI, although, in this case, the neurometric curves are
expected tobeflat (Fig. 3b), whichisindeed what we observed (Extended
DataFig.11a). Thisapproach enables us to separate the encoding of the
prior fromthe encoding of the stimulus; however, itis possible that some
ofourresultsarerelated to the emergence of the animal’s choices asthe
animals can respond in less than 100 ms on some trials®.

Using this approach, we found that we can detect the prior signifi-
cantly from 17.8% (43 out of 242) and 84.4% (27 out of 32) of areas dur-
ing the post-stimulus period for Ephys (Extended Data Fig. 11b) and
WFl data (Fig. 3e), respectively. When applying this methodology to
the ITI, we found smaller percentages than when using direct decod-
ing, in part because this neurometric shift measure is less sensitive (in
theITI, only 15.7% of regions for Ephys and 93.8% for WFI are signifi-
cant for the Bayes-optimal prior when using the neurometric shift on
Ephys/WFldata, versus 30.2% and 100%, respectively, for conventional
decoding). As was the case during the ITI, we found that the Ephys
and WFI post-stimulus shifts were correlated (Spearman correlation,
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Fig.3|Encodingofthe prior across the brain during the post-stimulus
period. a, Example of neurometric curves for the post-stimulus period froman
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between shifts from Ephys and WFl data. Each dot corresponds to one cortical
region (two-sided Spearman correlation; the shaded areaindicates the 95%
confidenceinterval).d, The post-stimulus shifts are correlated with the ITI R?
for both Ephys and WFl data (two-sided Spearman correlation; the colour scheme
isshownin Extended Data Fig. 5a; the shading shows the 95% confidence
interval). e, Comparisonbetween the corrected post-stimulus neurometric
shiftinthe Ephys and WF1data for the dorsal cortex (left). Aregionis deemed to

R=0.51,P=0.0027, n=32; Fig. 3c). Moreover, the post-stimulus neu-
rometric shift is correlated with the R? obtained in the same areas
during the ITI period (Spearman correlation, R=0.33, P=2.32x107,
n=242(Ephys); R=0.70,P=9.54 x107°, n =32 (WFI); Fig. 3d). In other
words, areas encoding the priorin the ITl also tend to do so during
the post-stimulus period. This was confirmed by comparing the shifts
during the post-stimulus and ITI periods, which were also found to be
correlated (Extended DataFig. 11c,d).

We obtained similar results when merging the Ephys and WFI data
into a single map (using Fisher’s method to combine P values across
Ephys and WFI) and applying Benjamini-Hochberg correction for
multiple comparisons with a false-discovery rate of 1% (11.2% of sig-
nificant regions, 27 out of 242; Fig. 3e). Importantly, as observed dur-
ing the ITI, areas encoding the prior were found at all levels of brain
processing.

Moreover, we examined whether regions encoding the stimulus also
encoded the prior, as would be expected if these regions are involved
ininferringthe posterior distribution over the stimulus side. We found

besignificantifits Fisher combined Pvalueis below 0.05 (Methods). Right,
Swanson map of the corrected R?averaged across Ephys and WFI data for areas
that have been deemed to be significant given both datasets (using Fisher’s
method for combining Pvalues), and after applying the Benjamini-Hochberg
correction for multiple comparisons. Blue, significant; orange, not significant;
grey, not decoded because we lack quality-controlled data (Methods); white,
notdecoded because of insufficient recordings or because it was out of the
scope of analysis (although both hemispheres were recorded in WFI, only the
leftis decoded here to match Ephys).

that the corrected R* for the stimulus decoding was indeed correlated
with the corrected R?for the Bayes-optimal prior decoding (Spearman
correlation, R=0.29,P=2.4 x 107, n =201 regions from BWM analysis®*;
Extended DataFig.12a). Moreover,among the 40 areas that were found
to encode the stimulus significantly, 25 also encoded the prior signifi-
cantly, including, once again, areas at all levels of brain processing (for
example, the LGd, VISp, SCm, CP, MOs and ACAd; Extended DataFig.12b).

Decoding the action kernel prior

So far, we have established that mice leveraged the block structure and
that the Bayes-optimal prior can be decoded from the neural data atall
levels of brain processing. However, it remains to be seen whether the
mice truly compute the Bayes-optimal prior or, perhaps, use heuristics
to compute a subjective, approximate, prior™.

To address this, we developed several behavioural models and used
session-level Bayesian cross-validation followed by Bayesian model
selection® toidentify the one that fits the best (Methods). This analysis
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for three subjective prior models, using session-wise cross-validationin 107
mice (=2 sessions; Methods; the error bars show the s.d.). The best model
involvesfiltering recent actions with an exponential kernel. Act. kernel, action
kernel; Bayes opt., Bayes optimal; Stim. kernel, stimulus kernel. b, The decay
constant for the action kernel across sessions and animals (light purple;
median =5.45trials, dashed line). The proportion correct for theaction kernel
asafunctionofthe decay constantisshown (dark purple). The median trial
constantaligns with the optimal performance achievable with theaction
kernel, only1.9% below the Bayes-optimal performance.c, Performance on
zero-contrast trials conditioned on whether the previous action was correct or
incorrect, across behavioural models and animal behaviour. Right, the same
analysis for asimulated agent using the Bayes-optimal prior decoded from
neural data (neural prior) to generate decisions. The performance drop between
correctandincorrect previous trials for the neural prior suggests that the action

suggests that most mice on most sessions estimate what we will refer to
astheactionkernel prior, whichis obtained by calculating an exponen-
tially weighted average of recent past actions (Fig. 4a). The action kernel
prior explains the choices of the mice better than the Bayes-optimal
prior and better than models of behavioural strategies that calculate
an exponentially weighted average of recent stimuli (the ‘stimulus
kernel’), or assume a one-step repetition bias or amulti-step repetition
bias® or the presence of positivity and confirmation biases** (Extended
Data Fig.13a and Supplementary Information). Consistent with the
action kernel model, mice updated their subjective prior on the first
90 unbiased trials, even though the true prior is set to 0.5 during that
phase (Extended Data Fig. 13d). Moreover, mice relied on more than
just zero-contrasttrials to update their subjective prior (Extended Data
Fig.13b,c). The decay constant of the exponential action kernel had a
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Neural inverse decay constant
(1/number of trials)

Neural inverse decay constant

(1/number of trials)
kernel model better accounts for neural activity, consistent with behaviour.
Top, WFldata; n = 51sessions. Bottom, Ephys data; n =139 mice. Statistical
analysis was performed using Wilcoxon signed-rank tests. The error bars show
thes.e.m.d, Theuncorrected R?is higher when decoding the action kernel
prior compared with when decoding the Bayes-optimal prior during the ITI,
for the Ephys and WFI modalities. Statistical analysis was performed using
Wilcoxonsigned-rank tests. e, The weight of the previous actions (purple) and
previous stimuli (yellow) on the decoded Bayes-optimal prior, estimated from
neural activity (left, Ephys; right, WFI). The dashed lines show the 95th percentile
of the null distribution (Methods). f, The correlation between neuralinverse
decay constants (estimating the temporal dependency of the neural signals on
previousactions) and behavioural inverse decay constants (from fitting the
actionkernel to behaviour). Both Ephys and WFl data show correlations
(two-sided Pearson test; Methods; the shading shows the 95% confidence
intervals). NS, not significant; *P < 0.05,***P < 0.001.

median of 5.45 trials across all mice (Fig. 4b, blue histogram), similar to
the decay constant of recovery after block switches (4.97 trials; Fig. 1d
and Extended Data Fig.1). Notably, this is close to the value of the decay
constant, which maximizes the percentage of correct responses, given
this (suboptimal) form of prior, losing only 1.9% compared with the
performance of the Bayes-optimal version (Fig. 4b). These curves are
obtained by simulating the action kernel by varying the decay constant
while keeping all other parameters at their best-fitting values.

If, as our behavioural analysis suggests, mice use the action kernel
prior, then we should find that, when we decode the prior inferred
from the action kernel, R* should be higher than when we decode the
prior predicted by any other method. This is borne out by the datain
both Ephys and WFlduring the ITI (Fig. 4d; Wilcoxon signed-rank test,
t=2,230,P=2.6 x10°,n =242 regions (Ephys);and t=13,P=4.1x107%,



n=32regions (WFI)). However, unfortunately, and in contrast to the
Bayes-optimal prior, we cannot determine which areas encode the
action kernel prior significantly, owing to the impossibility of generat-
ing anull distribution, as this would formally require having access to
the exact statistical model of the animal behaviour (see the ‘Assessing
the statistical significance of the decoding of the action kernel prior’
section inthe Methods).

To explore further whether neural activity better reflects the action
kernel prior, asopposedto the stimulus kernel prior or the Bayes-optimal
prior, we looked at changes in performance on zero-contrast trials
after correct and incorrect actions. When considering behaviour
within blocks, a decision-making agent using an action kernel prior
should achieve ahigher percentage of correct responses afteracorrect
block-consistentactionthananincorrect one because, onincorrecttri-
als, itupdates the prior with an action corresponding to the incorrect
stimulus side. Models simulating agents using either the Bayes-optimal
priororthe stimulus kernel prior donot show thisasymmetry asthey per-
formtheir updates using the true stimulus, which can always be correctly
inferred from the combination of action and reward (see also ref. 37).
Mouse behaviour showed the asymmetry in performance (Fig. 4c).
Totest whether the neural data shared this asymmetry, we decoded the
Bayes-optimal prior fromITIneural activity and simulated the animal’s
decision on each trial by selecting a choice according to whether the
decoded prior was greater or smaller than 0.5 (that is, assuming every
trial had a zero-contrast stimulus). We then examined whether the
resulting sequence of hypothetical choices would show the asymmetry.
If so, thisis a property of the neural data as the predicted quantity, the
Bayes-optimal prior, does not show the asymmetry. AsshowninFig. 4c,
the performance for both modalities, Ephys and WFI, wasindeed higher
after correct versusincorrecttrials, therefore strengthening our hypoth-
esis that neural activity more closely reflects the action kernel prior.

We next tested the sensitivity of the decoded Bayes-optimal prior,
estimated from neural activity, to previous actions (decoding the
Bayes-optimal priorinstead of the action kernel prior to enable us to test
for statistical significance; Methods). If the prior that we estimate from
neural activity reflects the subjective prior estimated from behaviour,
we should find that the neural prior is sensitive to the past 5 or 6 trials.
Usinganorthogonalization approach, we estimated the influence of past
actions onthe decoded Bayes-optimal prior and found that this influence
extends at least to the past five trialsinboth Ephys and WFI (Fig. 4e; see
the ‘Orthogonalization’ section of the Methods). A similar result was
obtained when testing the influence of the past stimuli (Fig. 4e). These
numbers are consistent with the decay constant estimated from behav-
iour (5.45trials). These results were obtained at the session level, by ana-
lysing allavailable neurons. Furthermore, we analysed single regions for
whichwe had alarge number of neurons recorded simultaneously (SCm,
CPand ventral posteromedial nucleus of the thalamus (VPM)) or strong
imaging signals (primary motor area, VISp, MOs). In all cases, we found
thatanasymmetry in the neural dataafter correct and incorrect choices
as well as evidence that the Bayes-optimal prior decoded from these
regionsis influenced by the past 5 or 6 actions (Extended Data Fig. 14).

These analyses also address one potential concern with our decoding
approach. Itis well known in the literature that animals keep track of
thelast action or last stimulus**. It is therefore conceivable that our
ability to decode the prior from neural activity is simply based on the
encoding of the last action in neural circuits, which indeed provides
an approximate estimate of the Bayes-optimal prior as actions are
influenced by the prior (Fig. 1c). The fact that we observe aninfluence
ofthelast5or 6 trials,and notjust the last trial, rules out this possibility.

To test this even further, we estimated the temporal dependency
of the WFI single-pixel and Ephys single-unit activities on past actions
directly and compared them to the behavioural sensitivity to past
actions on the same sessions (both expressed in terms of neural learn-
ingrates, thatis, the inverse of the decay constants; Methods). Note that
this analysis tests whether the temporal dynamics of neural activity is

similar to the temporal dynamics of the mouse behaviour, defined by
fitting the action kernel model, but without regressing first the neural
activity againstany prior. We found that the inverse decay constants of
theneural activity areindeed correlated across sessions with the inverse
decay constants obtained by fitting the action kernel model to behaviour
(Fig. 4f). Critically, this correlation goes away if we perform the same
analysis using stimulus kernels instead of action kernels (Extended Data
Fig.15a). Moreover, these results established at a session level remained
when accounting for the variability across mice (Extended Data Fig.15b).

We next examined the link between behavioural performance and
specific brain regions by comparing their neural inverse decay con-
stants withthe behaviouralinverse decay constants. Notably, associa-
tive areaslike the secondary motor cortex and retrosplenial areas more
closely mirrored these behavioural constants than the primary visual
and motor cortex (Extended Data Fig. 15¢). We also observed that the
correlation between behavioural and neural decay constants reflected
the prior-corrected R* from the same regions, indicating that regions
with higher prior-decoding R*scores best align with the animal’s cog-
nitive strategies as measured by the action kernel lengths (Extended
Data Fig. 15c). This analysis was not extended to electrophysiology
recordings due to the limited number of available sessions per region
(Extended DataFig. 7a,b).

Discussion

Insummary, we report that mice bias their decisions nearly optimally
according to their prior expectations. As we have seen, the subjective
prior of the mice is based on previous actions, not previous stimuli—a
result consistent with past studiesinrodents** and primates*. Notably,
this subjective prior is encoded, at least to some extent, at all levels
of processing in the brain, including early sensory regions (for exam-
ple, LGd and VISp), associative regions (ORBvl, ACAd and SCm) and
motor regions (MOs, primary motor area and gigantocellular reticular
nucleus). Moreover, a Granger analysis revealed the existence of recip-
rocalloops, communicating specifically the subjective prior between
corticaland subcortical regions as well as between sensory and associa-
tive cortical areas. These findings lend further support to the hypothesis
thatinformation flows across the braininaway that could support the
sortof multidirectionalinference apparent in Bayesian networks”'$20%,

One might argue that what we call a ‘subjective prior’ might be bet-
ter called ‘motor preparation’ in motor-related areas, or a top-down
‘attentional signal’in early sensory areas. However, ultimately, what is
importantis not the term that we use to refer to this signal but, rather,
thatit has properties consistent with the subjective prior: (1) itis predic-
tive of the animal’s choices, particularly on zero-contrast trials (Fig. 2e);
(2)itdepends on previous choices (Fig.4c); and (3) it reflects more than
the last choice or last stimulus, but depends instead on the past 5 or
6 choices (Fig.4e). Aswe have seen, the signals that we have recovered
throughout the mouse brain fulfil all of these properties.

There are several proposals in the literature as to how probability
distributions might be encoded in neural activity. These include lin-
ear probabilistic population codes®, sampling based codes®, other
activity-based codes”***® and the synaptic weights of neural circuits’.
We note that our results are compatible with two requirements of linear
probabilistic population codes®*: (1) the log odds of the Bayes-optimal
priorislinearly decodable from neural activity (Extended DataFig. 6);
and (2) changesinthe Bayes-optimal prior fromtrial totrial are reflected
in the population activity*.

Ifthelikelihoodisalso encoded withalinear probabilistic population
code, having the prior in the same format would greatly simplify the
computation of the posterior distribution, asit would simply require a
linear combination of the neural code for the prior and likelihood. As it
turnsout, itis likely that thelikelihood indeed relies onalinear proba-
bilistic population code. Indeed, the neural code for contrast, whichis
thevariable that controls the uncertainty of the visual stimulus in our
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experiment, has been shown to be compatible with linear probabilistic
population code in primates®.

Whether our results are also compatible with sampling-based codes
ismore difficult to assess, asthereis still a debate as to which aspects of
neural activity correspond to asample of a probability distribution®?**°,
Moreover, the fact that our prior follows a Bernoullidistribution, which
isparticularly simple, makes it harder to tease apart the various proba-
bilistic coding schemes.

Ultimately, determining the exact nature of the neural code for the
prior will require developing a neural model of Bayesian inference in
alarge, modular, loopy network—a pressing, remaining task. A critical
foundation for this development is the remainder of the extensive data
intheInternational Brain Laboratory brain-wide map (describedin the
companion paper). This provides a picture, at a considerable scale,
of the neural processes underpinning decision-making, in which the
prior plays such a critical part.
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Methods

Forthe Ephys data, we used the 2024 IBL public data release®, whichis
organized and shared using a modular architecture described previ-
ously*>. It comprises 699 recordings from Neuropixels 1.0 probes. One
or two probe insertions were realized over 459 sessions of the task,
performed by a total of 139 mice. For a detailed account of the surgi-
cal methods for the headbar implants, see appendix 1 of ref. 33. For a
detailed list of experimental materials and installation instructions,
see appendix 1 of ref. 35. For a detailed protocol on animal training,
see the methods of refs. 33,35. For details on the craniotomy surgery,
see appendix 3 of ref. 35. For full details on the probe tracking and align-
ment procedure, see appendices 5 and 6 of ref. 35. The spike sorting
pipelineused by IBLis described in detail in ref. 35. For the WFl data, we
used another dataset consisting of 52 recordings of the dorsal cortex,
realized over 52 sessions of the task, performed by a total of 6 mice.
Adetailed account of the WFI data acquisition and preprocessing was
reported previously®.

All experimental procedures involving animals were conducted in
accordance withlocal laws and approved by the relevantinstitutional
ethics committees. Approvals were granted by the Animal Welfare
Ethical Review Body of University College London, under licences
P1DB285D8, PCC4A4ECE and PD867676F, issued by the UK Home
Office. Experiments conducted at Princeton University were approved
under licence 1876-20 by the Institutional Animal Care and Use Com-
mittee (IACUC). At Cold Spring Harbor Laboratory, approvals were
granted under licences 1411117 and 19.5 by the IACUC. The University
of California at Los Angeles granted approval through IACUC licence
2020-121-TR-001. Additional approvals were obtained from the Uni-
versity Animal Welfare Committee of New York University (licence
18-1502); the IACUC at the University of Washington (licence 4461-01);
theIACUC at the University of California, Berkeley (licence AUP-2016-
06-8860-1); and the Portuguese Veterinary General Board (DGAV) for
experiments conducted at the Champalimaud Foundation (licence
0421/0000/0000/2019).

Mice

Animals were housed under al12 h-12 hlight-dark cycle—either normal
orinverted, depending on the laboratory—and had unrestricted access
to food and water except on training days. Depending on the labora-
tory, electrophysiology recordings and behavioural training took place
during either the light or dark phase of the cycle. In total, data were
collected from139 adult C57BL/6 mice (94 male, 45 female), purchased
fromJackson Laboratory or Charles River. On the day of electrophysi-
ologicalrecording, these mice ranged in age from13 to 178 weeks (mean,
44.96 weeks; median, 27.0 weeks) and weighed between16.1and35.7 g
(mean 23.9 g, median 23.84 g).

Inclusion criteria for the analysis

Criteria for trial inclusion. All trials were included except when the
animals did not respond to the stimulus (no movement, no response)
or when the first wheel movement time (reaction time) was shorter
than 80 msorlongerthan2s.

Criteria for session inclusion. All sessions were included except ses-
sionswith fewer than250 trials (counting only included trials). In total,
41sessions in Ephys and 1 session in WFI did not meet the criteria for
the minimum number of trials.

Criteria for neural recording inclusion. Aninsertionwasincludedin
theanalysisifithad beenresolved, thatis, if histology clearly revealed
the path of the probe throughout the brain, as defined previously®.
Aneuron, identified during the spike sorting process, was included if
it passed three quality control (QC) criteria (amplitude > 50 pV; noise
cut-off < 20; refractory period violation). Aregion recorded along one

or two probes was included in the analysis if there were at least five
units across the session’s probes that passed the QC. For WFI, we used
alltheimage pixelsandincluded aregion recorded during asessionin
the analysis if there were at least five recorded pixels.

For the region-level analysis, after applying these criteria, we were
left with 414 sessions for the Ephys dataset. Initially, we considered
418 (459 - 41) sessions that had more than 250 included trials, but 4 of
these did not have any recorded regions meeting the minimum number
of units required. Our region-level analysis spans 242 brain regions,
defined by the Allen Common Coordinate Framework®, recorded
by at least one included insertion. Our Ephys region-level analysis
spans 2,289 region-sessions, which are aggregated across sessions
to give results at the region level. For the WFI dataset, we were left
with 51 (52 - 1) sessions that had more than 250 included trials. They
allhad atleast one recorded region meeting the minimum number of
recorded pixels required. The imaging spans 32 regions of the dorsal
cortex—which are included among the 242 regions decoded in the
Ephys analysis, for atotal of 1,539 ((51 x 32) — 28 - 65) region-sessions.
This total accounts for the fact that not every region was visible in all
sessions, summing to 28 non-observed region-sessions. Moreover,
65 region-sessions were excluded because the regions recorded had
fewer than 5 pixels.

For the session-level analysis, neurons along the probes were used
and most of the sessions in Ephys (457 out 0of 459) had at least 5 recorded
units that passed the QC. Taking into account the session inclusion
criteria, session-level analysis was performed on 416 sessions. All of
the 51 WFI sessions passed the minimal number of trials criteria and
were therefore included in the analysis.

Criteria for the embodiment analysis. Only sessions with available
DLC features could be used for the embodiment prior analysis, which
requires access to body position. For the Ephys dataset, we analysed
the171sessions (out of 459) for which the DLC features met the quality
criteriadefined previously®, and for which the other inclusion criteria
were met. This resulted inatotal of 806 region-sessions. WFIsessions
were excluded from this analysis as no video recordings were available.

Criteria for the eye position analysis. Reliable tracking of eye posi-
tion from video recordings was not possible for some sessions due to
video quality issues. Thus, we recovered reliable eye position signals
from 44 out of the 53 of sessions in which we had recorded from either
VISp or LGd, the two regions for which we specifically analysed the
impact of eye position.

Joint decoding of DLC features and eye position signals. We per-
formed the joint decoding of DLC features and eye position signals
on the 124 sessions in which the DLC features met the QC criteria and
also in which the eye position signals were reliable, for a total of 660
region-sessions.

Difference compared with the Brain Wide Map inclusion criteria.
There were two key differences between ourinclusion criteriaand those
used in the Brainwide Map?. First, the Brainwide Map included only
regions that had atleast two recording sessions, whereas we included
regionsirrespective of the number of recording sessions. Second, we
excluded sessions that had fewer than 250 trials after applying trial
inclusion criteria, a criterion not applied in the Brainwide Map.

Electrophysiology data

Spike counts were obtained by summing the spikes across the decoding
window for each neuron andincluded trial. If there were Uunitsand T
trials, thisbinning procedure resulted in amatrix of size U x T. For the
ITI, the time window for the main decoding was (-600 ms,-100 ms)
relative to stimulus onset and, for the post-stimulus window, it was
(0 ms, +100 ms) relative to stimulus onset. We used L1-regularized
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linear regression to decode the Bayes-optimal prior from the binned
spike count data using the scikit-learn function sklearn.linear_model.
Lasso (using one regularization parameter). We used L1 for Ephys
because it is more robust to outliers, which are more likely to occur
insingle-cell recordings, notably because of drift. The Bayes-optimal
prior was inferred from the sequence of stimuli for each session (see
the ‘Behavioural models’ section and the Supplementary Informa-
tion). This decoding procedure yielded a continuous-valued vector
oflength T.

WFIdata

For the WFl data, we used L2-regularized regression asimplemented by
the scikit-learn function sklearn.linear_model.Ridge (one regulariza-
tion parameter). We used L2 regularization instead of L1 for WFI data
because L2 tends to be more robust to collinear features, which is the
case across WFI pixels. We decoded the activity from the vector of the
region’s pixels for aspecific frame of the data. The activity is the change
influorescenceintensity relative to the resting fluorescence intensity
AF/F. Data were acquired at 15 Hz. Frame O corresponds to the frame
containing stimulus onset. For the ITI, we used frame -2 relative to the
stimulus onset. This frame corresponds to a time window of which the
start ranges from -198 to -132 ms before the stimulus onset, and of
which the end ranges from -132 to -66 ms, depending on the timing
ofthelast frame before stimulus onset. For the post-stimulusinterval,
we used frame +2, which corresponds to a time window of which the
start ranges from 66 to 132 ms from stimulus onset, and extends to 132
to 198 ms after onset. This interval is dependent on the timing of the
first frame after stimulus onset, which can occur at anytime between
0 and 66 ms after onset. If there are Ppixels and T trials, this selection
procedure results inamatrix of size Px T.

Reversal curves
To analyse mouse behaviour around block reversals, we plotted the
reversal curves defined as the proportion of correct choices as afunc-
tion of trials, aligned to ablock change (Fig. 1d). These were obtained
by computing one reversal curve per mouse (pooling over sessions)
and then averaging and computing the s.e.m. across the mouse-level
reversal curves. For comparison purposes, we also showed the reversal
curves for the Bayes-optimal model with a probability-matching deci-
sion policy. We did not plot s.e.m. values butinstead s.d. valuesin this
case as there was no variability across agents to account for.

To assess the differences between the mouse behaviour and the
agent that samples actions from the Bayes-optimal prior, we fitted the
following parametric function to the reversal curves:

plcorrectattrial ) = (B+(A-B) xe /Ty x (t20) + Bx (t<0)

with ¢ =0 corresponding to the trial of the block reversal, 7 the decay
constant, Bthe asymptotic performance and A the drop in performance
right after ablock change.

Wefitted this curve using only zero-contrast trials, between the 5 pre-
reversal trials and the 20 post-reversal trials. We restricted our analysis
tothezero-contrast trials to focus on trials in which mice could only rely
onblockinformationto decide. Thisimplied that we only used a small
fraction of the data. To be precise, across the 459 sessions, we had an
average of 10 reversals per session, and the proportion of zero-contrast
trials is 11.1%. Fitting only on the zero-contrast trials around reversals
led us to use around 28 trials per session, which accounts for around
3% of the behavioural data—when excluding the first 90 unbiased trials,
the average session consists of 555 trials.

Tomake up for this limited amount of data, we used ajackknifing pro-
cedure for fitting the parameters. The procedure involved iteratively
leaving out one mouse and fitting the parametersonthe N-1=138 zero-
contrastreversal curves of the held-in mice. The results of the jackknif-
ing procedure are shown in Extended Data Fig. 1.

Nested cross-validation procedure

Decoding was performed using cross-validated, maximum-likelihood
regression. We used the scikit-learn Python package to perform the
regression®, and implemented a nested cross-validation procedure
to fit the regularization coefficient.

Theregularization coefficient was determined by two nested fivefold
cross-validation schemes (outer and inner). We first described the
procedure for the Ephys data. In the outer cross-validation scheme,
each fold was based on a training/validation set comprising 80% of
the trials and a test set of the remaining 20% (random interleaved
trial selection). The training/validation set was itself split into five
sub-folds (inner cross-validation) using an interleaved 80-20% parti-
tion. Cross-validated regression was performed on this 80% training/
validation set using arange of regularization weights, chosen for each
type of dataset so that the bounds of the hyperparameter range are not
reached. For each modality, we searched alogarithmically spaced grid
of ridge-regularization weights that was tuned to the dimensionality
of the corresponding feature space: for Ephys, the grid was C € {1073,
104,1073,1072,107Y; for WFI, Ce {107°,107%,1073,107%; for the set of
DLC-extracted behavioural features, Ce {10,10°,10%107,1,10,100};
for eye-position features, C e {10™,1073,102,107, 1,10, 100, 1,000,
10,000}; for the combined DLC-features + eye-position model, the
samebroadgrid Ce {10#,107,10,107,1,10,100,1,000,10,000} was
used; for the Ephys-based neurometric decoder, C € {107,10™,107,
102,107, 1}; and for the widefield neurometric decoder, C € {105,107,
103,103,

The regularization weight selected with the inner cross-validation
procedure on the training/validation set was then used to predict the
target variable onthe 20% of trials in the held-out test set. We repeated
this procedure for each of the five ‘outer’ folds, each time holding out a
different 20% of test trials such that, after the five repetitions, 100% of
trials have aheld-out decoding prediction. For WFI, the procedure was
very similar but we increased the number of outer folds to 50 and per-
formed aleave-one-trial-out procedure for the inner cross-validation
(using the efficient RidgeCV native sklearn function). We did this
because the number of features in WFI (number of pixels) is much larger
thanin Ephys (number of units): around 167 units on average in Ephys
when decoding on a session-level from both probes after applying all
quality criteria, versus around 2,030 pixels on a session-level in WFI
when decoding from the whole brain.

Furthermore, to average out the randomnessinthe outer randomiza-
tion, weran this procedure tentimes. Each run used a different random
seed for selecting the interleaved train/validation/test splits. We then
reported the median decoding score R*across all runs. Regarding the
decoded prior, we took the average of the predicted priors (estimated
on the held-out test sets) across the ten runs.

Assessing statistical significance
Decoding a slow varying signal such as the Bayes-optimal prior from
neural activity can easily lead to false-positive results even when prop-
erly cross-validated. For example, slow driftin the recordings canlead
tospurious, yet significant, decoding of the prior if the driftis partially
correlated with the block structure®***. To control for this problem, we
generated anull distribution of R?values and determined significance
with respect to that null distribution. This pseudosession method is
described in detail previously**.

Wedenote X € RV*Y the aggregated neural activity for asession and
Y € R" the Bayes-optimal prior. Here, N is the number of trials and U
the number of units. We generated the null distribution from pseu-
dosessions, that is, sessions in which the true block and stimuli were
resampled from the same generative process as the one used for the
mice. This ensures that the time series of trials in each pseudosession
shares the same summary statistics as the ones used in the experiment.
For each true session, we generated M =1,000 pseudosessions, and



used their resampled stimulus sequences to compute Bayes-optimal
priorsY; € RY, withi e [1, M] the pseudosession number. We generated
pseudoscores R,»2 € R, i € [1, M] by running the neural analysis on the
pair (X,Y,). The neural activity X is independent of ¥; as the mouse did
notsee Y;but Y. Any predictive power from Xto ¥;would arise from slow
driftin Xunrelated to the task itself. These pseudoscores R were com-
pared to the actual score R? obtained from the neural analysis on (X,Y)
to assess statistical significance.

The actual R?is deemed to be significant if it is higher than the 95th
percentile of the pseudoscores distribution {R,~2, i €[1, M]}. This test
was used to reject the null hypothesis of no correlation between the
Bayes optimal prior signal Y and the decoder prediction. We defined
the Pvalue of the decoding score as the quantile of R? relative to the
null distribution{R?, i € [1, M1}.

For each region of the brain that we recorded, we obtained a list of
decoding Pvalues, where a Pvalue corresponds to the decoding of the
region’s unit activity during one session. We used Fisher’s method to
combinethesession-level Pvalues of aregioninto asingle region-level
Pvalue (see the ‘Fisher’s method’ section for more details).

For effect sizes, we computed a corrected R?, defined as the actual
score R* minus the median of the pseudoscores distribution,
{R,-Z, i €[1, M]}. The corrected R*of aregionis the mean of the corrected
R?*for the corresponding sessions.

Choosing between Pearson and Spearman correlation methods
Inour statistical analyses, we prioritized using Spearman’s correlation
whendatasetsincluded outliers, asitis robust against non-normal dis-
tributions. Inother cases, we opted for Pearson’s correlation to assess
linear relationships. For paired comparisons, we used the Wilcoxon
signed-rank test, which likewise makes no assumption of normality
while retaining sensitivity to systematic shifts between conditions.

Fisher’s method

Fisher'smethod is astatistical technique used to combineindependent
Pvaluesto assess the overall significance. It works by transforming each
Pvalueintoay’statisticand summing these statistics. Specifically, for
aset of Pvalues (one per session given aregion), p;, p,, ps, ..., Fisher’s
method computes the test statistic

X?=-23 In(p)

This statistic follows a > distribution with 2 X Neeons d.f., Xzzx Neessions”
under the null hypothesis that all individual tests are independent
and their null hypotheses are true. If the computed test statistic X?
exceeds a critical value from the y* distribution, the combined Pvalue
p(XZZXNsessions > X?) is considered significant and the null hypothesis is

rejected.

Cosmos atlas

We defined a total of ten annotation regions for coarse analyses.
Annotations include the major divisions of the brain only: isocortex,
olfactory areas, hippocampal formation, cortical subplate, cerebral
nuclei, thalamus, hypothalamus, midbrain, hindbrain and cerebellum.
A detailed breakdown of the Cosmos atlas is provided in Extended
DataFig. 5.

Granger causality

To understand how prior information flows between brain regions,
we performed a Granger causality analysis on the Ephys and WFI data
during theITI.

For each Ephys session, we considered the neural activity from
-600 ms to -100 ms before stimulus onset, segmented into 50 ms
bins, yielding 10 bins per region. For each bin, we predicted the Bayes-
optimal from the neural activity using the native LassoCV sklearn
function, with its default regularization candidates. This leads to a

decoded Bayes-optimal prior for each region and bin. We next used a
Granger causality analysis to explore whether the prior information
in some region Granger-causes prior information in other regions.
Granger analysis was run with the spectral connectivity Python library
from the Eden-Kramer lab (https://github.com/Eden-Kramer-Lab/
spectral_connectivity).

Given a directed pair of regions (for example, from ACAd to VISp)
within a session, the Granger analysis assigns an amplitude to each
frequency in the discrete Fourier transform. We calculate an over-
all Granger score by session by averaging the amplitudes across
frequencies®.

To assess significance of the overall Granger score for adirected pair
and session, we build a null distribution by applying our analysis to
1,000 pseudosessions (see the ‘Assessing statistical significance’ sec-
tion). After decoding these pseudopriors from neural activity for each
region and bin, we perform Granger analysis on these decoded pseu-
dopriors. This creates1,000 pseudo-Granger scores per directed pair
and session. Significance is assessed by comparing the actual Granger
score against the top 5% of the pseudo scores.

Granger analysis for the WFI data is very similar to that for Ephys.
The main differences are the use the last nine frames before stimulus
onset as individual bins and the use of the RidgeCV native function
fromsklearn for the decoding (see the ‘WFI data’ section).

Initially, we investigate whether communication between regions
exceeds what might be expected by chance. To assess this, we ana-
lyse the percentage of significant directed pairs between two regions
that significantly reflect the prior; we find an average of 71.6% in WFI
and 35.9% in Ephys across sessions. We then repeat this analysis for
each session across 1,000 pseudosessions. Subsequently, we assess
whether the average percentage of significant pairs across sessions
falls within the top 5% of the average percentages calculated from these
pseudo-sessions, which indeed it does (Extended Data Fig. 10a).

Next, we explore whether the flow of prior information involves
more loops than would typically occur by chance. Specifically, we
assess whether triadic loops (A>B>A) within a session occur more fre-
quently than expected. To evaluate this, we calculate the percentage
ofinstancesin which asignificant Granger pair resultsinaloop of size
3foreachsession. We find that an average (across sessions) of 37.7%in
WFIland 10.8% in Ephys exceed what would be anticipated by chance,
confirming a higher prevalence of loops (Fig. 2h and Extended Data
Fig.10b).

Toobtain Granger graphs at theregion level, we use Fisher’'smethod
to combine the session-level Pvalues of a directed pair. Lastly, to con-
struct the Granger causality graph at the Cosmos level, we further
combine the P values from each directed pair using Fisher’s method
once again.

Controlling for region size when comparing decoding scores
across Ephys and WFI

With WFldata, the activity signal of aregion has always the same dimen-
sion across sessions, corresponding to the number of pixels. To con-
trol for the effect of region size on the region R?, we performed linear
regression across 32 recorded regions to predict the decoding R*from
the number of pixels per region. We found a significant correlation
between R?and the size of the regions (Extended Data Fig. 7d; R = 0.82,
P=9.1x107%). To determine whether this accounts for the correlations
between Ephys and WFI R? correlation (Fig. 2d), we subtracted the R?
predicted by region’s size from the WFI R? and recomputed the cor-
relation between Ephys R? and these size-corrected WFI R? (Extended
DataFig. 7f).

Number of recording sessions per region required to reach
significance

For eachregion showingsignificance in prior decoding, we conducted
a subsampling process to see how many recorded sessions were
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necessary on average to reach significance. A region ris associated
withset of N,sessionsin whichits activity wasrecorded. For a particular
region, we canrandomly subselect N € [1, N,] sessions from this setand
test the significance of the region given only these N prior decodings.

For eachsignificant region and each possible number N, we repeated
this procedure 1,000 times, getting a distribution of Pvalues. We report
prN, the median of the P-value distribution, as ameasure of the signifi-
cance for prior decoding of the region r given that only Nrecording
sessions are available.

For each number of available sessions N, we report the fraction of
the total number of significant regions for which the statistic pr"’ isless
than 0.05, as ameasure of the number of recordings per region required
to reach back our obtained significance levels.

Assessing the significance of decoding weights
Letw;be the weight associated with the neuron i—where iranges from
1to U, with Uthe number of units, for the decoding of Uneurons’ activ-
ity on a particular region-session. We determine whether the weight
is significant by comparing it to the distribution of pseudoweights
{w,.k, k € [1, M]} derived from decoding the M =200 pseudosessions
priors based on neural activity on that same region-session.

w;is deemed to be significantifitis higher than the 97.5th percentile
of the pseudoweights distribution or lower than the 2.5th percentile.

Proportion of right choices as a function of the decoded prior
To establish alink between the decoded prior, as estimated from the
neural activity, and the mouse behaviour, we plotted the proportion
of right choices on zero-contrast trials as a function of the decoded
Bayes-optimal prior. For each Ephys (or WFI) session, we decoded the
Bayes-optimal prior using all neural activity from that session. We
focused this analysis on test trials, held-out during training, according
tothe procedure described inthe ‘Nested cross-validation procedure’
section. For Fig. 2e, we then pooled over decoded priors for all sessions,
assigned them to deciles and computed the associated proportion of
right choices. In other words, we computed the average proportion of
right choices ontrialsinwhichthe decoded prior is part of each decile.
To quantify the significance of this effect at asession level (Extended
DataFig. 8a), we additionally performed alogistic regression predict-
ing the choice (right or left) asafunction of the decoded prior. Letjbe
the session number; we predict the actions on that session a;/ (with t
the trial number) as a function of the decoded prior:

pla/ =right) =1/[1+exp(-(u/ x ¥/ + ¢/))]

withY/ the cross-validated decoded Bayes-optimal prior, u’ the slope
(coefficient of the logistic regression associated with the decoded
prior) and ¢’ anintercept. The logistic regression fitting was performed
using the default sklearn LogisticRegression function, which uses L2
regularization on weights with regularization strength C=1.

To assess the statistical significance of these slopes, i/, we generated
null distributions of slopes over M =200 pseudosessions (pseudoses-
sions are defined in the ‘Assessing statistical significance’ section). For
each pseudosession, we computed the slope of the logistic regression
between proportion of correct choices as a function of the decoded
pseudo-Bayes-optimal prior. The decoded pseudo-Bayes-optimal prior
was obtained by first computing the pseudo-Bayes-optimal prior for
each pseudosession, and then using the neural data from the original
session to decode this pseudo-Bayes-optimal prior. The percentage of
correct choice was more complicated to obtain on pseudosessions
because it requires simulating the mice choices as accurately as pos-
sible. As we do not have a perfect model of the mouse choices, we had
to approximate this step with our best model, that is, the action kernel
model. We used the action kernel model fitted to the original behaviour
session and simulated it on each pseudosession to obtain the actions
on each trial of the pseudosessions.

Fromthe set of decoded pseudo-Bayes-optimal priors and pseudoac-
tions, we obtained M pseudoslopes yl.f, i=1...M using the procedure
described above. As the mouse did not experience the pseudosessions
or performthe pseudoactions, any positive coefficientyij hastobethe
result of spurious correlations. Formally, to assess significance, we
examine whether the mean slope (u =1// x ijl /) iswithin the 5% top
percentile of the averaged pseudoslopes: {u; j1, = 1// x 25:1 pl.f: ie[L,MI.
Extended Data Fig. 8a shows this set of M averaged pseudoslopes as a
histogram. The red vertical dashed line is the average slope u.

When applying this null-distribution procedure in Ephys and WFI
data, we find that the pseudoslopes in Ephys data are much more posi-
tive than in WFl data. Thisis due to the fact that spurious correlations
in Ephys data are likely induced by drift in the Neuropixels probes,
whereas WFI data barely exhibit any drift.

Neurometric curves

We used the same decoding pipeline described for the Bayes-optimal
prior decoding to train alinear decoder of the signed contrast from
neural activity in each region, for the ITI[-600, -100] ms and post-
stimulus [0, 100] ms intervals. There are 9 different signed contrasts
{-1,-0.25,-0.125,-0.0625, 0, 0.0625, 0.125, 0.25, 1} where the left con-
trasts are negative and the right contrasts are positive. Givenasession
of T trials, we denote {s;};c; ] the sequence of signed contrasts,
{$;}ier, 11 the cross-validated decoder output given the neural activity
X and {p};c; 1y the Bayes-optimal prior. We defined two sets of
trial indices for each session based on the signed contrast c and the
Bayes-optimal prior: [°" = {i|(s;= ¢) and p, < 0.5} and [/"8" = {i|(s;=c)
and p, > 0.5} corresponding to the trials with signed contrastcand a
Bayes-optimal prior lower or higher than 0.5 respectively.

For these sets, we computed the proportions P =#{3.> 0;
i€ [°/#1° and P8 = #{5,> 0; i € [Me"}/#/"e" These are the propor-
tions of trials decoded as right stimuli conditioned on the Bayes-
optimal prior being higher or lower than 0.5. We fitted a low prior
curve to {(c, P/°")}.c, and a high prior curve to{(c, P"€"} ., which
we called neurometric curves. We used an erf() function fromO to1
with two lapse rates for the curves fit to obtain the neurometric curve:

fl@)=y+Q-y-2)x(erf((c-p)/o) +1)/2

whereyisthelowlapserate, Ais the high lapserate, uis the bias (thresh-
old) and gis the rate of change of performance (slope). Importantly,
we assumed some shared parameters between the low-prior curve and
the high-prior curve: y, 1 and o are shared, while the bias u is free to
be different for low and high prior curves. This assumption of shared
parameters provides a better fit to the data compared to models
with independent parameters for each curve, as evidenced by lower
Bayesian information criterion (BIC) scores during both pre-stimulus
(ABIC = BIC(independent parameters) — BIC(shared parameters) = 6,482
for Ephys, ABIC = 822 for WFI) and post-stimulus periods (ABIC = 6,435
for Ephys, ABIC = 812 for WFI). We used the psychofit toolbox to fit
the neurometric curves using maximal-likelihood estimation (https://
github.com/cortex-lab/psychofit). Finally, we estimated the vertical
displacement of the fitted neurometric curves for the zero contrast
fhieh(c = 0) - f1°*(c = 0), which we refer to as the neurometric shift.

We used the pseudosession method to assess the significance of the
neurometric shift, by constructing a neurometric shift null distribu-
tion. M =200 pseudosessions are generated with their signed contrast
sequences, which are used as target tolinear decoder on the true neural
activity. We fitted neurometric curves to the pseudosessions decoder
outputs, conditioned on the Bayes-optimal prior inferred from the
pseudosessions contrast sequences.

Stimulus side decoding

To compare the representation of prior information across the brain
to therepresentation of stimulus, we used the stimulus side decoding
results from our companion paper®. The decoding of the stimulus side
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was performed using cross-validated logistic regression with L1 regu-
larization, on a time window of [0, 100] ms after stimulus onset. Only
regions with at least two recorded sessions were included, a criteria
appliedinthe companion paper®. The bottom panel of Extended Data
Fig.12bis areproduction from figure 5a of our companion paper.

Embodiment

Video data from two cameras were used to extract 7 behavioural vari-

ables which could potentially be modulated according to the mice’s

subjective prior®:

« Paw position (left and right): Euclidean distance of the DLC-tracked
paws to a camera frame corner, computed separately for the right
and left paw.

« Nose position: horizontal position of the DLC-tracked nose captured
by the left camera.

» Wheeling: wheel speed, obtained by interpolating the wheel position
at 5 Hz and taking the derivative of this signal.

« Licking: the left and right edges of the tongue are DLC-tracked with
both lateral cameras. A lick is defined to have occurred in a frame if
the difference for either coordinate to the subsequent frameis larger
than 0.25times thes.d. of the difference of this coordinate across the
whole session. The licking signal is defined as the number of licking
events during each time bin of 0.02 s.

» Whisking (left and right): motion energy of the whisker-pad areain
the camera view, quantified as the mean across pixels of the absolute
grey-scale difference between adjacent frames; computed separately
for the left- and right-side cameras.

If we are able to significantly decode the Bayes-optimal prior
from these behavioural variables during the [-600 ms, 100 ms]
ITI, we say that the subject embodies the prior. For the decoding, we
used L1-regularized maximume-likelihood regression with the same
cross-validation scheme used for neural data (see the ‘Nested cross-
validation procedure’ section). Sessions and trials are subject to the
same QC as for the neural data, so that we decode the same sessions
and the sametrials asthe Ephys session-level decoding. For each trial,
the decoder input is the average over the ITI [-600, -100] ms of the
behavioural variables. For a session of T trials, the decoder input is a
matrix of size T x 7 and the target is the Bayes-optimal prior. We use the
pseudosession method to assess the significance of the DLC features
decoding score R%. Toinvestigate the embodiment of the Bayes-optimal
prior signal, we compared session-level decoding of the prior signal
from DLC regressors to region-session-level decoding of the prior
signal from the neural activity of each region during the session.

DLCresidual analysis

The DLC prior residual signal is the part of the prior signal which was
not explained away by the DLC decoding, defined as the prior signal
minus the prediction of the DLC decoding. We decoded this DLC prior
residual signal from the neural activity, using the same linear decoding
schemes as previously described.

Eye positiondecoding
Video data from the left camera were used to extract the eye position
variable, a 2D signal corresponding to the position of the centre of
the mouse pupil relative to the video border. The camera as well as
the mouse’s head were fixed. DeepLabCut was not able to achieve suf-
ficiently reliable tracking of the pupils; we therefore used a different
pose-estimation algorithm®®, trained on the same labelled dataset
used to train DeepLabCut. For the decoding, we used L2-regularized
maximum-likelihood regression with the same cross-validation scheme
used for neural data, during the [-600 ms, =100 ms] ITI.

The eye-position prior residual signal is the part of the prior signal
which is not explained away by the eye position decoding, defined
as the prior signal minus the prediction of the eye position decoding.

We decode this eye position prior residual signal from the neural activ-
ity of early visual areas (LGd and VISp) using the same linear decoding
schemes as previously described.

Contribution of DLC and eye-position features to prior
embodiment: feature importance

To assess the contribution of DLC and eye position features to prior
embodiment, we performed aleave-one-out decoding procedure of
the DLC + eye position features. There are five different types of DLC
features: licking, wheeling, nose position, whisking and paws positions.
Moreover, with the x and y coordinates of the eye position, we had a
total of seven types of variables for which we individually performed
aseparate leave-one-out decoding analysis. The difference between
the full decoding R? and the leave-one-out decoding R is a measure
of the importance of the knocked-out variable in the full decoding.

Behavioural models
Todetermine thebehavioural strategies used by the mice, we developed
several behavioural models and used Bayesian model comparison to
identify the one that fits best. We considered three types of behavioural
models that differ asto how the integration across trials is performed
(how the subjective prior probability that the stimulus will be on the
right side is estimated based on history). Within a trial, all models
compute a posterior distribution by taking the product of a prior and
alikelihood function (the probability of the noisy contrast given the
stimulus side; Supplementary information).

Among the three types of models of the prior, the first, called the
Bayes-optimal model, assumes knowledge of the generative process
of the blocks. Block lengths are sampled as follows:

p(ly=N) =< exp(-N/7) x 1[20 <N<100]

with/, thelength of block kand I1theindicator function. Block lengths
are therefore sampled from an exponential distribution with param-
eter 7=60and constrained to be between 20 and 100 trials. When block
k—1comesto an end, the next block b,, with length [,, is defined as a
right block (where the stimulus is likely to appear more frequently on
theright) ifblock b,, was aleft block (where the stimulus was likely to
appear more frequently on the left) and conversely. During left blocks,
the stimulus is on the left side with probability y = 0.8 (and similarly
forright blocks). Defining s, as the side on which the stimulus appears
ontrial t, the Bayes-optimal prior probability the stimulus will appear
on the right at trial ¢, p(s,|sy.-;) is obtained through a likelihood
recursion®.

The second model of the subjective prior, called the stimulus kernel
model*®, assumes that the prior is estimated by integrating previous
stimuliwith an exponentially decaying kernel. Defining s, as the stimu-
lusside ontrial ¢ - 1, the prior probability that the stimulus will appear
ontheright m,is updated as follows:

m=1-a)xm_+axl[s,_ =right]

with ., the priorattrial ¢ - 1and athelearning rate. The learning rate
governs the speed of integration: the closer ais to 1, the more weight
isgiventorecentstimulis,;.

The third model of the subjective prior, called the action kernel
model, is similar to the stimulus kernel model but assumes an inte-
gration over previous chosen actions with, again, an exponentially
decayingkernel. Defining a,_, as the actionat trial t — 1, the prior prob-
ability that the stimulus willappear on the right rr,is updated as follows:

m=(1-a)xm_;+axlla,_,=right]

For the Bayes-optimal and stimulus kernel models, we additionally
assume the possibility of capturing asimple autocorrelation between
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choices withimmediate or multistep repetition biases or choice- and
outcome-dependent learning rate*®*, Further details on model deriva-
tions are provided in the Supplementary Information.

Model comparison

To perform model comparison, we implemented a session-level Bayes-
ian cross-validation procedure. In this procedure, for each mouse with
multiple sessions, we held out one session i and fitted the model on
the held-in sessions. For each mouse, given a held-out session i, we
fitted each model k to the actions of held-in sessions, denoted here as
A% and obtained the posterior probability, p(6, |4, m,), over the fitted
parameters 6, through an adaptive Metropolis—Hastings procedure®.
Four adaptive Metropolis-Hastings chains were run in parallel for a
maximum of 5,000 steps, with the possibility of early stopping (after
1,000 steps) implemented with the Gelman-Rubin diagnostic®.
6, typically includes sensory noise parameters, lapse rates and the
learning rate (for stimulus and action kernel models); the formal
definitions of these parameters are provided in the Supplemen-
tary Information. Let{f; ,; n € [1, Nyyl}be the Ny, samples obtained
with the Metropolis-Hastings (MH) procedure for model k (after dis-
carding theburn-in period). We then computed the marginal likelihood
of the actions on the held-out session, denoted here as A'.

pA1AY, m)= [ p(A, 64%, m)do,

= [ o18, mop(6A", my)ce,

1 Nmu )
= 2 pA16 , my)
MH n

For each subject, we obtained ascore per model kby summing over
the log-marginal likelihoods log p(4 |A¥, m,), obtained by holding
outonesession atatime. Giventhese subject-level log-marginal likeli-
hood scores, we performed Bayesian model selection®® and reported
the model frequencies (the expected frequency of the kth model in
the population) and the exceedance probabilities (the probability that
aparticular model kis more frequent in the population thanany other
considered model).

Assessing the statistical significance of the decoding of the
action kernel prior

Giventhat the action kernelmodelbetter accounts for the mouse behav-
iour, it would be desirable to assess the statistical significance of the
decodingofthe actionkernel prior. Crucially, as assessing significance
involves a null hypothesis (the neural activity is independent of the
prior), arigorous construction of the corresponding null distribution
iskey.

For the Bayes optimal prior decoding, constructing the null distribu-
tionis straightforward. It requires that we generate stimulus sequences
with the exact same statistics as those experienced by the mice. We do
this by simulating the same generative process used to generate the
stimulus during the experiment, yielding what we called pseudoses-
sionsin previous sections.

However, for the action kernel prior (and contrary to the Bayes opti-
mal model), we also need to generate action sequences with the same
statistics as those generated by the animals. In turn, this would require
aperfect model of how the animals make decisions. As we lack such a
model, we would need to come up with an approximation. There are
multiple approximations that we could use, including the following:
« Synthetic sessions, in which we use the action kernel model, using

the parameters fitted to each mouse on each session, to generate
fake responses. However, the action kernel model is not a perfect
model of the animal’s behaviour, it is merely the best model that we
have amongthe ones we have tested. Moreover, there could be some
concerns about the statistical validity of using a null distribution,

whichassumes that the action kernelis the perfect model when test-
ing for the presence of this same model in the mouse’s neural activity
Imposter sessions, in which we use responses from other mice. How-
ever, other animals are most unlikely to have used the exact same
model/parameters as the mouse we are considering. This implies
that the actions in these imposter sessions do not have the same
statistics as the decoded session. There is indeed a large degree of
between-session variability, as can be seen from the substantial dis-
persionin the fitted action kernel decay constants shown in Fig. 4b.
Shifted sessions, in which we decode the action kernel prior on trial
M, using the recording on trial M + N, with periodic boundaries for
the ‘edges™. The problems here are twofold. First, Vmust be chosen
large enough such that the block structure of the shifted session is
independent ofthe block structure of the non-shifted session. Because
blocksare about 50 trials long, Nmustbe large for theindependence
assumption to hold. This adds a constraint on the number of different
shifted sessions that we can generate, leading to a poor null distri-
bution with little diversity (made from only a few different shifted
sessions).Second, it hasbeen shown that there is within-session vari-
ability®?such that when Nis chosen to be large, we cannot consider the
shifted actions to have the same statistics as the non-shifted actions.

There may be other options. However, as they would all rely on
approximations, the degree of statistical inaccuracy associated with
their use would be unclear. We would not even know which one to
favour, asitis hard to establish the quality of the approximations. Over-
all, we have access to the exact generative process to construct the null
distribution for the Bayes optimal prior, versus only approximations
for the action kernel prior. As aresult, we decided to err on the side
of caution and focus primarily on the Bayes optimal prior decoding
whenever possible. Inanalyses involving animal behaviour—suchasin
Fig.2e (see the ‘Proportion of right choices as afunction of the decoded
prior’section) and Fig. 4e (see the ‘Orthogonalization’ section)—we had
torely on an approximation. For these, we used the synthetic session
approach to establish a null distribution.

Orthogonalization

Toassess the dependency on past trials of the decoded Bayes-optimal
prior from neural activity, we performed stepwise linear regres-
sion as a function of the previous actions (or previous stimuli). The
Bayes-optimal prior was decoded from neural activity at the session
level, therefore considering the activity from all accessible cortical
regions in WFland all units in Ephys.

The stepwise linear regression involved the following steps. We
started by linearly predicting the decoded Bayes-optimal prior on
trial ¢ from the previous action (action on trial ¢ - 1), which enables us
to compute a first-order residual, defined as the difference between
the decoded neural prior and the decoded prior predicted by the last
action. We then used the second-to-last action (action at trial £ — 2) to
predict the first-order residual to then compute a second-order resid-
ual. We next predicted the second-order residual with the third-to-last
actionand so on. We use this iterative stepwise procedure to take into
account possible autocorrelationsin actions.

The statistical significance of the regression coefficientsis assessed
as follows. Let us use 7, to denote the number of trials of session j,
Y/ € R" the decoded Bayes-optimal prior and X/ € R"/*¥ the chosen
actions, where Kis the number of past trials considered in the stepwise
regression. When running the stepwise linear regression, we obtain a
set of weights {W/, k € [1, K1}, with W/ the weight associated with the
kth-to-last chosen action. We test for the significance of the weights
for each step k, using as a null hypothesis that the weights associated
with the kth-to-last chosen action are not different from weights pre-
dicted by the ‘pseudosessions’ null distribution.

To obtain a null distribution, we followed the same approach as
described in the ‘Proportion of right choices as a function of the



decoded prior’ section. Thus, we generated decoded pseudo-Bayes-
optimal priors and pseudoactions. For each session, these pseudo-
variables are generated as follows: first, we fitted the action kernel
model (our best-fitting model) to the behaviour of sessionj. Second,
we generated M pseudosessions (see the ‘Assessing the statistical
significance’ section). Lastly, we simulated the fitted model on the
pseudosessions to obtain pseudoactions. Regarding the decoded
pseudo-Bayes-optimal priors, we first infer with the Bayes-optimal
agent, the Bayes-optimal prior of the pseudosessions, and second, we
decoded this pseudoprior with the neural activity. For each sessionj
and pseudo-i, we have generated a decoded pseudo-Bayes-optimal
prior Yijas well as pseudoactions X,-j. Whenapplying the stepwise linear
regression procedure to the couple (X, /), we obtain a set of pseudo-
weights {W,{,,-, k< [1,K1}. As the mouse did not experience the pseu-
dosessions or perform the pseudoactions, any non-zero coefficients
W{ ; must be the consequence of spurious correlations. Formally,
to assess significance, we examine whel\}her the average of the coeffi-
cients over sessions W, = 1/N.gsions ije““’"s W is within the 5% top
percentile of {W; ;; Wi ;=1/Nicssions ZIJVSESS"’"S W,{, ;ie1, M.

Thesstatistical significance procedure when predicting the decoded
Bayes-optimal prior from the previous stimuli is very similar to the
onejust described for the previous actions. The sole differenceis that,
for this second case, we do not need to fit any behavioural model to
generate pseudostimuli. Pseudostimuli for sessionjare defined when
generating the M pseudosessions. Pseudoweights are then obtained
by running the stepwise linear regression predicting the decoded
pseudo-Bayes-optimal prior from the pseudostimuli. Formal statis-
tical significance is established in the same way as for the previous
actions case.

When applying this null-distribution procedure to Ephys and WFI,
we find that the strength of spurious correlations (as quantified by the
amplitude of pseudoweights W, ) for Ephys is much greater than for
WFl data. This is due to the fact that spurious correlations in electro-
physiology are mainly produced by drift in the Neuropixels probes,
which is minimal in WFI.

Behavioural signatures of the action kernel model
Tostudy why the Bayesian model selection procedure favours the action
kernel model, we sought behavioural signatures that can be explained
by thismodel but not the others. As the action kernel model integrates
over previous actions (and not stimuli sides), it is a self-confirmatory
strategy. This means that, if an action kernel agent was incorrect on a
block-conformant trial (trials in which the stimulus is on the side pre-
dicted by the block prior), thenitshould be morelikely to be incorrect
on the subsequent trial (if it is also block-conformant). Other models
integrating over stimuli, such as the Bayes-optimal or the stimulus
Kernel model, are not more likely to be incorrect after an incorrect
trial, because they can use the occurrence or non-occurrence of the
reward to determine the true stimulus side, which could then be used
to update the prior estimate correctly. To test this, we analysed the
proportion correct of each session at trial ¢, conditioned on whether
itwas correct orincorrect at trial ¢ - 1. Toisolate the impact of the last
trial, and not previous trials or other factors such as block switches and
structure, we restricted ourselves to the following:
« Zero-contrast trials.
« Trial ¢, ¢t - 1and ¢ - 2 had stimuli that were on the expected, meaning
block-conformant, side.
« On trial £ - 2, the mouse was correct, meaning that it chose the
block-conformant action.
« Ontrials that were at least ten trials from the last reversal.

Neural signature of the action kernel model from the decoded
Bayes-optimal prior

To test whether the behavioural signature of the action kernel
model discussed in the previous section is also present in the neural

activity, we simulated an agent of which the decisions are based on
the cross-validated decoded Bayes-optimal prior and tested whether
this agent also shows the same action kernel signature. The decoded
Bayes-optimal prior was obtained by decoding the Bayes-optimal prior
from the neural activity (see the ‘Nested cross-validation procedure’
section) on a session-level basis, considering all available WFI pixels
or Ephys units.

Notethat, ifthe decoded Bayes-optimal agent exhibits the action ker-
nelbehavioural signature, this must be a property of the neural activity
as the Bayes-optimal prior on its own cannot produce this behaviour.

The agent is simulated as follows. Let us denote Y € R" the Bayes-
optimal prior with Nis the number of trials. When performing neural
decoding of the Bayes-optimal prior Y, we obtain a cross-validated
decoded Bayes-optimal prior Y. We define an agent which, on each
trial, greedlly selectstheactionpredicted by the decoded Bayes-optimal
prior ¥, meaning that the agent chooses right if ¥ > 0.5, and left
otherwise.

On sessions that significantly decoded the Bayes optimal prior,
we then test whether the proportion of correct choices depends on
whether the previous trial was correct or incorrect. We do so at the
session level, applying allbut one criterion of the behavioural analysis
described previously in the ‘Behavioural signatures of the action kernel
model’ section:

« Trial ¢, ¢ - 1and ¢ - 2 had stimuli that were on the expected, meaning
on the block-conformant, side.

« On trial ¢t - 2, the mouse was correct, meaning that it chose the
block-conformant action.

« Ontrials that were at least ten trials from the last reversal.

Note that, given that the neural agent uses the pre-stimulus activity
to makeits choice, we do not need torestrict ourselves to zero-contrast
trials.

Neural decay rate
To estimate the temporal dependency of the neural activity in Ephys
and WFI, we assumed that the neural activity was the result of anaction
kernel (or stimulus kernel) integration and fitted the learning rate
(inverse decay rate) of the kernel to maximize the likelihood of observ-
ing the neural data.

We first describe the fitting procedure for WFl data. Given asession,
let us call X, the WFI activity of the nth pixel for trial ¢. Similarly to
the procedure that we used for decoding the Bayes-optimal prior, we
took the activity at the second-to-last frame before stimulus onset. We
assumed that X, ,is arealization of Gaussian distribution withmeanQ,,
and withs.d. o, X, ,~ N(Q.,, 0,). Q., was obtained through an action
kernel (or stimulus kernel) integration process:

Qt,n =(1- aﬂ) x Qt—l,n +apx (n XAp-y

with a, the learning rate, a, ; € {-1, 1} the action at trial t—~1and {,,a
scaling factor. a,, {,and o, are found by maximizing the probabil-
ity of observing the widefield activity p(X,.7 ,la;.7; a,, {,, 0,), with
1:T={1, 2,...T} and T the number of trials in that session. If a trial is
missed by the mouse, which occurs when reaction time exceeds 60 s
(1.5% of the trials, see the companion paper®), Q, , is not updated. For
the electrophysiology now, let us call X, , the neural activity of unitn
at trial ¢. Similarly to what we did when decoding the Bayes-optimal
prior, we took the sum of the spikes between -600 and 100 ms from
stimulus onset. We assumed here that X, , is a realization of a Poisson
distribution with parameter Q, ,, X, , ~ Poisson(Q, ,). Q., was obtained
through an action kernel (or stimulus kernel) integration process:

Q, = (=) xQ,_y , + &, x !

witha,thelearning rate and {'«-1scaling factors, one for each possible
previous action. Note that in the case of Ephys, as Q,, can only be



Article

positive, two scaling factors are necessary to define how Q, , is adjusted
after aright or left choice. a,, {'and {;'are found by maximizing the
probability of observing the Ephys activity p(X,.; ,ldy.7; @, 57,
with1:T={1, 2,...T} and T the number of trials in that session. For
electrophysiology, we added constraints on the units. Specifically, we
only considered units (1) of which the median (pre-stimulus summed)
spikes was not 0; (2) with at least 1 spike every 5 trials; and (3) where
the distribution of (pre-stimulus summed) spikes was different when
the Bayes-optimal prior is greater versus lower than 0.5 (signifi-
cance isasserted when the Pvalue of aKolmogorov-Smirnov test was
below 0.05).

To restrict our analysis to units (or pixels) which are likely to
reflect the subjective prior, we considered only those that were part
of regions-sessions that significantly decoded the Bayes-optimal
prior, resulting in N =164 sessions for Ephys and N =46 for WFI.
Significance was assessed according to the pseudosession meth-
odology (see the ‘Assessing statistical significance’ section), which
accounts for spurious correlations (which a unit-level Kolmogorov-
Smirnov test would not). Then, to obtain a session-level neural
learning rate, we averaged across pixel-level or unit-level learning
rates. To compare neural and behavioural temporal timescales, we
correlated the session-level neural learning rate with the behav-
ioural learning rate, obtained by fitting the action kernel to the
behaviour.

Inboth Ephys and WFI, when considering that the neural activityisa
result of the stimulus kernel, the calculations were all identical except
replacing actions a,.; with stimuli side s,.;.

This analysis (Fig. 4f) makes the assumption that sessions could be
considered tobeindependent from another—an assumption that can
be questioned given that we have a total of 459 sessions across 139
mice in Ephys and 52 sessions across 6 mice in WFI. To test the pres-
ence of the correlation between neural and behavioural timescales
while relaxing this assumption, we developed a hierarchical model
that takes into account the two types of variability, within mice and
within sessions given amouse. This model defines session-level param-
eters, which are sampled from mouse-level distributions, which are
themselves dependent on population-level distributions. The exact
definition of the hierarchical modelis provided in the Supplementary
information. This hierarchical approach confirmed the session-level
correlation between neural and behavioural timescales (Extended Data
Fig. 15b).

Reporting summary
Furtherinformation onresearchdesignisavailablein the Nature Port-
folio Reporting Summary linked to this article.

Data availability

All data supporting the findings of this study are available at Git-
Hub (https://int-brain-lab.github.io/iblenv/notebooks_external/data_
release_brainwidemap.htmland https://int-brain-lab.github.io/iblenv/
notebooks_external/loading_widefield_data.html). Detailed informa-
tion on each recorded region—including the number of recordings,
neurons and decoding scores—is provided at GitHub (https://github.
com/int-brain-lab/paper-brain-wide-map/blob/plotting/brainwidemap/
meta/region_info.csv). Users are allowed to distribute, remix, adapt
and build on the material in any medium or format, provided that
attribution is given to the creator (data license, CC-BY). The Swanson
flat map is available at GitHub (https://int-brain-lab.github.io/iblenv/
notebooks_external/atlas_swanson_flatmap.html).

Code availability

The code associated with this paper is available at GitHub (https://
github.com/int-brain-lab/prior-localization/tree/main).
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The parameters are obtained by fitting the following parametric curve: mice). Mice have asignificantly longer meanrecovery decay constant than
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timescale. To make up for the limited amount of available zero contrast reversal
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indicatedinlightgrey. For WFI, the datawas decoded on the second-to-last
framerelative to the stimulus onset, corresponding to atime window that
rangesfrom-198to-132msat thestartto-132to-66 msattheend, depending
onthetiming of the last frame before the stimulus onset (this last frame can
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discoveryrate of1%.
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Extended DataFig. 4 |Six examples of neuronssignificantly encoding the
Bayes-optimal prior (***p<0.001, **p < 0.01, *p < 0.05). a. Peri-Stimulus Time
Histograms (PSTHs) segmented by trials throughout the session. Left column
conditions on the Bayes-optimal prior for the right side being less than 0.3
(blue) vs greater than 0.7 (orange). The middle and right columns depict PSTHs
for trialsunder conditions of low certainty (pRight close to 0.5) and high
certainty (pRight far from 0.5), respectively. “Med” refers to the median
operation. Significanceis assessed by testing the difference between the trial
wise firing rates (averaging across time bins) of “left” (blue) and “right” (orange)
trials with atwo-sample Kolmogorov-Smirnov test. b. Spike counts of the
neurons (purpleline) during theintertrialintervalin the [-600,-100] millisecond
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time window before stimulus onset, along with the Bayes-optimal prior (blue)
forasubset of trials within the session (Spearman correlations of the full session
arereported onthe graphs). Allneurons on this panel show a preference for the
leftside, although, at the population level, we did not observe abias for either
therightorleftside.Indeed, we examined the distribution of decoding weights
and detected nodiscernible lateral bias concerning the weight distribution.
Testing the significance of the decoder weightin eachregionyielded adjusted
p-valuesall above 0.2 (Wilcoxon test), after adjusting for multiple comparisons
using the Benjamini-Hochberg correction. Additionally, acombined analysis of
allweights from the sixregionslead to the same conclusion (two tailed signed
Wilcoxontest: t =16732, p-value = 0.31).
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of the Bayes-optimal prior, Bayes-optimal prior on a narrower time window signed-rank paired Wilcoxon test, n.s. not significant, ***p < 0.001). d. Bayesian
(-400 msto-100 ms), and the Bayes-optimal prior from main Fig. 2b. Aregion model comparison for 2behavioural models, the Bayes optimal model, which
isdeemed significantif the Fisher combined p-value is lower than 0.05. infers a prior from past observations (see Methods and Supplementary

b. Correlation analysis comparing Bayes optimal decoding from the extended Information), and amodel that assumes the true block prior, which is not
window (shownin Fig.2b) with the true block decoding (left panel), thelog accessible to the mice. Our analysis shows that the Bayes optimal model more
odds prior (middle panel), and the Bayes-optimal prior from the narrower effectively explains the behaviour, withan exceedance probability greater

window (right panel). Inthe three cases, we have alarge correlation between than 0.999.
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Extended DataFig. 8 |a. Null distribution of the slopes for the proportion of
right choice vs decoded prior onzero contrast trials. Slopes were estimated
using logistic regression to predict the choice (left or right) asa function of the
decoded prior. The null distribution was calculated using 200 pseudosessions.
Foreach pseudosession, pseudoactions were generated from an action kernel
behavioural model that was fit to each real session (see Methods for more
details). We then obtained pseudoslopes by predicting (with logistic regression)
the pseudoactions as afunction of the decoded prior. The null distribution was
obtained by averaging the pseudoslopes across all sessions (we thus obtain
200 averaged pseudoslopes). The empirical average slope (yellow dashed
lines) does not overlap with the null distribution obtained with pseudosessions
(blue histogram). Therefore the correlations between the predicted prior and
proportion of right choice can not be explained away by spurious temporal
correlations or driftin the neural recordings. top: ephys, bottom: WFI. b. Left:
Proportion of right choices vs. cross-validated decoded Bayes-optimal prior
fromneuralactivity for all contrast strengthsin Ephys. Different shades of blue
denote different contrast strengths. Main Fig. 2e focused on the zero-contrast
case; here we show the same analysis across all contrasts. Right: Slopes,
estimated using logistic regression to predict choice from decoded prior (asin
panel a-see Methods). Slopes are strongly modulated by contrast strengths,
arguing against amere perseverative motor bias, which would produce aslope
thatisinvariantacross contrastsc. Sameasb. butin WFI.d. Proportion of right
choicesonzero contrasttrialsasafunction of the decoded region-level Bayes-
optimal prior. We decoded the Bayes-optimal prior for each region and
computed the slope of this decoded prior as afunction of the proportion of
right choices (corrected using pseudo-sessions). Thisis the analysis presented

inmainFig.2ebutataregionlevel (significanceis assessed when theregion-
level p-values < 0.05, using Fisher’s method for combining p-values). We
observed that the slopes are significantin17.8% of the regions in Ephys and
90.1%in Widefield, spanning every level of the hierarchy, including LGd, SCm,
CP,MOs, and ACAd. It should be noted that the analysis for Ephysincludes only
241regions dueto the exclusion of two sessions where the mouse made the
same choiceonevery zero contrasttrial. e. Correlation at theregional level
betweenthe decoded R? values and the corrected slopes. We find correlations
inbothmodalities. These correlations prompt furtherinvestigationinto
whether they could be explained away by differences in how the Bayes optimal
prior versus theaction kernel model account for behaviour across sessions.
Specifically, sessions that more closely follow the action kernel model could
potentially show lower corrected R*and slopes, as these metrics are calculated
using the Bayes optimal prior. In Ephys, we found no correlation between the
log Bayes Factor (the differenceinthe marginalloglikelihood between the
action kerneland Bayes optimal models at the session level) and the corrected
slopes (Spearman correlation:R=0.05,P =0.29, N =412 sessions), with the
corrected slopes averaged across regions for each session. Inwidefield, asmall
correlation was detected (Spearman correlation:R=-0.34,P =0.014, N =51
sessions). However, even after adjusting for the log Bayes factor (by removing
thelinear prediction of the log Bayes factor from the corrected slope), the
correlation between the corrected R?and the adjusted corrected slope remained
strong (Spearman correlation:R=0.935,P =4.7 x10™,N =32 regions). This
suggests that the type of behavioural strategy the mice used does not confound
the correlation between the corrected R? and the corrected slope.
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Extended DataFig.9|a.The decoding R*for the Bayes-optimal prior from
neural activity is significantly correlated with the decoding R? for the Bayes-
optimal prior from DLC features (Pearson correlationR=0.18,P=1.6 x107).
b.Embodimentanalysis accounting for both the DLC features and the eye
position. Left: Decoding R?for the Bayes-optimal prior from neural activity
against decoding R*for the Bayes-optimal prior from DLC features and eye
position. The correlation between these two quantities is significant (Pearson
correlationR=0.24, P=2.5x10"). Right: DLC +eye position residual decoding
R*against neural decoding R The residual decoding R? values are obtained by
firstregressing the Bayes-optimal prior from DLC features and eye position,
andthenregressingthe prior residual (Bayes-optimal prior minus Bayes-optimal
prior estimated from DLC features and eye position) against neural activity.
The neuraldecoding R? corresponds to the R?when decoding the Bayes-optimal
prior fromneural activity. The two quantities are strongly correlated (Pearson
correlationR=0.79, P=5.5x10"*), suggesting that the prior cannot be entirely
attributed toacombination of both DLC features and eye position. c. Regressor
eliminationapproach: for each feature, we remove it to measure the decreasein
thedecoding score compared to the fullmodel (see Methods). The first feature
toimpact the modelsignificantly when removed is the paw position. In this

Neural prior decoding of LGd/VISp
(corrected R?)

Neural prior decoding of LGd/VISp
(corrected R?)

task, the paws are typically engaged to manipulate the wheel, whichin turn
adjusts the stimulus. It appears that the paws are positioned differently—likely
onthe wheel-depending on whether the prior suggests the next side will be
leftor right. The second key feature was the x-coordinate of the eye position,
which aligns with the task setup where the stimulus is positioned along a
horizontal plane, indicating that the micetend tolookinthe direction suggested
by the Bayes-optimal prior. d. Left: decoding R*for the Bayes-optimal prior
fromneural activity in VISp and LGd against decoding R*for the Bayes-optimal
prior fromeye position. The correlation between these two quantitiesis
significant (Pearson correlation R = 0.36, P=0.0163). Right: residual decoding
R*againstneural decoding R2. The residual decoding R? values are obtained

by first regressing the Bayes-optimal prior against eye positionand then
regressing the prior residual (Bayes-optimal prior minus Bayes-optimal

prior estimated from eye position) against neural activity in VISp and LGd

(see Methods). The neural decoding R? corresponds to the R*when decoding
the Bayes-optimal prior from neural activity. The two quantities are strongly
correlated (Pearson correlation R= 0.8, P=7.3x10™), suggesting that the prior
signalsinLGd and VISp are not solely due to the position of the eyes across blocks.
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Extended DataFig.10| Granger causality analysis. a. Average percentage of
significant directed pairs between two regions thatreflect the prior across
sessions. When consideringall pairs of regions encoding the prior significantly,
and for which we had simultaneous recordings, we observed that information
was significantly exchanged between 71% of these pairs in Widefield imaging
and 36%in Ephys. Blue histograms: null distribution. b. Average percentage

of significant directed pairs (A- > B) whichare reciprocated within the same
session by their counterparts (B- > A); we found this to occur 38% of the time in
Widefieldand11%in Ephys. Blue histograms: null distribution. (same as in main
Fig.2h). c. Histogram showing the number of sessions for each directed pair
and barplotshowing the percentage of observed directed pairs (directed pairs
with atleast one session) versus unobserved pairs. Right: In Ephys, with a total
of242 observed regions, the possible number of pairs amounts to 242 x
241=58,322.0f these, approximately 10% of the directed pairs had been
recorded simultaneously, but the vast majority (75%) of these pairsappearedin
two or fewer sessions, highlighting their scarcity. Left: Widefield provides a
richer dataset, because, with 32 regions recorded simultaneously, we can
analyse atotal of 992 possible directed pairs (32 x 31), most of them available
onallsessions. d. Left: Complete connectivity graph from Ephys (p < 0.05
uncorrected for multiple comparisons). When correcting for multiple
comparisons, none of the links remains significant. This lack of significant

findings post-correctionislikely due to the sparse nature of the observationsin
Ephys (see panel c.). Right: Connectivity graphin Ephys across Cosmos regions
(p <0.05Bonferronicorrected). p-values across directed pairs of regions are
aggregated at the Cosmoslevel with Fisher’'smethod (see Methods, identical to
main Fig.2gleft). e. Left: Complete connectivity graph from Widefield (p < 0.05
Bonferronicorrected). The graphis densely populated and consequently
difficulttointerpret. Middle: A partial connectivity graph from Widefield,
highlighting significant directed pairs projecting to the Primary Visual Cortex
(VISp), asshownin Fig. 2g (right). We uncover feedback connections from
higher-order areas such as the Motor Cortex (MOs), Ventral Retrosplenial
Cortex (RSPv), Prelimbic Cortex (PL), and Anterior Cingulate Area Dorsal
(ACAd) —theseregions are marked with grey circles for emphasis — to the early
sensory area, the Primary Visual Cortex (VISp). Left: Percentage of sessions
exhibiting significant reciprocal connections (A->VISp->A) for sessions in
which the Bayes optimal prior could be significantly decoded from both VISp
andthe previouslyidentified higher-order regions (MOs, RSPv, PLand ACAd).
Thesize of thearrowis proportional to the percentage. Our findings indicate
the existence of reciprocal connectionsin these sessions: 33.3% between MOs
and VISp,16.7% between ACAd and VISp, 20% between PLand VISp, and 18.75%
betweenRSPvand VISp.
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Extended DataFig.13|a.Bayesian model comparison for11behavioural
models, considering the possibility of one step repetition bias (i.e. atendency
torepeat the previous choice), multi-step repetition bias (i.e. atendency to
follow an exponentially decaying average of past choices), and, for the stimulus
kernelmodel, the presence of positivity and confirmation biases as asymmetric
learning rates (accounting for the possibility to learn differently from positive
versus negative rewards and from information that confirms versus contradicts
existing beliefs*°. See Methods for more details on the Bayes-optimal, action
kernel and stimulus kernel models and Supplementary information for the
formal equations of the repetition biasand asymmetrical learning rates. Model
frequency (the posterior probability of the model given the subjects’ data, left
panel) and exceedance probability (the probability that a model is more likely
thanany other models, right panel) are shown. The action kernel model offered
the bestaccountof the dataeven whenincluding models with repetition,
positivity and confirmation biases (Peyceedance > 0.999). b. Bayesian model
comparison for two behavioural models, the action kernel and a variant that
operatesonly during 0% contrast trials (by calculating an exponentially decaying
average of chosen actions at 0% contrast trials). Our comparisons indicate that
theaction kernel, updating across all contrasts, more effectively explains
behaviour (exceedance probability > 0.999), suggesting that mice do not limit
their subjective prior estimations to 0% contrast trials alone. c. Performance
on zero contrast trials, distinguishing whether the preceding action was
correctorincorrectand considering that the previous contrast was non zero.
This analysis mirrors the main analysis in Fig. 4c butisspecifically restricted to
previoustrials with non-zero contrast. When considering behaviour within
blocks, anagentusing anactionkernel prior should show a higher percentage

Animals Action kernel

of correctresponses followingacorrect, block-consistent action compared to
anincorrectone. Thisisbecause, onincorrecttrials, the prioris updated with
anaction corresponding to theincorrect stimulus side. Even when limited to
previoustrials with non-zero contrast, thereis anotable differencein the
probability of making a correctdecision following anincorrectvs.acorrect
choice (Wilcoxon paired test, t =11734, P =1.1x107). This finding is confirmation
that mice update their priors using information from all contrast levels, not
solely zero contrast trials. d. Psychometric shift during both the first 90 trials
(unbiased) and the other trials (biased) for animals and the action kernel. This
shiftis determined by analysing two psychometric curves, one conditioned on
theactionkernel prior being above 0.5 (favoring theright side) and the other
conditioned onthe actionkernel prior beingless than 0.5 (favoring the left
side). We fit psychometric functions to these curves, and then calculate the
psychometricshiftas the vertical displacement of these curves at zero contrast.
As predicted by the action kernel model, the analysis reveals a significant
positive psychometric shift during the unbiased phase (first 90 trials).
Furthermore, the shiftinthe behavioural dataisless pronounced during the
unbiased period compared to the biased period because the stimuliare more
balancedinthe unbiased phase, keeping the subjective prior closerto 0.5.
Specifically, when distinguishing the trials that favour the right side (action
kernel priorabove 0.5) from those favoring the left side (action kernel prior
below 0.5), theunderlying action kernel priors remained close to 0.5 during the
unbiased period. However, the presence of significant and comparable shifts
betweenthe animals and theaction kernel model during the unbiased period
indicates that mice exhibitabehavioural shift during the unbiased trials.
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Extended DataFig.14|Same analysis asin Fig. 4c,e, but for three specific
brainregionsusing Ephys (SCm, CP, VPM) or WFl data (right column, MOp,
VISp, MOs) (*p<0.05, **p<0.01, **p<0.001). For the influence of past actions

onthe decoded Bayes-optimal prior, significanceis assessed in the same way as
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inthe main Fig. 4e (see Methods). For the asymmetry effect, the effect being
observed onabrain-wide level, we performed al-tailed signed-rank Wilcoxon
pairedtest for assessing significance on theregion level.
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Correlation between neural and behavioral inverse decay constants
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Extended DataFig.15|a.Behaviouralinverse decay constants, obtained by
fitting the stimulus kernel model to the behaviour, as a function of the neural
inverse decay constants, obtained by estimating the temporal dependency of
the neural signals withrespect to previous stimuli (see Methods). The neural
and behavioural inverse decay constants are not significantly correlated for
either Ephys (Pearson correlationR=0.03, P=0.71) or WFI (Pearson correlation
R=-0.04,p=0.82).b.Hierarchical modelling of the neural and behavioural
inverse decay constants (also referred to here as learning rates). The parameter
Hy defined for each mousej, isthe slope (the multiplicative coefficient) of the
linearregression predicting the neural learning rate from the behavioural
learning rate (on the sessions of mousej). These parameters y. are sampled
fromacommon populationlevel prior withmean . The parameter u, defined
atthepopulationlevel, characterizes anoverall relationship between neural
and behavioural learning rates. We found that the relationship between neural
andbehaviourallearning ratesis significantly positive for the action kernel model
(toprow), bothinelectrophysiology (left column) and in widefield imaging
(right column), whichis not the case for the stimulus Kernel model (bottom
row). Furthermore, when testing the difference in means of the population
level parameter Ho between action and stimulus kernels, we found thatit was
significantly greater for the actionkernel, both in Ephys and in WFI. Significance
was assessed by estimating the means of the u distributions for the action

and stimulus kernels with the BEST Bayesian test®. In both Ephys and WFI,

we found that p( ﬂézctl(emel > ﬂostimkernel y=1with MézctKemel and ﬂgtimkemel the
means of the y distributions for the action and stimulus kernels, respectively.

Regarding the effect sizes, with the same BEST procedure, we find an effect size
of2.53inEphysand1.96 in widefield (effect sizes greater than1.3 are commonly
consideredtobe very large®*). See Supplementary Information for the full
specification of the hierarchical generative model. c. Correlation, ataregion
level, between neuralinverse decay constants (estimating temporal dependency
of the neural signals on previous actions), and behavioural inverse decay
constants (from fitting the action kernel to behaviour). A decay constant is
estimated for each pixel (asin Fig. 4f, refer to Methods), but now, averages are
takenacross pixels for each session and specific region. In the analysis Fig. 4f,
session-level learning rates were obtained by averaging across all pixels,
regardless of regionidentity. Left: Regions with asignificant correlation
between behavioural and neural inverse decay constants. As expected, only
positive correlations emerge as significant. Right: Correlation between
behavioural and neural inverse decay constants is correlated with the prior
decoding corrected R*from the same regions. These two quantities were found
tobealsocorrelated (R=0.46,P =0.008).In other words, regionsin which the
prior decoding R*is large are also regions which best reflect the behavioural
decay constant, i.e., thesearetheregions thatarebest correlated with the
animals’ cognitive strategies as assessed by thelengths of the action kernels.
Wedid not repeat this analysis with the electrophysiology recordings because
we only have avery limited number of significant sessions per region (1-2 for
mostregions, as opposed toaround 20 sessions per region for the WFl data - see
Extended DataFig.7a,b).
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mice were included. Regions were analyzed if at least 5 well-isolated units (Ephys) or pixels (WFI) passed quality control. These sample sizes
ensured sufficient statistical power for decoding analyses and robust brain-wide coverage, as supported by estimates indicating ~10
recordings per region are sufficient (see fig S5e).

Data exclusions  Pre-established exclusion criteria were applied to ensure data quality. Trials were excluded if mice did not respond, or if reaction times were
<80ms or >2s. Sessions with <250 included trials were excluded (41 Ephys, 1 WFI). For electrophysiology, only neurons passing strict quality
control (amplitude >50uV, noise cut-off <20, and no refractory period violations) were included. Regions required >5 QC-passed units (Ephys)
or pixels (WFI) to be analyzed. These criteria were defined prior to analysis and are detailed in the Methods.

Replication The main behavioral and neural analyses were replicated across two independent recording modalities—Neuropixels electrophysiology (699
insertions across 459 sessions in 139 mice) and widefield calcium imaging (51 sessions in 6 mice). Behavioral effects and neural decoding of
the prior were consistent across both modalities.

Randomization  Randomization into experimental groups was not applicable, as all mice were trained on the same task and underwent the same recording
procedures. To assess significance in decoding neural representations, we employed a pseudo-session resampling procedure to construct null
distributions, as detailed in the Methods.

Blinding Blinding was not performed because all mice were trained using identical protocols and recorded using standardized procedures. There were
no experimental groups or treatment conditions to blind against.
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Reporting for specific materials, systems and methods

We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material,
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response.

Materials & experimental systems Methods
Involved in the study n/a | Involved in the study
Antibodies [] chip-seq
Eukaryotic cell lines |:| Flow cytometry
Palaeontology and archaeology |:| MRI-based neuroimaging

Animals and other organisms

Clinical data
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Plants

Animals and other research organisms

Policy information about studies involving animals; ARRIVE guidelines recommended for reporting animal research, and Sex and Gender in
Research

Laboratory animals we used C57BL/6 laboratory mice
Wild animals No wild animals were used in this study
Reporting on sex both sexes were used; and are reported

Field-collected samples  No field-collected samples were used in this study

Ethics oversight All experimental procedures involving animals were conducted in accordance with local laws and approved by the relevant
institutional ethics committees. Approvals were granted by the Animal Welfare Ethical Review Body of University College London,
under licences P1DB285D8, PCC4A4ECE, and PD867676F, issued by the UK Home Office. Experiments conducted at Princeton
University were approved under licence 1876-20 by the Institutional Animal Care and Use Committee (IACUC). At Cold Spring Harbor
Laboratory, approvals were granted under licences 1411117 and 19.5 by the IACUC. The University of California at Los Angeles
granted approval through IACUC licence 2020-121-TR-001. Additional approvals were obtained from the University Animal Welfare
Committee of New York University (licence 18-1502); the IACUC at the University of Washington (licence 4461-01); the IACUC at the
University of California, Berkeley (licence AUP-2016-06-8860-1); and the Portuguese Veterinary General Board (DGAV) for
experiments conducted at the Champalimaud Foundation (licence 0421/0000/0000/2019).

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Plants

Seed stocks N/A

Novel plant genotypes ~ N/A

Authentication N/A
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