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Brain-wide representations of prior 
information in mouse decision-making

Charles Findling1 ✉, Felix Hubert1, International Brain Laboratory*, Luigi Acerbi2, 
Brandon Benson3, Julius Benson4, Daniel Birman5, Niccolò Bonacchi6, E. Kelly Buchanan3, 
Sebastian Bruijns7, Matteo Carandini8, Joana A. Catarino9, Gaelle A. Chapuis1, 
Anne K. Churchland10, Yang Dan11, Felicia Davatolhagh10, Eric E. J. DeWitt9, Tatiana A. Engel12, 
Michele Fabbri9, Mayo A. Faulkner8, Ila Rani Fiete13, Laura Freitas-Silva9, Berk Gerçek1, 
Kenneth D. Harris8, Michael Häusser8,14, Sonja B. Hofer15, Fei Hu11, Julia M. Huntenburg7, 
Anup Khanal10, Chris Krasniak16, Christopher Langdon12, Christopher A. Langfield17, 
Peter E. Latham18, Petrina Y. P. Lau8, Zach Mainen9, Guido T. Meijer9, Nathaniel J. Miska15, 
Thomas D. Mrsic-Flogel15, Jean-Paul Noel19, Kai Nylund5, Alejandro Pan-Vazquez12, 
Liam Paninski17, Jonathan Pillow12, Cyrille Rossant8, Noam Roth5, Rylan Schaeffer13, 
Michael Schartner9, Yanliang Shi12, Karolina Z. Socha8, Nicholas A. Steinmetz5, Karel Svoboda20, 
Charline Tessereau7, Anne E. Urai21, Miles J. Wells8, Steven Jon West15, Matthew R. Whiteway17, 
Olivier Winter9, Ilana B. Witten12, Anthony Zador16, Yizi Zhang17, Peter Dayan7 & Alexandre Pouget1

The neural representations of prior information about the state of the world are 
poorly understood1. Here, to investigate them, we examined brain-wide Neuropixels 
recordings and widefield calcium imaging collected by the International Brain 
Laboratory. Mice were trained to indicate the location of a visual grating stimulus, 
which appeared on the left or right with a prior probability alternating between 0.2 
and 0.8 in blocks of variable length. We found that mice estimate this prior probability 
and thereby improve their decision accuracy. Furthermore, we report that this 
subjective prior is encoded in at least 20% to 30% of brain regions that, notably, span 
all levels of processing, from early sensory areas (the lateral geniculate nucleus and 
primary visual cortex) to motor regions (secondary and primary motor cortex and 
gigantocellular reticular nucleus) and high-level cortical regions (the dorsal anterior 
cingulate area and ventrolateral orbitofrontal cortex). This widespread representation 
of the prior is consistent with a neural model of Bayesian inference involving loops 
between areas, as opposed to a model in which the prior is incorporated only in 
decision-making areas. This study offers a brain-wide perspective on prior encoding 
at cellular resolution, underscoring the importance of using large-scale recordings  
on a single standardized task.

The ability to combine sensory information with prior knowledge 
through probabilistic inference is crucial for perception and cognition. 
In simple cases, inference is performed near-optimally by the brain, fol-
lowing key precepts of Bayesian decision theory1–5. For example, when 
interpreting a visual scene, we assume a priori that light comes from 
above—a sensible assumption that enables us to interpret otherwise 
ambiguous images4.

Although much theoretical work has been devoted to the neural rep-
resentation of Bayesian inference6–9, it remains unclear where and how 
prior knowledge is represented in the brain. At one extreme, the brain 
might combine prior information with sensory evidence in high-level 

decision-making brain regions, right before decisions are turned into 
actions. This would predict that prior information is encoded only 
in late stages of processing, as has indeed been reported in parietal, 
orbitofrontal and prefrontal cortical areas10–16. At the other extreme, 
the brain might operate like a very large Bayesian network, in which 
probabilistic inference is the modus operandi in all brain regions and 
inference can be performed in all directions17–22. This would allow neural 
circuits to infer beliefs over variables from observations of arbitrary 
combinations of other variables. For example, after seeing an object, 
the brain might be able to infer its auditory and tactile properties; but 
could just as well perform the reverse inference, that is, predicting its 
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visual appearance after hearing or touching it. Such a model would 
predict that prior information should be available throughout the brain, 
even in low-level cortical sensory areas18,19,21,22. The current literature 
offers a contradictory and, therefore, inconclusive perspective on 
whether the prior is indeed encoded in brain regions associated with 
early processing11,16,19,23–30. This is because past studies have collectively 
recorded from only a limited set of areas and, as they use different tasks, 
even these results cannot be fully integrated.

To address this problem, we analysed brain-wide data from the Inter-
national Brain Laboratory—electrophysiological recordings from 242 
brain regions and wide-field imaging (WFI) from layers 2/3 of cortex 
in mice performing the same decision-making task—all registered to 
the Allen Common Coordinate Framework31,32. Our results suggest that 
the prior is encoded cortically and subcortically, across all levels of the 
brain, including early sensory regions.

Mice use the prior to optimize their performance
Mice were trained to discriminate whether a visual stimulus, of different 
contrasts, appeared in the right or left visual field (Fig. 1a). Importantly, 
the prior probability that the stimulus appeared on the right side switched 

in a random and uncued manner between 0.2 and 0.8 in blocks of 20–100 
trials (Fig. 1b). Knowledge of the current prior would help the mice to per-
form well; in particular, the prior is the only source of information on zero 
contrast trials, as the probability of reward on these trials is determined 
by the block probability. We refer to the experimentally determined prior 
as the ‘true block prior’. As the presence of the blocks was not explicitly 
cued, mice could form only a subjective estimate of the true block prior 
from the trial history. At best, they could compute the estimate of the true 
block prior given full knowledge of the task structure and the sequence 
of previous stimulus sides since the start of a session. Hereafter, we refer 
to this as the Bayes-optimal prior (Methods and Figs. 1b and 2a).

Analysing choice behaviour revealed that mice used the block struc-
ture to improve their performance. Psychometric curves conditioned 
on right and left blocks, averaged across all animals and all sessions, 
were displaced relative to each other, in a direction consistent with 
the true block prior (two-tailed signed-rank Wilcoxon paired test com-
paring the proportion of right choices on zero-contrast trials: t = 15, 
P = 2.0 × 10−24, n = 139 mice; Fig. 1c). The shift was most pronounced at 
zero contrast and nearly disappeared at signed contrasts of −1 and 1 
(Fig. 1c (inset)), suggesting that it stemmed from a prior-based mecha-
nism rather than an action bias (for example, a perseverative motor 
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Fig. 1 | Mice use the block prior to improve performance. a, Mice had to move 
a 35° peripheral visual grating to the centre of the screen by turning a wheel with 
their front paws. The contrast of the visual stimulus varied from trial to trial. 
Adapted from ref. 33, eLife, under a CC BY 4.0 license. b, The prior probability 
that the stimulus appeared on the right side was maintained at either 0.2 or 0.8 
over blocks, after an initial block of 90 trials during which the prior was set to 
0.5. The block length was drawn from a truncated exponential distribution 
(20–100 trials, scale = 60). After a wheel turn, the mice were provided with 
positive feedback (water reward) or negative feedback (white noise pulse and 
timeout). The next trial began after a delay and a quiescence period that was 
uniformly sampled between 400–700 ms during which the mice had to hold 
the wheel still. c, Psychometric curves averaged across animals and sessions 
and conditioned on block identity, plotted as a function of signed contrast 
(negative values corresponding to stimulus on the left, positive values to 
stimulus on the right). The proportion of right choices on zero-contrast trials 

was different across blocks (Wilcoxon signed-rank test: t = 15, P = 2.04 × 10−24, 
n = 139) and displaced in the direction predicted by the true block prior (double 
arrow). Inset: the difference between curves. d, Reversal curves showing the 
percentage of correct responses after the block switches. The average 
performance across all animals and all contrasts is shown (dark green). The 
light green line shows the same as the dark green line, but for zero-contrast 
trials. The performance of an observer generating choices stochastically 
according to the Bayes-optimal estimate of the prior is shown (blue). This 
simulation was limited to zero-contrast trials to focus on the influence of prior 
knowledge without stimulus information. Dashed curves are exponential fits 
(Extended Data Fig. 1 and Methods). Shaded region shows the s.e.m. across 
mice for the curves showing mouse behaviour (light and dark green curves) and 
the s.d. for the Bayes-optimal model (blue curve), as there is no interindividual 
variability to account for.
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bias), which would have produced the same shift at all contrasts. As 
a result, the mice performed at 58.7 ± 0.4% (mean ± s.e.m.) correct 
for zero-contrast trials. This is statistically significantly better than 

chance (two-tailed signed-rank Wilcoxon t = 89, P = 1.5 × 10−23, n = 139 
mice), albeit significantly worse than an observer that generates actions 
by sampling from the Bayes-optimal prior, which would perform at 
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61.1 ± 1.8% (mean ± s.d.; two-tailed signed-rank Wilcoxon paired test, 
t = 2,171, P = 1.5 × 10−8, n = 139 mice).

Tracking performance around block switches provided further evi-
dence that the animals estimated and used the prior. Indeed, around 
block switches, the performance dropped, presumably due to the mis-
match between the subjective and true block prior. Thereafter, the 
performance on zero-contrast trials recovered with a decay constant of 
4.97 trials ( jackknife median; Methods). This is slower than an observer 
that generates actions by sampling the Bayes-optimal prior ( jackknife 
median: 2.43 trials, two-tailed paired t-test, t = 3.35, P = 0.001, n = 139 
jackknife replicates; Extended Data Fig. 1).

Decoding the prior during the ITI
To determine where the prior is encoded in the mouse’s brain, we 
used linear regression to decode the Bayes-optimal prior from neu-
ral activity during the intertrial interval (ITI) when wheel movements 
are minimized33 (from −600 ms to −100 ms before stimulus onset;  
Methods). Note that decoding the Bayes-optimal prior is more sensi-
ble than decoding the true block prior, as mice are not explicitly cued 
about block identity and therefore cannot possibly know this latter 
quantity. We assess the quality of the decoding with an R2 measure. 
However, to assess the statistical significance of this value, we cannot 
use standard linear regression methods, as these assume independence 
of trials, while both neural activity (for example, from slow drift in the 
recordings stemming from movements of the probes across trials) 
and the prior exhibit temporal correlations. Instead, we use a pseu-
dosession method34: we first construct a null distribution by decoding 
the (counterfactual) Bayes-optimal priors computed from stimulus 
sequences generated by sampling from the same process as that used to 
generate the stimulus sequence that was actually shown to the mouse 
(Methods). A session was deemed to encode the prior significantly if 
R2 computed for the actual stimuli is larger than the 95th percentile of 
the null distribution generated from pseudosessions; effect sizes are 
reported as a corrected R2, the difference between the actual R2 and 
the median R2 of the null distribution. All values of R2 reported in this 
paper are corrected R2 unless specified otherwise.

For completeness, we decoded the Bayes-optimal prior, p,̂ its log odds 
ratio ̂ ̂p p(log( /(1 − )) (to test whether neural activity is linearly related to 
log probabilities as assumed by the theory of probabilistic population 
codes8), the true block prior (Fig. 1b) and the Bayes-optimal prior on a 
narrower decoding time window (from −400 ms to −100 ms). For the 
Bayes-optimal prior, the analysis of the electrophysiological data (Ephys) 
revealed that around 30.2% of brain areas (73 out of 242 regions), span-
ning the forebrain, midbrain and hindbrain, encoded the prior signifi-
cantly (P < 0.05, pseudosession test; Fisher’s method to combine P values 
from multiple recordings of one region, no multiple-comparison 

correction; sagittal slices are shown in Fig. 2b and Extended Data Fig. 3). 
For example, we could decode the Bayes-optimal prior from a population 
of 160 neurons in the ventrolateral orbitofrontal cortex (ORBvl) with an 
accuracy of R2 = 0.28 (Fig. 2a, P = 0.001, uncorrected R2 = 0.35). Regions 
with significant prior encoding include associative cortical areas like 
the ORBvl and the dorsal anterior cingulate area (ACAd), as well as early 
sensory areas such as the primary visual cortex (VISp) and the lateral 
geniculate nucleus (LGd). The Bayes-optimal prior could also be decoded 
from cortical and subcortical motor areas, such as primary and second-
ary motor cortex, the intermediate layer of the superior colliculus (SCm), 
the gigantocellular reticular nucleus and the pontine reticular nucleus, 
even though we decoded activity during the ITI, when wheel movements 
were minimal (Extended Data Fig. 2). The encoding of the Bayes-optimal 
prior is also visible in the peristimulus time histogram of single neurons 
(Extended Data Fig. 4). Decoding the log odds ratio of the Bayes-optimal 
prior, as opposed to the linear version, revealed consistent findings, 
with 38.0% (92 out of 242 regions) of regions encoding it significantly 
across all brain processing levels (Extended Data Fig. 6). When decoded 
from a narrower time window (−400 ms to −100 ms), the Bayes-optimal 
prior was still significantly decoded across all brain processing levels, 
albeit with a reduced overall decodability (25.6% of regions, 62 out of 
242 regions; Extended Data Fig. 6). An even smaller percentage of regions 
(19.4%, 47 out of 242 regions; Extended Data Fig. 6) was found to encode 
the prior significantly when decoding the true block prior, suggesting 
that the animal’s subjective prior aligns more closely with the 
Bayes-optimal prior than with the true block prior. This observation is 
supported by a behavioural analysis, which revealed that a model using 
the true block as a prior was less effective at explaining behaviour com-
pared with the Bayes-optimal model (Extended Data Fig. 6d). An analy-
sis to determine the necessary number of recordings per region indicated 
that around ten recordings per region are required to reach the obtained 
significance levels (Extended Data Fig. 5e). Given that the median num-
ber of sessions per region in Ephys is 6 (Extended Data Fig. 5c,d), it is 
likely that the reported levels of significance are underestimated.

The analysis of WFI data suggests an even more widespread encod-
ing of the prior in cortical regions. Indeed, the Bayes-optimal prior was 
found to be significantly reflected in all dorsal cortical regions (Fig. 2c). 
This result may reflect a better signal-to-noise ratio, but it might also 
be due to the calcium signal from axons arising outside these specific 
areas. However, we also found that the corrected region-specific R2 
values for the WFI and Ephys modalities were significantly correlated 
(Spearman correlation, R = 0.52, P = 0.0024, n = 32 regions; Fig. 2d). 
Interpreting the effect size in both Ephys and WFI modalities is chal-
lenging due to confounding factors such as the number of sessions 
and units in Ephys, and the number of pixels in WFI (Extended Data 
Fig. 7c,d). To control for correlations between these confounds across 
modalities (Extended Data Fig. 7e), we corrected the widefield effect 

Fig. 2 | Prior decoding during the ITI. a, The Bayes-optimal prior versus the 
prior decoded from the ORBvl in one session. b, Swanson maps of cross-validated 
corrected R2 for significant areas (Methods) Left, the Ephys map. Right, Ephys 
and WFI combined. A region is significant if the Fisher combined P < 0.05 on the 
left map and passes Benjamini–Hochberg correction (1% false-discovery rate) on 
the right. DN, dentate nucleus; MOp, primary motor area; PAG, periaqueductal 
gray; PPN, pedunculopontine nucleus; PRNc, pontine reticular nucleus caudal 
part; PRNr, pontine reticular nucleus. A full list of region names and their 
abbreviations is available online (https://github.com/int-brain-lab/paper-brain- 
wide-map/blob/plotting/brainwidemap/meta/region_info.csv). c, Ephys versus 
WFI results for the dorsal cortex. All areas significantly encode the Bayes-optimal 
prior in the WFI data (Fisher combined P < 0.05). Blue, significant; orange,  
not significant; grey, not decoded because we lack quality-controlled data 
(Methods); white, not decoded due to a lack of recordings or because it was out 
of the scope of analysis (although both hemispheres were recorded in WFI, only 
the left is decoded here to match Ephys). d, The corrected R2 for Ephys and WFI 
are significantly correlated (the colour scheme is shown in Extended Data 

Fig. 5b; shading represents the 95% confidence intervals). e, The proportion of 
right choices on zero-contrast trials versus cross-validated decoded Bayes- 
optimal prior from neural activity: higher decoded priors are associated with 
more right choices (Methods; the shading shows the s.e.m.). f, The corrected R2 
for decoding the prior from neural activity correlates with the corrected R2 for 
decoding the residual prior (prior minus prior decoded from DLC), indicating 
that the prior decoded from neural activity is not explained by DLC motor 
features (the colour scheme is provided in Extended Data Fig. 5a; shading 
shows the 95% confidence intervals). g, Granger graph at the Cosmos level 
(Methods and Extended Data Fig. 5) in Ephys showing the bidirectional flow of 
prior information between the subcortical and cortical regions (right). Left, 
directed pairs targeting the VISp in WFI data reveal significant feedback from 
higher-order areas (grey circles) to early sensory regions. h, The proportion of 
significant directed pairs forming loops of size 3 (orange dashed line) in the 
WFI (top) and Ephys (bottom) data. The flow of prior information forms more 
loops than expected by chance (blue null distribution).

https://github.com/int-brain-lab/paper-brain-wide-map/blob/plotting/brainwidemap/meta/region_info.csv
https://github.com/int-brain-lab/paper-brain-wide-map/blob/plotting/brainwidemap/meta/region_info.csv
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size for region sizes. Despite this correction, the correlation between 
effect sizes across modalities remained significant and even strength-
ened (Extended Data Fig. 7f), therefore suggesting that the effect sizes 
that we decode are at least partly specific to the decoded regions.

A quarter of the regions (24.0%, 58 out of 242), still at all levels of 
brain processing, were found to be significant when merging this larger 
Ephys dataset and WFI data into a single map (using Fisher’s method 
to combine P values across Ephys and WFI (Methods) and applying 
Benjamini–Hochberg correction for multiple comparisons with a con-
servative false-discovery rate of 1%; sagittal slices are shown in Fig. 2b 
and Extended Data Fig. 3).

If the decoded prior is truly related to the subjective prior inferred 
and used by the animal, the amplitude of the decoded prior should 
be correlated with the animals’ performance on zero-contrast trials.  
Figure 2e shows that this is indeed the case for both the Ephys and 
WFI data: on zero-contrast trials, the probability that the mice chose 
the right side was proportional to the cross-validated decoded Bayes- 
optimal prior of the stimulus appearing on the right (Methods). Impor-
tantly, this relationship remained significant even after controlling for 
possible drift in the recordings (Extended Data Fig. 8a) and was sensitive 
to contrast strength (Extended Data Fig. 8b,c): consistent with Fig. 1c, 
this relationship was strongest at zero contrast and nearly vanished at 
the highest contrasts. Further analysis at the regional level (Extended 
Data Fig. 8d) shows a significant relationship in 17.8% of Ephys regions 
and 90.1% of WFI regions across all hierarchical levels: LGd, SCm, cau-
doputamen (CP), medial secondary motor cortex (MOs) and ACAd. 
Moreover, regions that more strongly reflect the prior were more pre-
dictive of the animal’s decisions, suggesting the behavioural relevance 
of the decoded prior (Extended Data Fig. 8e).

Our results indicate that the Bayes-optimal prior was encoded in mul-
tiple areas throughout the brain. However, it is conceivable that mice 
adjusted their body posture or movement according to the subjective 
prior and that neural activity in some areas simply reflected these body 
adjustments. We call this an embodied prior. To test for this possibility, 
we analysed video recordings using Deep Lab Cut (DLC)35,36 to estimate 
the position of multiple body parts, whisking motion energy and licking 
during the ITI (Methods). We then trained a decoder of the Bayes-optimal 
prior from these features, and found significant decoding in 38.0% (65 
out of 171) of sessions. For these sessions, we found that the R2 for the 
prior decoded from video features was correlated with the R2 for the 
prior decoded from neural activity (at the brain region level), therefore 
suggesting that the prior signal might be an embodied prior related to 
body posture (Pearson correlation, R = 0.18, P = 1.6 × 10−7, n = 806 region 
sessions; Extended Data Fig. 9a). To test for this possibility further, we 
decoded the prior residual, defined as the Bayes-optimal prior minus the 
Bayes-optimal prior estimated from video features, from neural activ-
ity (again, at the session-region level). If the neural prior simply reflects 
the embodiment of features extracted by DLC, we should not be able to 
decode the prior residual from the neural activity and the R2 of the prior 
residual should not be correlated with the R2 of the full prior decoded 
from neural activity. Crucially, this is not what we observed. Instead, 
these two values of R2 are strongly correlated (Fig. 2f; Pearson correlation, 
R = 0.89, P = 8 × 10−279, n = 806 region sessions), therefore suggesting that 
the neural prior is not an embodied prior or, at least, that it cannot be 
fully explained by the motor features extracted from the video.

To enhance the robustness of our analysis further, we repeated the 
embodiment study, this time also including eye position data (on ses-
sions on which these were available). This additional step demonstrated 
that the neural prior could not be entirely attributed to a combination 
of both motor features and eye position (the feature importance is 
shown in Extended Data Fig. 9b,c). We also specifically checked whether 
changes in eye position across blocks could account for the significant 
results in early visual areas such as VISp or LGd. It is indeed conceiv-
able that mice look in the direction of the expected stimulus before 
a trial. If so, what we interpret as a prior signal in these early sensory 

areas might simply be due to a signal related to eye position. Consist-
ent with this possibility, we found a significant correlation (Pearson 
correlation R = 0.36, P = 0.0163, n = 44 region sessions) between the 
neural decoding R2 and the eye position decoding R2, that is, the R2 for 
decoding the Bayes-optimal prior from eye position (using sessions in 
which video was available and recordings were performed in the VISp 
and LGd; n = 44 region sessions; Extended Data Fig. 9d). Following the 
same approach as for the body posture and motion features, we next 
decoded the prior residual (Bayes-optimal prior minus Bayes-optimal 
prior estimated from eye position) from neural activity and found 
that the residual decoding R2 was correlated with the neural decoding 
R2 (Pearson correlation, R = 0.8, P = 7 × 10−11, n = 44 region sessions; 
Extended Data Fig. 9d). Thus, the prior signals found in the VISp and 
LGd did not simply reflect subtle changes in eye position across blocks.

Our decoding analysis reveals a robust, distributed representation 
of the Bayes-optimal prior throughout the brain, suggesting a com-
plex network of information flow. To investigate the dynamics of the 
prior information network, we conducted a Granger causality analysis 
during the ITI, between the time series of the decoded prior from one 
brain region and that of another (Methods and Extended Data Fig. 10). 
This analysis revealed several key findings: (1) the flow of prior infor-
mation between brain areas is significantly greater than expected by 
chance (Extended Data Fig. 10a); (2) this prior flow includes compre-
hensive communications across the entire brain, from subcortical to 
cortical areas and vice versa (Fig. 2g, left); (3) it includes significant 
feedback connections from higher-order areas to early sensory areas 
(Fig. 2g, right); and (4) there is a higher prevalence of loops within this 
communication network than would be anticipated by chance (Fig. 2h), 
including between higher-order and early sensory areas (Extended 
Data Fig. 10e). These results collectively highlight a loopy and intricate 
interarea communication of prior information within the brain.

Post-stimulus prior
We also decoded the Bayes-optimal prior during the 100 ms interval 
after stimulus onset and found similarities between the encoding of 
the prior before and after stimulus onset. To avoid confounding the 
prior with the stimulus identity, two variables that are highly correlated 
(Spearman correlation, R = 0.40, P < 1 × 10−308), we first trained a linear 
decoder of signed contrast from neural activity in each region. We used 
the output of this decoder to fit two neurometric curves (the proportion 
of decoded right stimulus as a function of contrast; Methods) condi-
tioned on the Bayes-optimal prior being above 0.7 or below 0.3. We next 
computed the vertical displacement of the fitted neurometric curves 
for zero contrast. If an area encodes the prior beyond the stimulus, 
we expect a shift between these two curves (an example is shown in 
Fig. 3a). The null distribution was generated using the pseudosession 
method previously described34. Note that the same analysis can be per-
formed during the ITI, although, in this case, the neurometric curves are 
expected to be flat (Fig. 3b), which is indeed what we observed (Extended 
Data Fig. 11a). This approach enables us to separate the encoding of the 
prior from the encoding of the stimulus; however, it is possible that some 
of our results are related to the emergence of the animal’s choices as the 
animals can respond in less than 100 ms on some trials33.

Using this approach, we found that we can detect the prior signifi-
cantly from 17.8% (43 out of 242) and 84.4% (27 out of 32) of areas dur-
ing the post-stimulus period for Ephys (Extended Data Fig. 11b) and 
WFI data (Fig. 3e), respectively. When applying this methodology to 
the ITI, we found smaller percentages than when using direct decod-
ing, in part because this neurometric shift measure is less sensitive (in 
the ITI, only 15.7% of regions for Ephys and 93.8% for WFI are signifi-
cant for the Bayes-optimal prior when using the neurometric shift on 
Ephys/WFI data, versus 30.2% and 100%, respectively, for conventional 
decoding). As was the case during the ITI, we found that the Ephys 
and WFI post-stimulus shifts were correlated (Spearman correlation, 
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R = 0.51, P = 0.0027, n = 32; Fig. 3c). Moreover, the post-stimulus neu-
rometric shift is correlated with the R2 obtained in the same areas 
during the ITI period (Spearman correlation, R = 0.33, P = 2.32 × 10−7, 
n = 242 (Ephys); R = 0.70, P = 9.54 × 10−6, n = 32 (WFI); Fig. 3d). In other 
words, areas encoding the prior in the ITI also tend to do so during 
the post-stimulus period. This was confirmed by comparing the shifts 
during the post-stimulus and ITI periods, which were also found to be 
correlated (Extended Data Fig. 11c,d).

We obtained similar results when merging the Ephys and WFI data 
into a single map (using Fisher’s method to combine P values across 
Ephys and WFI) and applying Benjamini–Hochberg correction for 
multiple comparisons with a false-discovery rate of 1% (11.2% of sig-
nificant regions, 27 out of 242; Fig. 3e). Importantly, as observed dur-
ing the ITI, areas encoding the prior were found at all levels of brain  
processing.

Moreover, we examined whether regions encoding the stimulus also 
encoded the prior, as would be expected if these regions are involved 
in inferring the posterior distribution over the stimulus side. We found 

that the corrected R2 for the stimulus decoding was indeed correlated 
with the corrected R2 for the Bayes-optimal prior decoding (Spearman 
correlation, R = 0.29, P = 2.4 × 10−5, n = 201 regions from BWM analysis32; 
Extended Data Fig. 12a). Moreover, among the 40 areas that were found 
to encode the stimulus significantly, 25 also encoded the prior signifi-
cantly, including, once again, areas at all levels of brain processing (for 
example, the LGd, VISp, SCm, CP, MOs and ACAd; Extended Data Fig. 12b).

Decoding the action kernel prior
So far, we have established that mice leveraged the block structure and 
that the Bayes-optimal prior can be decoded from the neural data at all 
levels of brain processing. However, it remains to be seen whether the 
mice truly compute the Bayes-optimal prior or, perhaps, use heuristics 
to compute a subjective, approximate, prior37.

To address this, we developed several behavioural models and used 
session-level Bayesian cross-validation followed by Bayesian model 
selection38 to identify the one that fits the best (Methods). This analysis 

WFI

Ephys and WFI combined

Signi�cant decoding
Not signi�cant

Not decoded

0.04

0.08

0.12

0.16
Ephys

0 0.01 0.02 0.03

0

0.1

C
or

re
ct

ed
 p

os
t-

st
im

ul
us

 s
hi

ft

R = 0.70, P = 9.54 × 10–6

WFI

n = 32 regions

Corrected ITI R2

0 0.05 0.10

Ephys-corrected post-stimulus shift

0

0.1

W
FI

-c
or

re
ct

ed
p

os
t-

st
im

ul
us

 s
hi

ft

R = 0.51, P = 0.0027
n = 32 regions

a d

e

c

b

–1.0 –0.25 0 0.25 1.0

Contrast

0

1.0

P
ro

p
or

tio
n 

of
 d

ec
od

ed
rig

ht
 c

ho
ic

es
 

Contrast

0

0.5

1.0

P
ro

p
or

tio
n 

of
 d

ec
od

ed
rig

ht
 c

ho
ic

es
 

–1.00 –0.25 0 0.25 1.00 0 0.05 0.10

–0.15

0

0.15

C
or

re
ct

ed
 p

os
t-

st
im

ul
us

 s
hi

ft

R = 0.33, P = 2.32 × 10–7

n = 242 regions

Ephys

Corrected ITI R2

Prior < 0.3
Prior > 0.7

Prior < 0.3
Prior > 0.7

Corrected
neurometric shift

0.5
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be significant if its Fisher combined P value is below 0.05 (Methods). Right, 
Swanson map of the corrected R2 averaged across Ephys and WFI data for areas 
that have been deemed to be significant given both datasets (using Fisher’s 
method for combining P values), and after applying the Benjamini–Hochberg 
correction for multiple comparisons. Blue, significant; orange, not significant; 
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suggests that most mice on most sessions estimate what we will refer to 
as the action kernel prior, which is obtained by calculating an exponen-
tially weighted average of recent past actions (Fig. 4a). The action kernel 
prior explains the choices of the mice better than the Bayes-optimal 
prior and better than models of behavioural strategies that calculate 
an exponentially weighted average of recent stimuli (the ‘stimulus 
kernel’), or assume a one-step repetition bias or a multi-step repetition 
bias39 or the presence of positivity and confirmation biases40 (Extended 
Data Fig. 13a and Supplementary Information). Consistent with the 
action kernel model, mice updated their subjective prior on the first 
90 unbiased trials, even though the true prior is set to 0.5 during that 
phase (Extended Data Fig. 13d). Moreover, mice relied on more than 
just zero-contrast trials to update their subjective prior (Extended Data 
Fig. 13b,c). The decay constant of the exponential action kernel had a 

median of 5.45 trials across all mice (Fig. 4b, blue histogram), similar to 
the decay constant of recovery after block switches (4.97 trials; Fig. 1d 
and Extended Data Fig. 1). Notably, this is close to the value of the decay 
constant, which maximizes the percentage of correct responses, given 
this (suboptimal) form of prior, losing only 1.9% compared with the 
performance of the Bayes-optimal version (Fig. 4b). These curves are 
obtained by simulating the action kernel by varying the decay constant 
while keeping all other parameters at their best-fitting values.

If, as our behavioural analysis suggests, mice use the action kernel 
prior, then we should find that, when we decode the prior inferred 
from the action kernel, R2 should be higher than when we decode the 
prior predicted by any other method. This is borne out by the data in 
both Ephys and WFI during the ITI (Fig. 4d; Wilcoxon signed-rank test, 
t = 2,230, P = 2.6 × 10−30, n = 242 regions (Ephys); and t = 13, P = 4.1 × 10−8, 
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(two-sided Pearson test; Methods; the shading shows the 95% confidence 
intervals). NS, not significant; *P < 0.05, ***P < 0.001.



Nature  |  Vol 645  |  4 September 2025  |  199

n = 32 regions (WFI)). However, unfortunately, and in contrast to the 
Bayes-optimal prior, we cannot determine which areas encode the 
action kernel prior significantly, owing to the impossibility of generat-
ing a null distribution, as this would formally require having access to 
the exact statistical model of the animal behaviour (see the ‘Assessing 
the statistical significance of the decoding of the action kernel prior’ 
section in the Methods).

To explore further whether neural activity better reflects the action 
kernel prior, as opposed to the stimulus kernel prior or the Bayes-optimal 
prior, we looked at changes in performance on zero-contrast trials 
after correct and incorrect actions. When considering behaviour 
within blocks, a decision-making agent using an action kernel prior 
should achieve a higher percentage of correct responses after a correct 
block-consistent action than an incorrect one because, on incorrect tri-
als, it updates the prior with an action corresponding to the incorrect 
stimulus side. Models simulating agents using either the Bayes-optimal 
prior or the stimulus kernel prior do not show this asymmetry as they per-
form their updates using the true stimulus, which can always be correctly 
inferred from the combination of action and reward (see also ref. 37).  
Mouse behaviour showed the asymmetry in performance (Fig. 4c).  
To test whether the neural data shared this asymmetry, we decoded the 
Bayes-optimal prior from ITI neural activity and simulated the animal’s 
decision on each trial by selecting a choice according to whether the 
decoded prior was greater or smaller than 0.5 (that is, assuming every 
trial had a zero-contrast stimulus). We then examined whether the 
resulting sequence of hypothetical choices would show the asymmetry. 
If so, this is a property of the neural data as the predicted quantity, the 
Bayes-optimal prior, does not show the asymmetry. As shown in Fig. 4c, 
the performance for both modalities, Ephys and WFI, was indeed higher 
after correct versus incorrect trials, therefore strengthening our hypoth-
esis that neural activity more closely reflects the action kernel prior.

We next tested the sensitivity of the decoded Bayes-optimal prior, 
estimated from neural activity, to previous actions (decoding the 
Bayes-optimal prior instead of the action kernel prior to enable us to test 
for statistical significance; Methods). If the prior that we estimate from 
neural activity reflects the subjective prior estimated from behaviour, 
we should find that the neural prior is sensitive to the past 5 or 6 trials. 
Using an orthogonalization approach, we estimated the influence of past 
actions on the decoded Bayes-optimal prior and found that this influence 
extends at least to the past five trials in both Ephys and WFI (Fig. 4e; see 
the ‘Orthogonalization’ section of the Methods). A similar result was 
obtained when testing the influence of the past stimuli (Fig. 4e). These 
numbers are consistent with the decay constant estimated from behav-
iour (5.45 trials). These results were obtained at the session level, by ana-
lysing all available neurons. Furthermore, we analysed single regions for 
which we had a large number of neurons recorded simultaneously (SCm, 
CP and ventral posteromedial nucleus of the thalamus (VPM)) or strong 
imaging signals (primary motor area, VISp, MOs). In all cases, we found 
that an asymmetry in the neural data after correct and incorrect choices 
as well as evidence that the Bayes-optimal prior decoded from these 
regions is influenced by the past 5 or 6 actions (Extended Data Fig. 14).

These analyses also address one potential concern with our decoding 
approach. It is well known in the literature that animals keep track of 
the last action or last stimulus41–43. It is therefore conceivable that our 
ability to decode the prior from neural activity is simply based on the 
encoding of the last action in neural circuits, which indeed provides 
an approximate estimate of the Bayes-optimal prior as actions are 
influenced by the prior (Fig. 1c). The fact that we observe an influence 
of the last 5 or 6 trials, and not just the last trial, rules out this possibility.

To test this even further, we estimated the temporal dependency 
of the WFI single-pixel and Ephys single-unit activities on past actions 
directly and compared them to the behavioural sensitivity to past 
actions on the same sessions (both expressed in terms of neural learn-
ing rates, that is, the inverse of the decay constants; Methods). Note that 
this analysis tests whether the temporal dynamics of neural activity is 

similar to the temporal dynamics of the mouse behaviour, defined by 
fitting the action kernel model, but without regressing first the neural 
activity against any prior. We found that the inverse decay constants of 
the neural activity are indeed correlated across sessions with the inverse 
decay constants obtained by fitting the action kernel model to behaviour 
(Fig. 4f). Critically, this correlation goes away if we perform the same 
analysis using stimulus kernels instead of action kernels (Extended Data 
Fig. 15a). Moreover, these results established at a session level remained 
when accounting for the variability across mice (Extended Data Fig. 15b).

We next examined the link between behavioural performance and 
specific brain regions by comparing their neural inverse decay con-
stants with the behavioural inverse decay constants. Notably, associa-
tive areas like the secondary motor cortex and retrosplenial areas more 
closely mirrored these behavioural constants than the primary visual 
and motor cortex (Extended Data Fig. 15c). We also observed that the 
correlation between behavioural and neural decay constants reflected 
the prior-corrected R2 from the same regions, indicating that regions 
with higher prior-decoding R2 scores best align with the animal’s cog-
nitive strategies as measured by the action kernel lengths (Extended 
Data Fig. 15c). This analysis was not extended to electrophysiology 
recordings due to the limited number of available sessions per region 
(Extended Data Fig. 7a,b).

Discussion
In summary, we report that mice bias their decisions nearly optimally 
according to their prior expectations. As we have seen, the subjective 
prior of the mice is based on previous actions, not previous stimuli—a 
result consistent with past studies in rodents44 and primates45. Notably, 
this subjective prior is encoded, at least to some extent, at all levels 
of processing in the brain, including early sensory regions (for exam-
ple, LGd and VISp), associative regions (ORBvl, ACAd and SCm) and 
motor regions (MOs, primary motor area and gigantocellular reticular 
nucleus). Moreover, a Granger analysis revealed the existence of recip-
rocal loops, communicating specifically the subjective prior between 
cortical and subcortical regions as well as between sensory and associa-
tive cortical areas. These findings lend further support to the hypothesis 
that information flows across the brain in a way that could support the 
sort of multidirectional inference apparent in Bayesian networks17,18,20,22.

One might argue that what we call a ‘subjective prior’ might be bet-
ter called ‘motor preparation’ in motor-related areas, or a top-down 
‘attentional signal’ in early sensory areas. However, ultimately, what is 
important is not the term that we use to refer to this signal but, rather, 
that it has properties consistent with the subjective prior: (1) it is predic-
tive of the animal’s choices, particularly on zero-contrast trials (Fig. 2e); 
(2) it depends on previous choices (Fig. 4c); and (3) it reflects more than 
the last choice or last stimulus, but depends instead on the past 5 or  
6 choices (Fig. 4e). As we have seen, the signals that we have recovered 
throughout the mouse brain fulfil all of these properties.

There are several proposals in the literature as to how probability 
distributions might be encoded in neural activity. These include lin-
ear probabilistic population codes8, sampling based codes6, other 
activity-based codes7,37,46–48 and the synaptic weights of neural circuits9. 
We note that our results are compatible with two requirements of linear 
probabilistic population codes8,49: (1) the log odds of the Bayes-optimal 
prior is linearly decodable from neural activity (Extended Data Fig. 6); 
and (2) changes in the Bayes-optimal prior from trial to trial are reflected 
in the population activity49.

If the likelihood is also encoded with a linear probabilistic population 
code, having the prior in the same format would greatly simplify the 
computation of the posterior distribution, as it would simply require a 
linear combination of the neural code for the prior and likelihood. As it 
turns out, it is likely that the likelihood indeed relies on a linear proba-
bilistic population code. Indeed, the neural code for contrast, which is 
the variable that controls the uncertainty of the visual stimulus in our 
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experiment, has been shown to be compatible with linear probabilistic 
population code in primates8.

Whether our results are also compatible with sampling-based codes 
is more difficult to assess, as there is still a debate as to which aspects of 
neural activity correspond to a sample of a probability distribution6,24,50. 
Moreover, the fact that our prior follows a Bernoulli distribution, which 
is particularly simple, makes it harder to tease apart the various proba-
bilistic coding schemes.

Ultimately, determining the exact nature of the neural code for the 
prior will require developing a neural model of Bayesian inference in 
a large, modular, loopy network—a pressing, remaining task. A critical 
foundation for this development is the remainder of the extensive data 
in the International Brain Laboratory brain-wide map (described in the 
companion paper32). This provides a picture, at a considerable scale, 
of the neural processes underpinning decision-making, in which the 
prior plays such a critical part.
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Methods

For the Ephys data, we used the 2024 IBL public data release51, which is 
organized and shared using a modular architecture described previ-
ously52. It comprises 699 recordings from Neuropixels 1.0 probes. One 
or two probe insertions were realized over 459 sessions of the task, 
performed by a total of 139 mice. For a detailed account of the surgi-
cal methods for the headbar implants, see appendix 1 of ref. 33. For a 
detailed list of experimental materials and installation instructions, 
see appendix 1 of ref. 35. For a detailed protocol on animal training, 
see the methods of refs. 33,35. For details on the craniotomy surgery, 
see appendix 3 of ref. 35. For full details on the probe tracking and align-
ment procedure, see appendices 5 and 6 of ref. 35. The spike sorting 
pipeline used by IBL is described in detail in ref. 35. For the WFI data, we 
used another dataset consisting of 52 recordings of the dorsal cortex, 
realized over 52 sessions of the task, performed by a total of 6 mice.  
A detailed account of the WFI data acquisition and preprocessing was 
reported previously53.

All experimental procedures involving animals were conducted in 
accordance with local laws and approved by the relevant institutional 
ethics committees. Approvals were granted by the Animal Welfare 
Ethical Review Body of University College London, under licences 
P1DB285D8, PCC4A4ECE and PD867676F, issued by the UK Home 
Office. Experiments conducted at Princeton University were approved 
under licence 1876-20 by the Institutional Animal Care and Use Com-
mittee (IACUC). At Cold Spring Harbor Laboratory, approvals were 
granted under licences 1411117 and 19.5 by the IACUC. The University 
of California at Los Angeles granted approval through IACUC licence 
2020-121-TR-001. Additional approvals were obtained from the Uni-
versity Animal Welfare Committee of New York University (licence 
18-1502); the IACUC at the University of Washington (licence 4461-01); 
the IACUC at the University of California, Berkeley (licence AUP-2016-
06-8860-1); and the Portuguese Veterinary General Board (DGAV) for 
experiments conducted at the Champalimaud Foundation (licence 
0421/0000/0000/2019).

Mice
Animals were housed under a 12 h−12 h light–dark cycle—either normal  
or inverted, depending on the laboratory—and had unrestricted access 
to food and water except on training days. Depending on the labora-
tory, electrophysiology recordings and behavioural training took place 
during either the light or dark phase of the cycle. In total, data were 
collected from 139 adult C57BL/6 mice (94 male, 45 female), purchased 
from Jackson Laboratory or Charles River. On the day of electrophysi-
ological recording, these mice ranged in age from 13 to 178 weeks (mean, 
44.96 weeks; median, 27.0 weeks) and weighed between 16.1 and 35.7 g 
(mean 23.9 g, median 23.84 g).

Inclusion criteria for the analysis
Criteria for trial inclusion. All trials were included except when the 
animals did not respond to the stimulus (no movement, no response) 
or when the first wheel movement time (reaction time) was shorter 
than 80 ms or longer than 2 s.

Criteria for session inclusion. All sessions were included except ses-
sions with fewer than 250 trials (counting only included trials). In total, 
41 sessions in Ephys and 1 session in WFI did not meet the criteria for 
the minimum number of trials.

Criteria for neural recording inclusion. An insertion was included in 
the analysis if it had been resolved, that is, if histology clearly revealed 
the path of the probe throughout the brain, as defined previously35.  
A neuron, identified during the spike sorting process, was included if 
it passed three quality control (QC) criteria (amplitude > 50 μV; noise 
cut-off < 20; refractory period violation). A region recorded along one 

or two probes was included in the analysis if there were at least five 
units across the session’s probes that passed the QC. For WFI, we used 
all the image pixels and included a region recorded during a session in 
the analysis if there were at least five recorded pixels.

For the region-level analysis, after applying these criteria, we were 
left with 414 sessions for the Ephys dataset. Initially, we considered 
418 (459 − 41) sessions that had more than 250 included trials, but 4 of 
these did not have any recorded regions meeting the minimum number 
of units required. Our region-level analysis spans 242 brain regions, 
defined by the Allen Common Coordinate Framework31, recorded 
by at least one included insertion. Our Ephys region-level analysis 
spans 2,289 region–sessions, which are aggregated across sessions 
to give results at the region level. For the WFI dataset, we were left 
with 51 (52 − 1) sessions that had more than 250 included trials. They 
all had at least one recorded region meeting the minimum number of 
recorded pixels required. The imaging spans 32 regions of the dorsal 
cortex—which are included among the 242 regions decoded in the 
Ephys analysis, for a total of 1,539 ((51 × 32) − 28 − 65) region–sessions. 
This total accounts for the fact that not every region was visible in all 
sessions, summing to 28 non-observed region–sessions. Moreover, 
65 region–sessions were excluded because the regions recorded had 
fewer than 5 pixels.

For the session-level analysis, neurons along the probes were used 
and most of the sessions in Ephys (457 out of 459) had at least 5 recorded 
units that passed the QC. Taking into account the session inclusion 
criteria, session-level analysis was performed on 416 sessions. All of 
the 51 WFI sessions passed the minimal number of trials criteria and 
were therefore included in the analysis.

Criteria for the embodiment analysis. Only sessions with available 
DLC features could be used for the embodiment prior analysis, which 
requires access to body position. For the Ephys dataset, we analysed 
the 171 sessions (out of 459) for which the DLC features met the quality 
criteria defined previously35, and for which the other inclusion criteria 
were met. This resulted in a total of 806 region–sessions. WFI sessions 
were excluded from this analysis as no video recordings were available.

Criteria for the eye position analysis. Reliable tracking of eye posi-
tion from video recordings was not possible for some sessions due to 
video quality issues. Thus, we recovered reliable eye position signals 
from 44 out of the 53 of sessions in which we had recorded from either 
VISp or LGd, the two regions for which we specifically analysed the 
impact of eye position.

Joint decoding of DLC features and eye position signals. We per-
formed the joint decoding of DLC features and eye position signals 
on the 124 sessions in which the DLC features met the QC criteria and 
also in which the eye position signals were reliable, for a total of 660 
region–sessions.

Difference compared with the Brain Wide Map inclusion criteria. 
There were two key differences between our inclusion criteria and those 
used in the Brainwide Map32. First, the Brainwide Map included only 
regions that had at least two recording sessions, whereas we included 
regions irrespective of the number of recording sessions. Second, we 
excluded sessions that had fewer than 250 trials after applying trial 
inclusion criteria, a criterion not applied in the Brainwide Map.

Electrophysiology data
Spike counts were obtained by summing the spikes across the decoding 
window for each neuron and included trial. If there were U units and T 
trials, this binning procedure resulted in a matrix of size U × T. For the 
ITI, the time window for the main decoding was (−600 ms,−100 ms) 
relative to stimulus onset and, for the post-stimulus window, it was 
(0 ms, +100 ms) relative to stimulus onset. We used L1-regularized 
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linear regression to decode the Bayes-optimal prior from the binned 
spike count data using the scikit-learn function sklearn.linear_model.
Lasso (using one regularization parameter). We used L1 for Ephys 
because it is more robust to outliers, which are more likely to occur 
in single-cell recordings, notably because of drift. The Bayes-optimal 
prior was inferred from the sequence of stimuli for each session (see 
the ‘Behavioural models’ section and the Supplementary Informa-
tion). This decoding procedure yielded a continuous-valued vector 
of length T.

WFI data
For the WFI data, we used L2-regularized regression as implemented by 
the scikit-learn function sklearn.linear_model.Ridge (one regulariza-
tion parameter). We used L2 regularization instead of L1 for WFI data 
because L2 tends to be more robust to collinear features, which is the 
case across WFI pixels. We decoded the activity from the vector of the 
region’s pixels for a specific frame of the data. The activity is the change 
in fluorescence intensity relative to the resting fluorescence intensity 
ΔF/F. Data were acquired at 15 Hz. Frame 0 corresponds to the frame 
containing stimulus onset. For the ITI, we used frame −2 relative to the 
stimulus onset. This frame corresponds to a time window of which the 
start ranges from −198 to −132 ms before the stimulus onset, and of 
which the end ranges from −132 to −66 ms, depending on the timing 
of the last frame before stimulus onset. For the post-stimulus interval, 
we used frame +2, which corresponds to a time window of which the 
start ranges from 66 to 132 ms from stimulus onset, and extends to 132 
to 198 ms after onset. This interval is dependent on the timing of the 
first frame after stimulus onset, which can occur at anytime between 
0 and 66 ms after onset. If there are P pixels and T trials, this selection 
procedure results in a matrix of size P × T.

Reversal curves
To analyse mouse behaviour around block reversals, we plotted the 
reversal curves defined as the proportion of correct choices as a func-
tion of trials, aligned to a block change (Fig. 1d). These were obtained 
by computing one reversal curve per mouse (pooling over sessions) 
and then averaging and computing the s.e.m. across the mouse-level 
reversal curves. For comparison purposes, we also showed the reversal 
curves for the Bayes-optimal model with a probability-matching deci-
sion policy. We did not plot s.e.m. values but instead s.d. values in this 
case as there was no variability across agents to account for.

To assess the differences between the mouse behaviour and the 
agent that samples actions from the Bayes-optimal prior, we fitted the  
following parametric function to the reversal curves:

p t B A B t B t(correct at trial ) = ( + ( − ) × e ) × ( ≥ 0) + × ( < 0)t τ− /

with t = 0 corresponding to the trial of the block reversal, τ the decay 
constant, B the asymptotic performance and A the drop in performance 
right after a block change.

We fitted this curve using only zero-contrast trials, between the 5 pre- 
reversal trials and the 20 post-reversal trials. We restricted our analysis 
to the zero-contrast trials to focus on trials in which mice could only rely 
on block information to decide. This implied that we only used a small 
fraction of the data. To be precise, across the 459 sessions, we had an 
average of 10 reversals per session, and the proportion of zero-contrast 
trials is 11.1%. Fitting only on the zero-contrast trials around reversals 
led us to use around 28 trials per session, which accounts for around 
3% of the behavioural data—when excluding the first 90 unbiased trials, 
the average session consists of 555 trials.

To make up for this limited amount of data, we used a jackknifing pro-
cedure for fitting the parameters. The procedure involved iteratively 
leaving out one mouse and fitting the parameters on the N − 1 = 138 zero- 
contrast reversal curves of the held-in mice. The results of the jackknif-
ing procedure are shown in Extended Data Fig. 1.

Nested cross-validation procedure
Decoding was performed using cross-validated, maximum-likelihood 
regression. We used the scikit-learn Python package to perform the 
regression53, and implemented a nested cross-validation procedure 
to fit the regularization coefficient.

The regularization coefficient was determined by two nested fivefold 
cross-validation schemes (outer and inner). We first described the 
procedure for the Ephys data. In the outer cross-validation scheme, 
each fold was based on a training/validation set comprising 80% of 
the trials and a test set of the remaining 20% (random interleaved 
trial selection). The training/validation set was itself split into five 
sub-folds (inner cross-validation) using an interleaved 80–20% parti-
tion. Cross-validated regression was performed on this 80% training/
validation set using a range of regularization weights, chosen for each 
type of dataset so that the bounds of the hyperparameter range are not 
reached. For each modality, we searched a logarithmically spaced grid 
of ridge-regularization weights that was tuned to the dimensionality 
of the corresponding feature space: for Ephys, the grid was C ∈ {10−5, 
10−4, 10−3, 10−2, 10−1}; for WFI, C ∈ {10−5, 10−4, 10−3, 10−2}; for the set of 
DLC-extracted behavioural features, C ∈ {10−4, 10−3, 10−2, 10−1, 1, 10, 100}; 
for eye-position features, C ∈ {10−4, 10−3, 10−2, 10−1, 1, 10, 100, 1,000, 
10,000}; for the combined DLC-features + eye-position model, the 
same broad grid C ∈ {10−4, 10−3, 10−2, 10−1, 1, 10, 100, 1,000, 10,000} was 
used; for the Ephys-based neurometric decoder, C ∈ {10−5, 10−4, 10−3, 
10−2, 10−1, 1}; and for the widefield neurometric decoder, C ∈ {10−5, 10−4,  
10−3, 10−2}.

The regularization weight selected with the inner cross-validation 
procedure on the training/validation set was then used to predict the 
target variable on the 20% of trials in the held-out test set. We repeated 
this procedure for each of the five ‘outer’ folds, each time holding out a 
different 20% of test trials such that, after the five repetitions, 100% of 
trials have a held-out decoding prediction. For WFI, the procedure was 
very similar but we increased the number of outer folds to 50 and per-
formed a leave-one-trial-out procedure for the inner cross-validation 
(using the efficient RidgeCV native sklearn function). We did this 
because the number of features in WFI (number of pixels) is much larger 
than in Ephys (number of units): around 167 units on average in Ephys 
when decoding on a session-level from both probes after applying all 
quality criteria, versus around 2,030 pixels on a session-level in WFI 
when decoding from the whole brain.

Furthermore, to average out the randomness in the outer randomiza-
tion, we ran this procedure ten times. Each run used a different random 
seed for selecting the interleaved train/validation/test splits. We then 
reported the median decoding score R2 across all runs. Regarding the 
decoded prior, we took the average of the predicted priors (estimated 
on the held-out test sets) across the ten runs.

Assessing statistical significance
Decoding a slow varying signal such as the Bayes-optimal prior from 
neural activity can easily lead to false-positive results even when prop-
erly cross-validated. For example, slow drift in the recordings can lead 
to spurious, yet significant, decoding of the prior if the drift is partially 
correlated with the block structure34,54. To control for this problem, we 
generated a null distribution of R2 values and determined significance 
with respect to that null distribution. This pseudosession method is 
described in detail previously34.

We denote RX ∈ N U×  the aggregated neural activity for a session and 
Y ∈ NR  the Bayes-optimal prior. Here, N is the number of trials and U 
the number of units. We generated the null distribution from pseu-
dosessions, that is, sessions in which the true block and stimuli were 
resampled from the same generative process as the one used for the 
mice. This ensures that the time series of trials in each pseudosession 
shares the same summary statistics as the ones used in the experiment. 
For each true session, we generated M = 1,000 pseudosessions, and 



used their resampled stimulus sequences to compute Bayes-optimal 
priors RY ∈i

N, with i ∈ [1, M] the pseudosession number. We generated 
pseudoscores R R i M∈ , ∈ [1, ]i

2  by running the neural analysis on the 
pair (X,Yi). The neural activity X is independent of Yi as the mouse did 
not see Yi but Y. Any predictive power from X to Yi would arise from slow 
drift in X unrelated to the task itself. These pseudoscores Ri

2 were com-
pared to the actual score R2 obtained from the neural analysis on (X,Y) 
to assess statistical significance.

The actual R2 is deemed to be significant if it is higher than the 95th 
percentile of the pseudoscores distribution R i M{ , ∈ [1, ]}i

2 . This test 
was used to reject the null hypothesis of no correlation between the 
Bayes optimal prior signal Y and the decoder prediction. We defined 
the P value of the decoding score as the quantile of R2 relative to the 
null distribution R i M{ , ∈ [1, ]}i

2 .
For each region of the brain that we recorded, we obtained a list of 

decoding P values, where a P value corresponds to the decoding of the 
region’s unit activity during one session. We used Fisher’s method to 
combine the session-level P values of a region into a single region-level 
P value (see the ‘Fisher’s method’ section for more details).

For effect sizes, we computed a corrected R2, defined as the actual 
score R2 minus the median of the pseudoscores distribution, 
R i M{ , ∈ [1, ]}i

2 . The corrected R2 of a region is the mean of the corrected 
R2 for the corresponding sessions.

Choosing between Pearson and Spearman correlation methods
In our statistical analyses, we prioritized using Spearman’s correlation 
when datasets included outliers, as it is robust against non-normal dis-
tributions. In other cases, we opted for Pearson’s correlation to assess 
linear relationships. For paired comparisons, we used the Wilcoxon 
signed-rank test, which likewise makes no assumption of normality 
while retaining sensitivity to systematic shifts between conditions.

Fisher’s method
Fisher’s method is a statistical technique used to combine independent 
P values to assess the overall significance. It works by transforming each 
P value into a χ2 statistic and summing these statistics. Specifically, for 
a set of P values (one per session given a region), p1, p2, p3, …, Fisher’s 
method computes the test statistic

∑X p= −2 ln( )
i

i
2

This statistic follows a χ2 distribution with 2 × Nsessions d.f., χ N2×
2

sessions, 
under the null hypothesis that all individual tests are independent  
and their null hypotheses are true. If the computed test statistic X 2 
exceeds a critical value from the χ2 distribution, the combined P value 
p χ X( ≥ )N2×

2 2
sessions

 is considered significant and the null hypothesis is 
rejected.

Cosmos atlas
We defined a total of ten annotation regions for coarse analyses. 
Annotations include the major divisions of the brain only: isocortex, 
olfactory areas, hippocampal formation, cortical subplate, cerebral 
nuclei, thalamus, hypothalamus, midbrain, hindbrain and cerebellum. 
A detailed breakdown of the Cosmos atlas is provided in Extended 
Data Fig. 5.

Granger causality
To understand how prior information flows between brain regions, 
we performed a Granger causality analysis on the Ephys and WFI data 
during the ITI.

For each Ephys session, we considered the neural activity from 
−600 ms to −100 ms before stimulus onset, segmented into 50 ms 
bins, yielding 10 bins per region. For each bin, we predicted the Bayes- 
optimal from the neural activity using the native LassoCV sklearn 
function, with its default regularization candidates. This leads to a 

decoded Bayes-optimal prior for each region and bin. We next used a 
Granger causality analysis to explore whether the prior information 
in some region Granger-causes prior information in other regions. 
Granger analysis was run with the spectral connectivity Python library 
from the Eden-Kramer lab (https://github.com/Eden-Kramer-Lab/
spectral_connectivity).

Given a directed pair of regions (for example, from ACAd to VISp) 
within a session, the Granger analysis assigns an amplitude to each 
frequency in the discrete Fourier transform. We calculate an over-
all Granger score by session by averaging the amplitudes across  
frequencies55.

To assess significance of the overall Granger score for a directed pair 
and session, we build a null distribution by applying our analysis to 
1,000 pseudosessions (see the ‘Assessing statistical significance’ sec-
tion). After decoding these pseudopriors from neural activity for each 
region and bin, we perform Granger analysis on these decoded pseu-
dopriors. This creates 1,000 pseudo-Granger scores per directed pair 
and session. Significance is assessed by comparing the actual Granger 
score against the top 5% of the pseudo scores.

Granger analysis for the WFI data is very similar to that for Ephys. 
The main differences are the use the last nine frames before stimulus 
onset as individual bins and the use of the RidgeCV native function 
from sklearn for the decoding (see the ‘WFI data’ section).

Initially, we investigate whether communication between regions 
exceeds what might be expected by chance. To assess this, we ana-
lyse the percentage of significant directed pairs between two regions 
that significantly reflect the prior; we find an average of 71.6% in WFI 
and 35.9% in Ephys across sessions. We then repeat this analysis for 
each session across 1,000 pseudosessions. Subsequently, we assess 
whether the average percentage of significant pairs across sessions 
falls within the top 5% of the average percentages calculated from these 
pseudo-sessions, which indeed it does (Extended Data Fig. 10a).

Next, we explore whether the flow of prior information involves 
more loops than would typically occur by chance. Specifically, we 
assess whether triadic loops (A>B>A) within a session occur more fre-
quently than expected. To evaluate this, we calculate the percentage 
of instances in which a significant Granger pair results in a loop of size 
3 for each session. We find that an average (across sessions) of 37.7% in 
WFI and 10.8% in Ephys exceed what would be anticipated by chance, 
confirming a higher prevalence of loops (Fig. 2h and Extended Data 
Fig. 10b).

To obtain Granger graphs at the region level, we use Fisher’s method 
to combine the session-level P values of a directed pair. Lastly, to con-
struct the Granger causality graph at the Cosmos level, we further 
combine the P values from each directed pair using Fisher’s method 
once again.

Controlling for region size when comparing decoding scores 
across Ephys and WFI
With WFI data, the activity signal of a region has always the same dimen-
sion across sessions, corresponding to the number of pixels. To con-
trol for the effect of region size on the region R2, we performed linear 
regression across 32 recorded regions to predict the decoding R2 from 
the number of pixels per region. We found a significant correlation 
between R2 and the size of the regions (Extended Data Fig. 7d; R = 0.82, 
P = 9.1 × 10−9). To determine whether this accounts for the correlations 
between Ephys and WFI R2 correlation (Fig. 2d), we subtracted the R2 
predicted by region’s size from the WFI R2 and recomputed the cor-
relation between Ephys R2 and these size-corrected WFI R2 (Extended 
Data Fig. 7f).

Number of recording sessions per region required to reach 
significance
For each region showing significance in prior decoding, we conducted 
a subsampling process to see how many recorded sessions were 

https://github.com/Eden-Kramer-Lab/spectral_connectivity
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necessary on average to reach significance. A region r is associated 
with set of Nr sessions in which its activity was recorded. For a particular 
region, we can randomly subselect N ∈ [1, Nr] sessions from this set and 
test the significance of the region given only these N prior decodings.

For each significant region and each possible number N, we repeated 
this procedure 1,000 times, getting a distribution of P values. We report 
pr

N, the median of the P-value distribution, as a measure of the signifi-
cance for prior decoding of the region r given that only N recording 
sessions are available.

For each number of available sessions N, we report the fraction of 
the total number of significant regions for which the statistic pr

N is less 
than 0.05, as a measure of the number of recordings per region required 
to reach back our obtained significance levels.

Assessing the significance of decoding weights
Let wi be the weight associated with the neuron i—where i ranges from 
1 to U, with U the number of units, for the decoding of U neurons’ activ-
ity on a particular region–session. We determine whether the weight 
is significant by comparing it to the distribution of pseudoweights 
w k M{ ˆ , ∈ [1, ]}i

k  derived from decoding the M = 200 pseudosessions 
priors based on neural activity on that same region-session.

wi is deemed to be significant if it is higher than the 97.5th percentile 
of the pseudoweights distribution or lower than the 2.5th percentile.

Proportion of right choices as a function of the decoded prior
To establish a link between the decoded prior, as estimated from the 
neural activity, and the mouse behaviour, we plotted the proportion 
of right choices on zero-contrast trials as a function of the decoded 
Bayes-optimal prior. For each Ephys (or WFI) session, we decoded the 
Bayes-optimal prior using all neural activity from that session. We 
focused this analysis on test trials, held-out during training, according 
to the procedure described in the ‘Nested cross-validation procedure’ 
section. For Fig. 2e, we then pooled over decoded priors for all sessions, 
assigned them to deciles and computed the associated proportion of 
right choices. In other words, we computed the average proportion of 
right choices on trials in which the decoded prior is part of each decile.

To quantify the significance of this effect at a session level (Extended 
Data Fig. 8a), we additionally performed a logistic regression predict-
ing the choice (right or left) as a function of the decoded prior. Let j be 
the session number; we predict the actions on that session at

j (with t 
the trial number) as a function of the decoded prior:

̂p a μ Y c( = right) = 1/[1 + exp(−( × + ))]t
j j

t
j j

with ̂Yt
j the cross-validated decoded Bayes-optimal prior, μ j the slope 

(coefficient of the logistic regression associated with the decoded 
prior) and c j an intercept. The logistic regression fitting was performed 
using the default sklearn LogisticRegression function, which uses L2 
regularization on weights with regularization strength C = 1.

To assess the statistical significance of these slopes, μ j, we generated 
null distributions of slopes over M = 200 pseudosessions (pseudoses-
sions are defined in the ‘Assessing statistical significance’ section). For 
each pseudosession, we computed the slope of the logistic regression 
between proportion of correct choices as a function of the decoded 
pseudo-Bayes-optimal prior. The decoded pseudo-Bayes-optimal prior 
was obtained by first computing the pseudo-Bayes-optimal prior for 
each pseudosession, and then using the neural data from the original 
session to decode this pseudo-Bayes-optimal prior. The percentage of 
correct choice was more complicated to obtain on pseudosessions 
because it requires simulating the mice choices as accurately as pos-
sible. As we do not have a perfect model of the mouse choices, we had 
to approximate this step with our best model, that is, the action kernel 
model. We used the action kernel model fitted to the original behaviour 
session and simulated it on each pseudosession to obtain the actions 
on each trial of the pseudosessions.

From the set of decoded pseudo-Bayes-optimal priors and pseudoac-
tions, we obtained M pseudoslopes μ i M, = 1…i

j  using the procedure 
described above. As the mouse did not experience the pseudosessions 
or perform the pseudoactions, any positive coefficient μi

j has to be the 
result of spurious correlations. Formally, to assess significance, we 
examine whether the mean slope ∑μ J μ( = 1/ × )j

J j
=1

 is within the 5% top 
percentile of the averaged pseudoslopes: ∑μ μ J μ{ ; = 1/ ×i i j

J
i

j
=1 ; i M∈ [1, ]}. 

Extended Data Fig. 8a shows this set of M averaged pseudoslopes as a 
histogram. The red vertical dashed line is the average slope μ.

When applying this null-distribution procedure in Ephys and WFI 
data, we find that the pseudoslopes in Ephys data are much more posi-
tive than in WFI data. This is due to the fact that spurious correlations 
in Ephys data are likely induced by drift in the Neuropixels probes, 
whereas WFI data barely exhibit any drift.

Neurometric curves
We used the same decoding pipeline described for the Bayes-optimal 
prior decoding to train a linear decoder of the signed contrast from 
neural activity in each region, for the ITI [−600, −100] ms and post- 
stimulus [0, 100] ms intervals. There are 9 different signed contrasts 
{−1, −0.25, −0.125, −0.0625, 0, 0.0625, 0.125, 0.25, 1} where the left con-
trasts are negative and the right contrasts are positive. Given a session 
of T trials, we denote s{ }i i T∈[1, ]  the sequence of signed contrasts,  
s{ˆ}i i T∈[1, ] the cross-validated decoder output given the neural activity 

X and p{ }i i T∈[1, ]  the Bayes-optimal prior. We defined two sets of  
trial indices for each session based on the signed contrast c and the 
Bayes-optimal prior: I i s c p= { ( = ) and < 0.5}c i i

low ∣  and ∣I i s c= { ( = )c i
high  

and p > 0.5}i  corresponding to the trials with signed contrast c and a 
Bayes-optimal prior lower or higher than 0.5 respectively.

For these sets,  we computed the propor tions P s= #{^ > 0;c i
low

i I I∈ }/#c c
low low  and ̂P s i I I= #{ > 0; ∈ }/#c i c c

high high high. These are the propor
tions of trials decoded as right stimuli conditioned on the Bayes- 
optimal prior being higher or lower than 0.5. We fitted a low prior  
curve to c P{( , )}c c Γ

low
∈  and a high prior curve to c P{( , )}c c Γ

high
∈ , which  

we called neurometric curves. We used an erf() function from 0 to 1 
with two lapse rates for the curves fit to obtain the neurometric curve:

f c γ γ λ c μ σ( ) = + (1 − − ) × (erf(( − )/ ) + 1)/2

where γ is the low lapse rate, λ is the high lapse rate, μ is the bias (thresh-
old) and σ is the rate of change of performance (slope). Importantly, 
we assumed some shared parameters between the low-prior curve and 
the high-prior curve: γ, λ and σ are shared, while the bias μ is free to 
be different for low and high prior curves. This assumption of shared 
parameters provides a better fit to the data compared to models 
with independent parameters for each curve, as evidenced by lower 
Bayesian information criterion (BIC) scores during both pre-stimulus 
(ΔBIC = BIC(independent parameters) − BIC(shared parameters) = 6,482 
for Ephys, ΔBIC = 822 for WFI) and post-stimulus periods (ΔBIC = 6,435 
for Ephys, ΔBIC = 812 for WFI). We used the psychofit toolbox to fit 
the neurometric curves using maximal-likelihood estimation (https://
github.com/cortex-lab/psychofit). Finally, we estimated the vertical 
displacement of the fitted neurometric curves for the zero contrast 
f high(c = 0) − f low(c = 0), which we refer to as the neurometric shift.

We used the pseudosession method to assess the significance of the 
neurometric shift, by constructing a neurometric shift null distribu-
tion. M = 200 pseudosessions are generated with their signed contrast 
sequences, which are used as target to linear decoder on the true neural 
activity. We fitted neurometric curves to the pseudosessions decoder 
outputs, conditioned on the Bayes-optimal prior inferred from the 
pseudosessions contrast sequences.

Stimulus side decoding
To compare the representation of prior information across the brain 
to the representation of stimulus, we used the stimulus side decoding 
results from our companion paper32. The decoding of the stimulus side 
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was performed using cross-validated logistic regression with L1 regu-
larization, on a time window of [0, 100] ms after stimulus onset. Only 
regions with at least two recorded sessions were included, a criteria 
applied in the companion paper32. The bottom panel of Extended Data 
Fig. 12b is a reproduction from figure 5a of our companion paper32.

Embodiment
Video data from two cameras were used to extract 7 behavioural vari-
ables which could potentially be modulated according to the mice’s 
subjective prior35:
•	 Paw position (left and right): Euclidean distance of the DLC-tracked 

paws to a camera frame corner, computed separately for the right 
and left paw.

•	 Nose position: horizontal position of the DLC-tracked nose captured 
by the left camera.

•	 Wheeling: wheel speed, obtained by interpolating the wheel position 
at 5 Hz and taking the derivative of this signal.

•	 Licking: the left and right edges of the tongue are DLC-tracked with 
both lateral cameras. A lick is defined to have occurred in a frame if 
the difference for either coordinate to the subsequent frame is larger 
than 0.25 times the s.d. of the difference of this coordinate across the 
whole session. The licking signal is defined as the number of licking 
events during each time bin of 0.02 s.

•	 Whisking (left and right): motion energy of the whisker-pad area in 
the camera view, quantified as the mean across pixels of the absolute 
grey-scale difference between adjacent frames; computed separately 
for the left- and right-side cameras.

If we are able to significantly decode the Bayes-optimal prior 
from these behavioural variables during the [−600 ms, −100 ms] 
ITI, we say that the subject embodies the prior. For the decoding, we 
used L1-regularized maximum-likelihood regression with the same 
cross-validation scheme used for neural data (see the ‘Nested cross- 
validation procedure’ section). Sessions and trials are subject to the 
same QC as for the neural data, so that we decode the same sessions 
and the same trials as the Ephys session-level decoding. For each trial, 
the decoder input is the average over the ITI [−600, −100] ms of the 
behavioural variables. For a session of T trials, the decoder input is a 
matrix of size T × 7 and the target is the Bayes-optimal prior. We use the 
pseudosession method to assess the significance of the DLC features 
decoding score R2. To investigate the embodiment of the Bayes-optimal 
prior signal, we compared session-level decoding of the prior signal 
from DLC regressors to region–session-level decoding of the prior 
signal from the neural activity of each region during the session.

DLC residual analysis
The DLC prior residual signal is the part of the prior signal which was 
not explained away by the DLC decoding, defined as the prior signal 
minus the prediction of the DLC decoding. We decoded this DLC prior 
residual signal from the neural activity, using the same linear decoding 
schemes as previously described.

Eye position decoding
Video data from the left camera were used to extract the eye position 
variable, a 2D signal corresponding to the position of the centre of 
the mouse pupil relative to the video border. The camera as well as 
the mouse’s head were fixed. DeepLabCut was not able to achieve suf-
ficiently reliable tracking of the pupils; we therefore used a different 
pose-estimation algorithm56, trained on the same labelled dataset 
used to train DeepLabCut. For the decoding, we used L2-regularized 
maximum-likelihood regression with the same cross-validation scheme 
used for neural data, during the [−600 ms, −100 ms] ITI.

The eye-position prior residual signal is the part of the prior signal 
which is not explained away by the eye position decoding, defined  
as the prior signal minus the prediction of the eye position decoding. 

We decode this eye position prior residual signal from the neural activ-
ity of early visual areas (LGd and VISp) using the same linear decoding 
schemes as previously described.

Contribution of DLC and eye-position features to prior 
embodiment: feature importance
To assess the contribution of DLC and eye position features to prior 
embodiment, we performed a leave-one-out decoding procedure of 
the DLC + eye position features. There are five different types of DLC 
features: licking, wheeling, nose position, whisking and paws positions. 
Moreover, with the x and y coordinates of the eye position, we had a 
total of seven types of variables for which we individually performed 
a separate leave-one-out decoding analysis. The difference between 
the full decoding R2 and the leave-one-out decoding R2 is a measure 
of the importance of the knocked-out variable in the full decoding.

Behavioural models
To determine the behavioural strategies used by the mice, we developed 
several behavioural models and used Bayesian model comparison to 
identify the one that fits best. We considered three types of behavioural 
models that differ as to how the integration across trials is performed 
(how the subjective prior probability that the stimulus will be on the 
right side is estimated based on history). Within a trial, all models 
compute a posterior distribution by taking the product of a prior and 
a likelihood function (the probability of the noisy contrast given the 
stimulus side; Supplementary information).

Among the three types of models of the prior, the first, called the 
Bayes-optimal model, assumes knowledge of the generative process 
of the blocks. Block lengths are sampled as follows:

�p l N N τ N( = ) ∝ exp(− / ) × [20 ≤ ≤ 100]k

with lk the length of block k and � the indicator function. Block lengths 
are therefore sampled from an exponential distribution with param-
eter τ = 60 and constrained to be between 20 and 100 trials. When block 
k − 1 comes to an end, the next block bk, with length lk, is defined as a 
right block (where the stimulus is likely to appear more frequently on 
the right) if block bk−1 was a left block (where the stimulus was likely to 
appear more frequently on the left) and conversely. During left blocks, 
the stimulus is on the left side with probability γ = 0.8 (and similarly 
for right blocks). Defining st as the side on which the stimulus appears 
on trial t, the Bayes-optimal prior probability the stimulus will appear 
on the right at trial t, p s s( | )t t1:( −1)  is obtained through a likelihood  
recursion57.

The second model of the subjective prior, called the stimulus kernel 
model58, assumes that the prior is estimated by integrating previous 
stimuli with an exponentially decaying kernel. Defining st−1 as the stimu-
lus side on trial t – 1, the prior probability that the stimulus will appear 
on the right πt is updated as follows:

�π α π α s= (1 − ) × + × [ = right]t t t−1 −1

with πt−1 the prior at trial t − 1 and α the learning rate. The learning rate 
governs the speed of integration: the closer α is to 1, the more weight 
is given to recent stimuli st−1.

The third model of the subjective prior, called the action kernel 
model, is similar to the stimulus kernel model but assumes an inte-
gration over previous chosen actions with, again, an exponentially 
decaying kernel. Defining at−1 as the action at trial t − 1, the prior prob-
ability that the stimulus will appear on the right πt is updated as follows:

π α π α a= (1 − ) × + × [ = right]t t t−1 −1�

For the Bayes-optimal and stimulus kernel models, we additionally 
assume the possibility of capturing a simple autocorrelation between 
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choices with immediate or multistep repetition biases or choice- and 
outcome-dependent learning rate40,59. Further details on model deriva-
tions are provided in the Supplementary Information.

Model comparison
To perform model comparison, we implemented a session-level Bayes-
ian cross-validation procedure. In this procedure, for each mouse with 
multiple sessions, we held out one session i and fitted the model on 
the held-in sessions. For each mouse, given a held-out session i, we 
fitted each model k to the actions of held-in sessions, denoted here as 
A\i, and obtained the posterior probability, p θ A m( | , )k

\i
k , over the fitted 

parameters θk through an adaptive Metropolis–Hastings procedure60. 
Four adaptive Metropolis–Hastings chains were run in parallel for a 
maximum of 5,000 steps, with the possibility of early stopping (after 
1,000 steps) implemented with the Gelman–Rubin diagnostic61.  
θk typically includes sensory noise parameters, lapse rates and the 
learning rate (for stimulus and action kernel models); the formal 
definitions of these parameters are provided in the Supplemen-
tary Information. Let θ n N{ ; ∈ [1, ]}k n, MH  be the NMH samples obtained 
with the Metropolis–Hastings (MH) procedure for model k (after dis-
carding the burn-in period). We then computed the marginal likelihood 
of the actions on the held-out session, denoted here as Ai.

∫
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For each subject, we obtained a score per model k by summing over 
the log-marginal likelihoods p A A mlog ( | , )i \i

k , obtained by holding  
out one session at a time. Given these subject-level log-marginal likeli-
hood scores, we performed Bayesian model selection38 and reported 
the model frequencies (the expected frequency of the kth model in  
the population) and the exceedance probabilities (the probability that 
a particular model k is more frequent in the population than any other 
considered model).

Assessing the statistical significance of the decoding of the 
action kernel prior
Given that the action kernel model better accounts for the mouse behav-
iour, it would be desirable to assess the statistical significance of the 
decoding of the action kernel prior. Crucially, as assessing significance 
involves a null hypothesis (the neural activity is independent of the 
prior), a rigorous construction of the corresponding null distribution 
is key.

For the Bayes optimal prior decoding, constructing the null distribu-
tion is straightforward. It requires that we generate stimulus sequences 
with the exact same statistics as those experienced by the mice. We do 
this by simulating the same generative process used to generate the 
stimulus during the experiment, yielding what we called pseudoses-
sions in previous sections.

However, for the action kernel prior (and contrary to the Bayes opti-
mal model), we also need to generate action sequences with the same 
statistics as those generated by the animals. In turn, this would require 
a perfect model of how the animals make decisions. As we lack such a 
model, we would need to come up with an approximation. There are 
multiple approximations that we could use, including the following:
•	 Synthetic sessions, in which we use the action kernel model, using 

the parameters fitted to each mouse on each session, to generate 
fake responses. However, the action kernel model is not a perfect 
model of the animal’s behaviour, it is merely the best model that we 
have among the ones we have tested. Moreover, there could be some 
concerns about the statistical validity of using a null distribution, 

which assumes that the action kernel is the perfect model when test-
ing for the presence of this same model in the mouse’s neural activity

•	 Imposter sessions, in which we use responses from other mice. How-
ever, other animals are most unlikely to have used the exact same 
model/parameters as the mouse we are considering. This implies 
that the actions in these imposter sessions do not have the same 
statistics as the decoded session. There is indeed a large degree of 
between-session variability, as can be seen from the substantial dis-
persion in the fitted action kernel decay constants shown in Fig. 4b.

•	 Shifted sessions, in which we decode the action kernel prior on trial 
M, using the recording on trial M + N, with periodic boundaries for  
the ‘edges’34. The problems here are twofold. First, N must be chosen 
large enough such that the block structure of the shifted session is 
independent of the block structure of the non-shifted session. Because 
blocks are about 50 trials long, N must be large for the independence 
assumption to hold. This adds a constraint on the number of different 
shifted sessions that we can generate, leading to a poor null distri-
bution with little diversity (made from only a few different shifted 
sessions). Second, it has been shown that there is within-session vari-
ability62 such that when N is chosen to be large, we cannot consider the 
shifted actions to have the same statistics as the non-shifted actions.

There may be other options. However, as they would all rely on 
approximations, the degree of statistical inaccuracy associated with 
their use would be unclear. We would not even know which one to 
favour, as it is hard to establish the quality of the approximations. Over-
all, we have access to the exact generative process to construct the null 
distribution for the Bayes optimal prior, versus only approximations 
for the action kernel prior. As a result, we decided to err on the side 
of caution and focus primarily on the Bayes optimal prior decoding 
whenever possible. In analyses involving animal behaviour—such as in 
Fig. 2e (see the ‘Proportion of right choices as a function of the decoded 
prior’ section) and Fig. 4e (see the ‘Orthogonalization’ section)—we had 
to rely on an approximation. For these, we used the synthetic session 
approach to establish a null distribution.

Orthogonalization
To assess the dependency on past trials of the decoded Bayes-optimal 
prior from neural activity, we performed stepwise linear regres-
sion as a function of the previous actions (or previous stimuli). The 
Bayes-optimal prior was decoded from neural activity at the session 
level, therefore considering the activity from all accessible cortical 
regions in WFI and all units in Ephys.

The stepwise linear regression involved the following steps. We 
started by linearly predicting the decoded Bayes-optimal prior on 
trial t from the previous action (action on trial t − 1), which enables us 
to compute a first-order residual, defined as the difference between 
the decoded neural prior and the decoded prior predicted by the last 
action. We then used the second-to-last action (action at trial t − 2) to 
predict the first-order residual to then compute a second-order resid-
ual. We next predicted the second-order residual with the third-to-last 
action and so on. We use this iterative stepwise procedure to take into 
account possible autocorrelations in actions.

The statistical significance of the regression coefficients is assessed 
as follows. Let us use Tj to denote the number of trials of session j, 
Y R∈j T j the decoded Bayes-optimal prior and X R∈j T K×j  the chosen 
actions, where K is the number of past trials considered in the stepwise 
regression. When running the stepwise linear regression, we obtain a 
set of weights W k K{ , ∈ [1, ]}k

j , with Wk
j the weight associated with the 

kth-to-last chosen action. We test for the significance of the weights 
for each step k, using as a null hypothesis that the weights associated 
with the kth-to-last chosen action are not different from weights pre-
dicted by the ‘pseudosessions’ null distribution.

To obtain a null distribution, we followed the same approach as 
described in the ‘Proportion of right choices as a function of the 



decoded prior’ section. Thus, we generated decoded pseudo-Bayes- 
optimal priors and pseudoactions. For each session, these pseudo-
variables are generated as follows: first, we fitted the action kernel 
model (our best-fitting model) to the behaviour of session j. Second, 
we generated M pseudosessions (see the ‘Assessing the statistical  
significance’ section). Lastly, we simulated the fitted model on the 
pseudosessions to obtain pseudoactions. Regarding the decoded 
pseudo-Bayes-optimal priors, we first infer with the Bayes-optimal 
agent, the Bayes-optimal prior of the pseudosessions, and second, we 
decoded this pseudoprior with the neural activity. For each session j 
and pseudo-i, we have generated a decoded pseudo-Bayes-optimal 
prior Yi

j as well as pseudoactions Xi
j. When applying the stepwise linear 

regression procedure to the couple X Y( , )i
j

i
j , we obtain a set of pseudo-

weights W k K{ , ∈ [1, ]}k i
j
, . As the mouse did not experience the pseu-

dosessions or perform the pseudoactions, any non-zero coefficients 
Wk i

j
,  must be the consequence of spurious correlations. Formally,  

to assess significance, we examine whether the average of the coeffi
cients over sessions ∑W N W= 1/ ×k j

N
k

j
sessions =1

sessions  is within the 5% top 

percentile of ∑W W N W i M{ ; = 1/ × ; ∈ [1, ]}k i k i j
N

k i
j

, , sessions =1 ,
sessions .

The statistical significance procedure when predicting the decoded 
Bayes-optimal prior from the previous stimuli is very similar to the 
one just described for the previous actions. The sole difference is that, 
for this second case, we do not need to fit any behavioural model to 
generate pseudostimuli. Pseudostimuli for session j are defined when 
generating the M pseudosessions. Pseudoweights are then obtained 
by running the stepwise linear regression predicting the decoded 
pseudo-Bayes-optimal prior from the pseudostimuli. Formal statis-
tical significance is established in the same way as for the previous 
actions case.

When applying this null-distribution procedure to Ephys and WFI, 
we find that the strength of spurious correlations (as quantified by the 
amplitude of pseudoweights Wk,i) for Ephys is much greater than for 
WFI data. This is due to the fact that spurious correlations in electro-
physiology are mainly produced by drift in the Neuropixels probes, 
which is minimal in WFI.

Behavioural signatures of the action kernel model
To study why the Bayesian model selection procedure favours the action 
kernel model, we sought behavioural signatures that can be explained 
by this model but not the others. As the action kernel model integrates 
over previous actions (and not stimuli sides), it is a self-confirmatory 
strategy. This means that, if an action kernel agent was incorrect on a 
block-conformant trial (trials in which the stimulus is on the side pre-
dicted by the block prior), then it should be more likely to be incorrect 
on the subsequent trial (if it is also block-conformant). Other models 
integrating over stimuli, such as the Bayes-optimal or the stimulus 
Kernel model, are not more likely to be incorrect after an incorrect 
trial, because they can use the occurrence or non-occurrence of the 
reward to determine the true stimulus side, which could then be used 
to update the prior estimate correctly. To test this, we analysed the 
proportion correct of each session at trial t, conditioned on whether 
it was correct or incorrect at trial t − 1. To isolate the impact of the last 
trial, and not previous trials or other factors such as block switches and 
structure, we restricted ourselves to the following:
•	 Zero-contrast trials.
•	 Trial t, t − 1 and t − 2 had stimuli that were on the expected, meaning 

block-conformant, side.
•	 On trial t − 2, the mouse was correct, meaning that it chose the 

block-conformant action.
•	 On trials that were at least ten trials from the last reversal.

Neural signature of the action kernel model from the decoded 
Bayes-optimal prior
To test whether the behavioural signature of the action kernel 
model discussed in the previous section is also present in the neural 

activity, we simulated an agent of which the decisions are based on 
the cross-validated decoded Bayes-optimal prior and tested whether 
this agent also shows the same action kernel signature. The decoded 
Bayes-optimal prior was obtained by decoding the Bayes-optimal prior 
from the neural activity (see the ‘Nested cross-validation procedure’ 
section) on a session-level basis, considering all available WFI pixels 
or Ephys units.

Note that, if the decoded Bayes-optimal agent exhibits the action ker-
nel behavioural signature, this must be a property of the neural activity 
as the Bayes-optimal prior on its own cannot produce this behaviour.

The agent is simulated as follows. Let us denote Y ∈ RN the Bayes- 
optimal prior with N is the number of trials. When performing neural 
decoding of the Bayes-optimal prior Y, we obtain a cross-validated 
decoded Bayes-optimal prior Ŷ . We define an agent which, on each 
trial, greedily selects the action predicted by the decoded Bayes-optimal 
prior Ŷ , meaning that the agent chooses right if Ŷ > 0.5, and left  
otherwise.

On sessions that significantly decoded the Bayes optimal prior, 
we then test whether the proportion of correct choices depends on 
whether the previous trial was correct or incorrect. We do so at the 
session level, applying all but one criterion of the behavioural analysis 
described previously in the ‘Behavioural signatures of the action kernel 
model’ section:
•	 Trial t, t − 1 and t − 2 had stimuli that were on the expected, meaning 

on the block-conformant, side.
•	 On trial t − 2, the mouse was correct, meaning that it chose the 

block-conformant action.
•	 On trials that were at least ten trials from the last reversal.

Note that, given that the neural agent uses the pre-stimulus activity 
to make its choice, we do not need to restrict ourselves to zero-contrast 
trials.

Neural decay rate
To estimate the temporal dependency of the neural activity in Ephys 
and WFI, we assumed that the neural activity was the result of an action  
kernel (or stimulus kernel) integration and fitted the learning rate 
(inverse decay rate) of the kernel to maximize the likelihood of observ-
ing the neural data.

We first describe the fitting procedure for WFI data. Given a session, 
let us call Xt,n the WFI activity of the nth pixel for trial t. Similarly to 
the procedure that we used for decoding the Bayes-optimal prior, we 
took the activity at the second-to-last frame before stimulus onset. We 
assumed that Xt,n is a realization of Gaussian distribution with mean Qt,n 
and with s.d. σn, Xt,n ∼ N(Qt,n, σn). Qt,n was obtained through an action 
kernel (or stimulus kernel) integration process:

Q α Q α ζ a= (1 − ) × + × ×t n n t n n n t, −1, −1

with αn the learning rate, at−1 ∈ {−1, 1} the action at trial t − 1 and ζn a  
scaling factor. αn, ζn and σn are found by maximizing the probabil
ity of observing the widefield activity p X a α ζ σ( | ; , , )T n T n n n1: , 1: , with 

T T1: = {1, 2, … }  and T the number of trials in that session. If a trial is 
missed by the mouse, which occurs when reaction time exceeds 60 s 
(1.5% of the trials, see the companion paper32), Qt,n is not updated. For 
the electrophysiology now, let us call Xt,n the neural activity of unit n 
at trial t. Similarly to what we did when decoding the Bayes-optimal 
prior, we took the sum of the spikes between −600 and −100 ms from 
stimulus onset. We assumed here that Xt,n is a realization of a Poisson 
distribution with parameter Qt,n, Xt,n ~ Poisson(Qt,n). Qt,n was obtained 
through an action kernel (or stimulus kernel) integration process:

Q α Q α ζ= (1 − ) × + ×t n n t n n n
a

, −1,
t−1

with αn the learning rate and ζn
at−1 scaling factors, one for each possible 

previous action. Note that in the case of Ephys, as Qt,n can only be 
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positive, two scaling factors are necessary to define how Qt,n is adjusted 
after a right or left choice. α ζ,n n

1 and ζn
−1 are found by maximizing the 

probability of observing the Ephys activity p X a α ζ ζ( | ; , , )T n T n n n1: , 1:
1 −1 , 

with T T1: = {1, 2, … }  and T the number of trials in that session. For  
electrophysiology, we added constraints on the units. Specifically, we 
only considered units (1) of which the median (pre-stimulus summed) 
spikes was not 0; (2) with at least 1 spike every 5 trials; and (3) where 
the distribution of (pre-stimulus summed) spikes was different when 
the Bayes-optimal prior is greater versus lower than 0.5 (signifi
cance is asserted when the P value of a Kolmogorov–Smirnov test was 
below 0.05).

To restrict our analysis to units (or pixels) which are likely to 
reflect the subjective prior, we considered only those that were part 
of regions-sessions that significantly decoded the Bayes-optimal 
prior, resulting in N = 164 sessions for Ephys and N = 46 for WFI. 
Significance was assessed according to the pseudosession meth-
odology (see the ‘Assessing statistical significance’ section), which 
accounts for spurious correlations (which a unit-level Kolmogorov– 
Smirnov test would not). Then, to obtain a session-level neural 
learning rate, we averaged across pixel-level or unit-level learning 
rates. To compare neural and behavioural temporal timescales, we 
correlated the session-level neural learning rate with the behav-
ioural learning rate, obtained by fitting the action kernel to the  
behaviour.

In both Ephys and WFI, when considering that the neural activity is a 
result of the stimulus kernel, the calculations were all identical except 
replacing actions a1:T with stimuli side s1:T.

This analysis (Fig. 4f) makes the assumption that sessions could be 
considered to be independent from another—an assumption that can 
be questioned given that we have a total of 459 sessions across 139 
mice in Ephys and 52 sessions across 6 mice in WFI. To test the pres-
ence of the correlation between neural and behavioural timescales 
while relaxing this assumption, we developed a hierarchical model 
that takes into account the two types of variability, within mice and 
within sessions given a mouse. This model defines session-level param-
eters, which are sampled from mouse-level distributions, which are 
themselves dependent on population-level distributions. The exact 
definition of the hierarchical model is provided in the Supplementary 
information. This hierarchical approach confirmed the session-level 
correlation between neural and behavioural timescales (Extended Data  
Fig. 15b).

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
All data supporting the findings of this study are available at Git
Hub (https://int-brain-lab.github.io/iblenv/notebooks_external/data_ 
release_brainwidemap.html and https://int-brain-lab.github.io/iblenv/
notebooks_external/loading_widefield_data.html). Detailed informa-
tion on each recorded region—including the number of recordings,  
neurons and decoding scores—is provided at GitHub (https://github. 
com/int-brain-lab/paper-brain-wide-map/blob/plotting/brainwidemap/ 
meta/region_info.csv). Users are allowed to distribute, remix, adapt 
and build on the material in any medium or format, provided that 
attribution is given to the creator (data license, CC-BY). The Swanson 
flat map is available at GitHub (https://int-brain-lab.github.io/iblenv/
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Code availability
The code associated with this paper is available at GitHub (https://
github.com/int-brain-lab/prior-localization/tree/main).
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Extended Data Fig. 1 | Bar plots of the decay constant (τ), amplitude (A)  
and asymptote (B) of the zero contrast reversal curves across all mice.  
The parameters are obtained by fitting the following parametric curve: 
p correct at trial t B( ) =  on the zero contrast pre-reversal trials (the 5 trials before 
a block switch) and p correct at trial t B A B e( ) = + ( − ) ⋅ t τ− /  on the zero contrast 
post-reversal trials (the 20 trials after a block switch). τ reflects the reversal 
timescale. To make up for the limited amount of available zero contrast reversal 

trials, we fit these curves using a jackknife procedure (see Methods). Bars and 
error bars indicate jackknife means ± SEM ( jackknifing was applied on n = 139 
mice). Mice have a significantly longer mean recovery decay constant than  
the Bayes-optimal observer (4.97 vs 2.43 trials, 2-tailed paired t-test t = 2.94, 
p = 0.001), while the other parameters are not significantly different. (for A: 
t = 1.43, p = 0.15 and for B: t = −0.64, p = 0.53) (**p < 0.01, n.s. not significant).
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Extended Data Fig. 2 | Average wheel speed averaged across sessions before 
and after stimulus onset. The decoded time window used for Ephys data is 
indicated in light grey. For WFI, the data was decoded on the second-to-last 
frame relative to the stimulus onset, corresponding to a time window that 
ranges from −198 to −132 ms at the start to −132 to −66 ms at the end, depending 
on the timing of the last frame before the stimulus onset (this last frame can 
occur anytime between −132 and −66 ms before the stimulus onset).
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Extended Data Fig. 3 | Encoding of the prior across the brain during the 
inter-trial interval. Sagittal slices corresponding to the main decoding figure 
presented in Fig. 2b. Left: Ephys only. A region is deemed significant if the 
Fisher combined p-value is lower than 0.05. Right: Ephys and Widefield 

combined. Significance for regions is assessed with the Benjamini-Hochberg 
procedure, correcting for multiple comparisons, with a conservative false 
discovery rate of 1%.
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Extended Data Fig. 4 | Six examples of neurons significantly encoding the 
Bayes-optimal prior (***p < 0.001, **p < 0.01, *p < 0.05). a. Peri-Stimulus Time 
Histograms (PSTHs) segmented by trials throughout the session. Left column 
conditions on the Bayes-optimal prior for the right side being less than 0.3 
(blue) vs greater than 0.7 (orange). The middle and right columns depict PSTHs 
for trials under conditions of low certainty (pRight close to 0.5) and high 
certainty (pRight far from 0.5), respectively. “Med” refers to the median 
operation. Significance is assessed by testing the difference between the trial 
wise firing rates (averaging across time bins) of “left” (blue) and “right” (orange) 
trials with a two-sample Kolmogorov-Smirnov test. b. Spike counts of the 
neurons (purple line) during the intertrial interval in the [−600, −100] millisecond 

time window before stimulus onset, along with the Bayes-optimal prior (blue) 
for a subset of trials within the session (Spearman correlations of the full session 
are reported on the graphs). All neurons on this panel show a preference for the 
left side, although, at the population level, we did not observe a bias for either 
the right or left side. Indeed, we examined the distribution of decoding weights 
and detected no discernible lateral bias concerning the weight distribution. 
Testing the significance of the decoder weight in each region yielded adjusted 
p-values all above 0.2 (Wilcoxon test), after adjusting for multiple comparisons 
using the Benjamini-Hochberg correction. Additionally, a combined analysis of 
all weights from the six regions lead to the same conclusion (two tailed signed 
Wilcoxon test: t = 16732, p-value = 0.31).
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Extended Data Fig. 5 | a. Swanson map colour-coded to indicate distinct 
anatomical regions (Cosmos level). b. Dorsal brain slice recorded with widefield 
imaging, utilizing the same colour scheme for regional identification.  
c. Distribution of decoding sessions across different regions as mapped in  
the Swanson brain atlas. d. Histogram detailing the number of sessions per 
recording type: Electrophysiology (Ephys) and Widefield Imaging (WFI). The 
vertical lines indicate median values, with 6 sessions for Ephys and 51 for WFI.  
e. Dual-axis graph: the coloured lines (left axis) display the p-value of regional 
significance as a function of the number of decoding sessions, while the black 

line (right axis) shows the ratio of significant regions relative to the total number 
of sessions. It is estimated that approximately 10 sessions per region are 
necessary to identify 95% of significant regions highlighted in the main decoding 
analysis (refer to Methods section for more details). It is important to recognize 
that this analysis has limitations: it assumes uniformity across recordings and 
regions without considering, e.g., variations in effect size or number of units 
per recording. Despite these limitations, we concentrated on the number of 
recordings because it is a primary factor that experimenters can directly control.
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Extended Data Fig. 6 | a. Swanson maps showing corrected decoding R2 values 
for various decoding priors. From left to right: True block prior, log odds ratio 
of the Bayes-optimal prior, Bayes-optimal prior on a narrower time window 
(−400 ms to −100 ms), and the Bayes-optimal prior from main Fig. 2b. A region 
is deemed significant if the Fisher combined p-value is lower than 0.05. 
b. Correlation analysis comparing Bayes optimal decoding from the extended 
window (shown in Fig. 2b) with the true block decoding (left panel), the log 
odds prior (middle panel), and the Bayes-optimal prior from the narrower 
window (right panel). In the three cases, we have a large correlation between 

corrected R2. c. Comparison of the corrected R2 across the four decodings, 
testing whether the points panel b. are over or below the diagonal (2-tailed 
signed-rank paired Wilcoxon test, n.s. not significant, ***p < 0.001). d. Bayesian 
model comparison for 2 behavioural models, the Bayes optimal model, which 
infers a prior from past observations (see Methods and Supplementary 
Information), and a model that assumes the true block prior, which is not 
accessible to the mice. Our analysis shows that the Bayes optimal model more 
effectively explains the behaviour, with an exceedance probability greater  
than 0.999.
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Extended Data Fig. 7 | a. Number of significant sessions for each region 
represented on the dorsal map for WFI and the Swanson map for Ephys.  
b. Histograms representing the distribution of the number of significant 
sessions for each region in both WFI (top) and Ephys (bottom). Note that the 
number of significant sessions per region in Ephys is low, which prevents us 
from making robust claims at the regional level. c. Number of units (left) and 
number of recorded sessions (right) as a function of the decoded R2 for the 
Bayes-optimal prior in Ephys. d. Number of pixels as a function of the decoded 

R2 for the Bayes-optimal prior in WFI. e. Correlations between confounds 
across modalities. Left panel: Number of pixels in WFI as a function of the 
number of units in Ephys. Right: Number of pixels as a function of the number 
of recorded sessions in Ephys. f. Corrected R2 for Ephys as a function of the 
corrected R2 for WFI after correcting the WFI R2 data for region size. Correcting 
for the region size in WFI was performed by subtracting the size-predicted R2 
(from panel d) from the WFI R2. Each dot corresponds to one region. All Ephys 
regions (significant and non-significant) were included in this analysis.
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Extended Data Fig. 8 | See next page for caption.



Extended Data Fig. 8 | a. Null distribution of the slopes for the proportion of 
right choice vs decoded prior on zero contrast trials. Slopes were estimated 
using logistic regression to predict the choice (left or right) as a function of the 
decoded prior. The null distribution was calculated using 200 pseudosessions. 
For each pseudosession, pseudoactions were generated from an action kernel 
behavioural model that was fit to each real session (see Methods for more 
details). We then obtained pseudoslopes by predicting (with logistic regression) 
the pseudoactions as a function of the decoded prior. The null distribution was 
obtained by averaging the pseudoslopes across all sessions (we thus obtain 
200 averaged pseudoslopes). The empirical average slope (yellow dashed 
lines) does not overlap with the null distribution obtained with pseudosessions 
(blue histogram). Therefore the correlations between the predicted prior and 
proportion of right choice can not be explained away by spurious temporal 
correlations or drift in the neural recordings. top: ephys, bottom: WFI. b. Left: 
Proportion of right choices vs. cross-validated decoded Bayes-optimal prior 
from neural activity for all contrast strengths in Ephys. Different shades of blue 
denote different contrast strengths. Main Fig. 2e focused on the zero‐contrast 
case; here we show the same analysis across all contrasts. Right: Slopes, 
estimated using logistic regression to predict choice from decoded prior (as in 
panel a - see Methods). Slopes are strongly modulated by contrast strengths, 
arguing against a mere perseverative motor bias, which would produce a slope 
that is invariant across contrasts c. Same as b. but in WFI. d. Proportion of right 
choices on zero contrast trials as a function of the decoded region-level Bayes-
optimal prior. We decoded the Bayes-optimal prior for each region and 
computed the slope of this decoded prior as a function of the proportion of 
right choices (corrected using pseudo-sessions). This is the analysis presented 

in main Fig. 2e but at a region level (significance is assessed when the region-
level p-values < 0.05, using Fisher’s method for combining p-values). We 
observed that the slopes are significant in 17.8% of the regions in Ephys and 
90.1% in Widefield, spanning every level of the hierarchy, including LGd, SCm, 
CP, MOs, and ACAd. It should be noted that the analysis for Ephys includes only 
241 regions due to the exclusion of two sessions where the mouse made the 
same choice on every zero contrast trial. e. Correlation at the regional level 
between the decoded R² values and the corrected slopes. We find correlations 
in both modalities. These correlations prompt further investigation into 
whether they could be explained away by differences in how the Bayes optimal 
prior versus the action kernel model account for behaviour across sessions. 
Specifically, sessions that more closely follow the action kernel model could 
potentially show lower corrected R 2 and slopes, as these metrics are calculated 
using the Bayes optimal prior. In Ephys, we found no correlation between the 
log Bayes Factor (the difference in the marginal log likelihood between the 
action kernel and Bayes optimal models at the session level) and the corrected 
slopes (Spearman correlation: R = 0.05, P = 0.29, N = 412 sessions), with the 
corrected slopes averaged across regions for each session. In widefield, a small 
correlation was detected (Spearman correlation: R = −0.34, P = 0.014, N = 51 
sessions). However, even after adjusting for the log Bayes factor (by removing 
the linear prediction of the log Bayes factor from the corrected slope), the 
correlation between the corrected R 2 and the adjusted corrected slope remained 
strong (Spearman correlation: R = 0.935, P = 4.7 × 10–15, N = 32 regions). This 
suggests that the type of behavioural strategy the mice used does not confound 
the correlation between the corrected R 2 and the corrected slope.
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Extended Data Fig. 9 | a. The decoding R2 for the Bayes-optimal prior from 
neural activity is significantly correlated with the decoding R2 for the Bayes- 
optimal prior from DLC features (Pearson correlation R = 0.18, P = 1.6 × 10–7).  
b. Embodiment analysis accounting for both the DLC features and the eye 
position. Left: Decoding R2 for the Bayes-optimal prior from neural activity 
against decoding R2 for the Bayes-optimal prior from DLC features and eye 
position. The correlation between these two quantities is significant (Pearson 
correlation R = 0.24, P = 2.5 × 10–10). Right: DLC + eye position residual decoding 
R2 against neural decoding R2. The residual decoding R2 values are obtained by 
first regressing the Bayes-optimal prior from DLC features and eye position, 
and then regressing the prior residual (Bayes-optimal prior minus Bayes-optimal 
prior estimated from DLC features and eye position) against neural activity. 
The neural decoding R2 corresponds to the R2 when decoding the Bayes-optimal 
prior from neural activity. The two quantities are strongly correlated (Pearson 
correlation R = 0.79, P = 5.5 × 10–141), suggesting that the prior cannot be entirely 
attributed to a combination of both DLC features and eye position. c. Regressor 
elimination approach: for each feature, we remove it to measure the decrease in 
the decoding score compared to the full model (see Methods). The first feature 
to impact the model significantly when removed is the paw position. In this 

task, the paws are typically engaged to manipulate the wheel, which in turn 
adjusts the stimulus. It appears that the paws are positioned differently—likely 
on the wheel—depending on whether the prior suggests the next side will be 
left or right. The second key feature was the x-coordinate of the eye position, 
which aligns with the task setup where the stimulus is positioned along a 
horizontal plane, indicating that the mice tend to look in the direction suggested 
by the Bayes-optimal prior. d. Left: decoding R2 for the Bayes-optimal prior 
from neural activity in VISp and LGd against decoding R2 for the Bayes-optimal 
prior from eye position. The correlation between these two quantities is 
significant (Pearson correlation R = 0.36, P = 0.0163). Right: residual decoding 
R2 against neural decoding R2. The residual decoding R2 values are obtained  
by first regressing the Bayes-optimal prior against eye position and then 
regressing the prior residual (Bayes-optimal prior minus Bayes-optimal  
prior estimated from eye position) against neural activity in VISp and LGd 
(see Methods). The neural decoding R2 corresponds to the R2 when decoding 
the Bayes-optimal prior from neural activity. The two quantities are strongly 
correlated (Pearson correlation R = 0.8, P = 7.3 × 10–11), suggesting that the prior 
signals in LGd and VISp are not solely due to the position of the eyes across blocks.
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Extended Data Fig. 10 | See next page for caption.
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Extended Data Fig. 10 | Granger causality analysis. a. Average percentage of 
significant directed pairs between two regions that reflect the prior across 
sessions. When considering all pairs of regions encoding the prior significantly, 
and for which we had simultaneous recordings, we observed that information 
was significantly exchanged between 71% of these pairs in Widefield imaging 
and 36% in Ephys. Blue histograms: null distribution. b. Average percentage  
of significant directed pairs (A- > B) which are reciprocated within the same 
session by their counterparts (B- > A); we found this to occur 38% of the time in 
Widefield and 11% in Ephys. Blue histograms: null distribution. (same as in main 
Fig. 2h). c. Histogram showing the number of sessions for each directed pair 
and barplot showing the percentage of observed directed pairs (directed pairs 
with at least one session) versus unobserved pairs. Right: In Ephys, with a total 
of 242 observed regions, the possible number of pairs amounts to 242 × 
241 = 58,322. Of these, approximately 10% of the directed pairs had been 
recorded simultaneously, but the vast majority (75%) of these pairs appeared in 
two or fewer sessions, highlighting their scarcity. Left: Widefield provides a 
richer dataset, because, with 32 regions recorded simultaneously, we can 
analyse a total of 992 possible directed pairs (32 × 31), most of them available  
on all sessions. d. Left: Complete connectivity graph from Ephys (p < 0.05 
uncorrected for multiple comparisons). When correcting for multiple 
comparisons, none of the links remains significant. This lack of significant 

findings post-correction is likely due to the sparse nature of the observations in 
Ephys (see panel c.). Right: Connectivity graph in Ephys across Cosmos regions 
(p < 0.05 Bonferroni corrected). p-values across directed pairs of regions are 
aggregated at the Cosmos level with Fisher’s method (see Methods, identical to 
main Fig. 2g left). e. Left: Complete connectivity graph from Widefield (p < 0.05 
Bonferroni corrected). The graph is densely populated and consequently 
difficult to interpret. Middle: A partial connectivity graph from Widefield, 
highlighting significant directed pairs projecting to the Primary Visual Cortex 
(VISp), as shown in Fig. 2g (right). We uncover feedback connections from 
higher-order areas such as the Motor Cortex (MOs), Ventral Retrosplenial 
Cortex (RSPv), Prelimbic Cortex (PL), and Anterior Cingulate Area Dorsal 
(ACAd) — these regions are marked with grey circles for emphasis — to the early 
sensory area, the Primary Visual Cortex (VISp). Left: Percentage of sessions 
exhibiting significant reciprocal connections (A->VISp->A) for sessions in 
which the Bayes optimal prior could be significantly decoded from both VISp 
and the previously identified higher-order regions (MOs, RSPv, PL and ACAd). 
The size of the arrow is proportional to the percentage. Our findings indicate 
the existence of reciprocal connections in these sessions: 33.3% between MOs 
and VISp, 16.7% between ACAd and VISp, 20% between PL and VISp, and 18.75% 
between RSPv and VISp.
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Extended Data Fig. 11 | a. The average slope of the neurometric curves is 
significantly different from 0 during the post stimulus period (2-tailed signed- 
rank Wilcoxon test, t = 9833, P = 1.2 × 10–5, N = 242 regions) but not during the ITI 
(t = 13547, P = 0.29, N = 242 regions). Also, neurometric slopes are significantly 
greater during the post-stimulus period than during the ITI (2-tailed signed-rank 
paired Wilcoxon test t = 12306, P = 0.028, N = 242 regions) (***p < 0.001, *p < 0.05, 

n.s. not significant). b. Swanson map of corrected neurometric post-stimulus 
shifts for Ephys data. c. The corrected post-stimulus shifts and corrected ITI 
shifts are significantly correlated in both Ephys (Spearman correlation R = 0.19, 
P = 0.0026, N = 242 regions) and WFI (Spearman correlation R = 0.57, P = 0.0007, 
N = 32 regions).
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Extended Data Fig. 12 | a. The neural decoding R2 for the stimulus side and the 
Bayes-optimal prior are significantly correlated across brain regions (Spearman 
correlation R = 0.29, P = 2.4 × 10–5). b. Swanson maps and dorsal cortical views of 

brain regions encoding the Bayes-optimal prior (blue, upper) and the stimulus 
side (green, lower) significantly based on Ephys data.
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Extended Data Fig. 13 | a. Bayesian model comparison for 11 behavioural 
models, considering the possibility of one step repetition bias (i.e. a tendency 
to repeat the previous choice), multi-step repetition bias (i.e. a tendency to 
follow an exponentially decaying average of past choices), and, for the stimulus 
kernel model, the presence of positivity and confirmation biases as asymmetric 
learning rates (accounting for the possibility to learn differently from positive 
versus negative rewards and from information that confirms versus contradicts 
existing beliefs40. See Methods for more details on the Bayes-optimal, action 
kernel and stimulus kernel models and Supplementary information for the 
formal equations of the repetition bias and asymmetrical learning rates. Model 
frequency (the posterior probability of the model given the subjects’ data, left 
panel) and exceedance probability (the probability that a model is more likely 
than any other models, right panel) are shown. The action kernel model offered 
the best account of the data even when including models with repetition, 
positivity and confirmation biases (pexceedance > 0.999). b. Bayesian model 
comparison for two behavioural models, the action kernel and a variant that 
operates only during 0% contrast trials (by calculating an exponentially decaying 
average of chosen actions at 0% contrast trials). Our comparisons indicate that 
the action kernel, updating across all contrasts, more effectively explains 
behaviour (exceedance probability > 0.999), suggesting that mice do not limit 
their subjective prior estimations to 0% contrast trials alone. c. Performance 
on zero contrast trials, distinguishing whether the preceding action was 
correct or incorrect and considering that the previous contrast was non zero. 
This analysis mirrors the main analysis in Fig. 4c but is specifically restricted to 
previous trials with non-zero contrast. When considering behaviour within 
blocks, an agent using an action kernel prior should show a higher percentage 

of correct responses following a correct, block-consistent action compared to 
an incorrect one. This is because, on incorrect trials, the prior is updated with 
an action corresponding to the incorrect stimulus side. Even when limited to 
previous trials with non-zero contrast, there is a notable difference in the 
probability of making a correct decision following an incorrect vs. a correct 
choice (Wilcoxon paired test, t = 11734, P = 1.1 × 10–15). This finding is confirmation 
that mice update their priors using information from all contrast levels, not 
solely zero contrast trials. d. Psychometric shift during both the first 90 trials 
(unbiased) and the other trials (biased) for animals and the action kernel. This 
shift is determined by analysing two psychometric curves, one conditioned on 
the action kernel prior being above 0.5 (favoring the right side) and the other 
conditioned on the action kernel prior being less than 0.5 (favoring the left 
side). We fit psychometric functions to these curves, and then calculate the 
psychometric shift as the vertical displacement of these curves at zero contrast. 
As predicted by the action kernel model, the analysis reveals a significant 
positive psychometric shift during the unbiased phase (first 90 trials). 
Furthermore, the shift in the behavioural data is less pronounced during the 
unbiased period compared to the biased period because the stimuli are more 
balanced in the unbiased phase, keeping the subjective prior closer to 0.5. 
Specifically, when distinguishing the trials that favour the right side (action 
kernel prior above 0.5) from those favoring the left side (action kernel prior 
below 0.5), the underlying action kernel priors remained close to 0.5 during the 
unbiased period. However, the presence of significant and comparable shifts 
between the animals and the action kernel model during the unbiased period 
indicates that mice exhibit a behavioural shift during the unbiased trials.
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Extended Data Fig. 14 | Same analysis as in Fig. 4c,e, but for three specific 
brain regions using Ephys (SCm, CP, VPM) or WFI data (right column, MOp, 
VISp, MOs) (*p < 0.05, **p < 0.01, ***p < 0.001). For the influence of past actions 
on the decoded Bayes-optimal prior, significance is assessed in the same way as 

in the main Fig. 4e (see Methods). For the asymmetry effect, the effect being 
observed on a brain-wide level, we performed a 1-tailed signed-rank Wilcoxon 
paired test for assessing significance on the region level.
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Extended Data Fig. 15 | See next page for caption.
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Extended Data Fig. 15 | a. Behavioural inverse decay constants, obtained by 
fitting the stimulus kernel model to the behaviour, as a function of the neural 
inverse decay constants, obtained by estimating the temporal dependency of 
the neural signals with respect to previous stimuli (see Methods). The neural 
and behavioural inverse decay constants are not significantly correlated for 
either Ephys (Pearson correlation R = 0.03, P = 0.71) or WFI (Pearson correlation 
R = −0.04, p = 0.82). b. Hierarchical modelling of the neural and behavioural 
inverse decay constants (also referred to here as learning rates). The parameter 
μj, defined for each mouse j, is the slope (the multiplicative coefficient) of the 
linear regression predicting the neural learning rate from the behavioural 
learning rate (on the sessions of mouse j). These parameters μj are sampled 
from a common population level prior with mean μ0.The parameter μ0, defined 
at the population level, characterizes an overall relationship between neural 
and behavioural learning rates. We found that the relationship between neural 
and behavioural learning rates is significantly positive for the action kernel model 
(top row), both in electrophysiology (left column) and in widefield imaging 
(right column), which is not the case for the stimulus Kernel model (bottom 
row). Furthermore, when testing the difference in means of the population 
level parameter μ0 between action and stimulus kernels, we found that it was 
significantly greater for the action kernel, both in Ephys and in WFI. Significance 
was assessed by estimating the means of the μ0 distributions for the action  
and stimulus kernels with the BEST Bayesian test63. In both Ephys and WFI,  
we found that p μ μ( > ) = 1actKernel stimKernel

0 0  with μ actKernel
0  and μ stimKernel

0  the 
means of the μ0 distributions for the action and stimulus kernels, respectively. 

Regarding the effect sizes, with the same BEST procedure, we find an effect size 
of 2.53 in Ephys and 1.96 in widefield (effect sizes greater than 1.3 are commonly 
considered to be very large64). See Supplementary Information for the full 
specification of the hierarchical generative model. c. Correlation, at a region 
level, between neural inverse decay constants (estimating temporal dependency 
of the neural signals on previous actions), and behavioural inverse decay 
constants (from fitting the action kernel to behaviour). A decay constant is 
estimated for each pixel (as in Fig. 4f, refer to Methods), but now, averages are 
taken across pixels for each session and specific region. In the analysis Fig. 4f, 
session-level learning rates were obtained by averaging across all pixels, 
regardless of region identity. Left: Regions with a significant correlation 
between behavioural and neural inverse decay constants. As expected, only 
positive correlations emerge as significant. Right: Correlation between 
behavioural and neural inverse decay constants is correlated with the prior 
decoding corrected R2 from the same regions. These two quantities were found 
to be also correlated (R = 0.46, P = 0.008). In other words, regions in which the 
prior decoding R2 is large are also regions which best reflect the behavioural 
decay constant, i.e., these are the regions that are best correlated with the 
animals’ cognitive strategies as assessed by the lengths of the action kernels. 
We did not repeat this analysis with the electrophysiology recordings because 
we only have a very limited number of significant sessions per region (1-2 for 
most regions, as opposed to around 20 sessions per region for the WFI data - see 
Extended Data Fig. 7a,b).
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Sample size No statistical methods were used to predetermine sample sizes. For electrophysiology, data were collected from 699 Neuropixels probe 
insertions across 459 sessions in 139 mice, with 414 sessions meeting inclusion criteria. For widefield calcium imaging, 51 sessions from 6 
mice were included. Regions were analyzed if at least 5 well-isolated units (Ephys) or pixels (WFI) passed quality control. These sample sizes 
ensured sufficient statistical power for decoding analyses and robust brain-wide coverage, as supported by estimates indicating ~10 
recordings per region are sufficient (see fig S5e).

Data exclusions Pre-established exclusion criteria were applied to ensure data quality. Trials were excluded if mice did not respond, or if reaction times were 
<80 ms or >2 s. Sessions with <250 included trials were excluded (41 Ephys, 1 WFI). For electrophysiology, only neurons passing strict quality 
control (amplitude >50 μV, noise cut-off <20, and no refractory period violations) were included. Regions required ≥5 QC-passed units (Ephys) 
or pixels (WFI) to be analyzed. These criteria were defined prior to analysis and are detailed in the Methods.

Replication The main behavioral and neural analyses were replicated across two independent recording modalities—Neuropixels electrophysiology (699 
insertions across 459 sessions in 139 mice) and widefield calcium imaging (51 sessions in 6 mice). Behavioral effects and neural decoding of 
the prior were consistent across both modalities.

Randomization Randomization into experimental groups was not applicable, as all mice were trained on the same task and underwent the same recording 
procedures. To assess significance in decoding neural representations, we employed a pseudo-session resampling procedure to construct null 
distributions, as detailed in the Methods. 

Blinding Blinding was not performed because all mice were trained using identical protocols and recorded using standardized procedures. There were 
no experimental groups or treatment conditions to blind against. 
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