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Development from a zygote to an adult organism involves complex interactions among thousands of genes.

These genes exhibit highly dynamic expression across space and time. Here we report a striking simplicity

amidst this complexity: Despite individual gene expression variability, the eigengene—the principal compo-

nent of gene expression—exhibits an invariant global spatial pattern throughout the embryonic and post-natal

stages of the mouse brain. Furthermore, the mouse pattern is observed also in the larval zebrafish, revealing

that eigengene expression is conserved over 400 million years of evolution. We show that the eigengene

pattern can be explained by a simple lineage model in which daughter cells’ gene expression is similar to

that of their parent, but cannot be explained by one in which gene expression arises through local cellular

signaling. The constrained lineage gives rise naturally to a global eigengene expression hierarchy that could

aid in the formation of a spatial hierarchy of long-range signal gradients. We propose that lineage thus in-

duces an address-like organization, which could have been co-opted by evolution for developmental processes

that require positional information over a wide range of spatial scales, such as tissue patterning and axon

navigation.

The development of an organism from an initial zygote un-
folds through a sequence of developmental events, regulated
by the complex interactions among thousands of genes. This
highly stereotyped process ultimately gives rise to the di-
verse array of cell types and tissues that make up the ma-
ture organism. One of the most striking features of this
process is the highly dynamic and tightly regulated nature
of gene expression: Individual genes are turned on and off
with exquisite spatial and temporal specificity, with each cell
expressing a specific combination of genes at each develop-
mental stage (Davidson & Peter, 2015). It is these complex
stereotyped patterns that sketch out the detailed body plan,
and provide individual cells with the positional information
they need to choose their proper fates, migrate, and navigate
their many processes such as neuronal axons (Stoeckli, 2018;
Wolpert, 1969). Deciphering the principles that govern these
expression patterns is key to understanding the nature of or-
ganismal organization, and the developmental process that
brings it into being (Davidson & Peter, 2015; Waddington,
1956).

Establishing the spatio-temporal patterning of tissue
represents a challenging computational process. It was in-
deed Alan Turing, one of the fathers of computing, who for-
mulated the first mathematical models for how the simple in-
teractions among a few key chemicals, for which he coined the
term morphogens, can generate complex spatial expression
patterns in developing tissue (Turing, 1952). This and simi-

lar models show how simple interactions among few genes can
generate complex spatio-temporal patterns (Gierer & Mein-
hardt, 1972; Green & Sharpe, 2015; Jaeger, 2011; Mandel-
brot, 1983). However, the converse is also true: Seemingly
simple patterns, such as long-range concentration gradients,
can be surprisingly complex to generate. Lewis Wolpert and
Francis Crick were among the first to recognize that although
diffusion is an effective method for establishing gradients over
relatively short distances (50–100 cells), physical constraints
imposed by diffusion prevent such simple mechanisms from
scaling to larger distances (Crick, 1970; Francis & Palsson,
1997; Goodhill, 2016; Wolpert, 1969) and instead require in-
creasingly complex regulatory logic and machinery such as
active transport, relays, and extracellular binders (Briscoe &
Small, 2015; Stapornwongkul & Vincent, 2021).

How developmental processes orchestrate and convey
positional information across long spatial scales through
cellular-level gene regulation remains unclear. This large-
scale positional information plays a crucial role in guiding
processes that depend on global cues, even in later develop-
mental stages, such as cell migration and axon navigation.
The challenge is further complicated by the genome’s lim-
ited capacity to encode extensive regulatory logic (Kerstjens
et al., 2022; Zador, 2019). This constraint renders ineffec-
tive certain strategies that, while potentially viable on a lo-
cal scale, would require too much time or regulatory logic
to scale globally. These include strategies that require ax-
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ons to exhaustively search large regions of tissue for their
synaptic partners, or that require large numbers of cells to
be tagged with unique yet specific chemical labels (Goodhill
& Xu, 2005; Sperry, 1963; von der Malsburg, 1987).

Here, we use brain-wide maps of gene expression, along
with novel analyses, to uncover a surprisingly ubiquitous sys-
tem of global gene expression patterns. We report that pat-
terns of gene expression are remarkably conserved across on-
togeny and phylogeny, even in the face of highly variable
changes in the expression of individual genes. Using princi-
pal component analysis (PCA), we identify a stable feature
of gene co-expression patterns, the principal eigengene ex-

pression. Strikingly, the spatial expression of the principal
eigengene remains largely unchanged during the brain devel-
opment of mice, and is even conserved across zebrafish. We
demonstrate that such stable gene expression can be induced
by intrinsic constraints of the cell division process, and so
does not necessarily require complex gene regulatory machin-
ery. Our lineal model predicts global eigengene expression
patterns that persist across the tissue throughout develop-
ment, forming a global eigengene hierarchy. In contrast, a
purely neighborhood model, relying solely on local cell-cell
interactions, fails to produce such spatially scalable and tem-
porally persistent patterns. These findings provide a frame-
work for understanding the local coordinate spaces built on
local molecular gradients, suggesting that they may be part of
an overarching global hierarchy of eigengene expression gra-
dients that naturally arise from the cell division process. This
global eigengene hierarchy offers a simple framework for un-
derstanding the coordination of seemingly independent local
gradients across time and space, and may play a crucial role
in guiding large-scale developmental processes by providing
global positional information.

Results

We present five results. First, spatial eigengene expression
forms a static global pattern throughout development, de-
spite the fact that individual gene expression is highly vari-
able (Thompson et al., 2014). Second, the eigengene mea-
sured in the mouse brain has a surprisingly similar spatial
expression pattern in the larval zebrafish brain, despite a sep-
aration of more than 400 million years of evolution between
the two species. Third, any random subset of about 50 genes
shows largely the same spatial pattern in both mouse and
zebrafish. Fourth, a simple lineal model, in which gene ex-
pression of daughter cells is similar to that of their parent,
can induce the observed eigengene pattern. This lineal model
explains the pattern’s global and persistent nature, despite
the highly dynamic nature of individual genes. Furthermore,
the model predicts that eigengenes organize the tissue into
a hierarchy of contiguous regions. Finally, the predicted hi-
erarchical regions indeed exist, and are contiguous, in both
mouse and zebrafish data.

Individual genes fluctuate across development

The gene expression data we analyzed are drawn from
previously published studies, including the Allen Insti-
tute (Thompson et al., 2014) and Mapzebrain (Shainer et
al., 2023). They consist of voxels of gene expression mea-
sured at 4 embryonic stages (E11.5, E13.5, E15.5, and
E18.5) and 4 postnatal stages (P4, P14, P28, and P56) in
mouse (Thompson et al., 2014), and one larval stage (6dpf)
in zebrafish (Shainer et al., 2023). Each mouse voxel contains
the expression values of 1256 genes, and each zebrafish voxel
of 290 genes. Of these genes, 45 homologues are present in
both data sets. In the case of the mouse, the voxel sizes range
from 80 to 200 microns according to the embryonic stage at
which the data was measured (Thompson et al., 2014). For
the zebrafish the voxels are much smaller, approaching single-
cell diameter (Shainer et al., 2023).

Spatial gene expression is highly dynamic over develop-
mental time. Fig. 1a shows the spatial expression of 5 ran-
domly selected genes across the measured stages of mouse
brain development, and one stage of the larval zebrafish
brain. These representative examples indicate that spatial
gene expression often undergoes considerable changes over
the course of development (Fig. 1b). Indeed, when all in-
dividual voxels of the mouse brain atlas are joined in one
T-SNE embedding space, the voxels cluster with other vox-
els measured at the same developmental stage, rather than
with voxels of the same tissue at different stages (Fig. 1c).
Moreover, not only does spatial pattern of expression change
over the course of development, but the correlational struc-
ture among genes also changes (Fig. 2d). These analyses
reinforce the view that at the level of single genes and cor-
relations, gene expression is highly dynamic across develop-
ment.

Eigengene expression patterns are stable across development

and evolution

We asked whether some characteristics of the pattern of gene
expression, not evident at the level of single genes, might
show greater stability across development. The data from a
particular developmental stage t can be summarized as the
gene expression matrixXt, an n×mmatrix with n voxels and
m genes (Fig 2a). In this matrix, each row represents a voxel,
which corresponds to a specific location in the tissue, and
each column represents a gene, with the entries indicating the
expression levels of that gene in the respective voxels. Note
that although the matrix Xt contains all of the information
about gene expression at a given developmental stage, it does
not retain any information about the spatial organization of
voxels.

The basis of our analysis is the eigengene, which is de-
fined as the principal component of the gene expression ma-
trix Xt (Fig 2b). In principal components analysis (PCA),
the gene expression matrix X is decomposed into

X = UΣV T , (1)

where V is an m ×m matrix of loadings in which each row
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Figure 1: Expression of single genes is spatially heterogeneous and fluctuates across development. (a) Voxels of
gene expression were measured through in situ hybridization at 4 embryonic stages and 4 postnatal stages in mouse (Thompson
et al., 2014), and one larval stage (6pdf) in zebrafish (Shainer et al., 2023). Each mouse voxel contains the expression of
1256 genes, and each zebrafish voxel 290 genes. Of these genes, 45 homologues are present in both data sets. The spatial
expression of five representative (randomly selected) genes varies through development. (b) The averaged and normalized
temporal expression of the same five genes throughout mouse development. (c) A T-SNE embedding of all voxels in the
mouse data. Voxels are colored by their developmental time point. (d) The correlation matrices among all genes in the
mouse expression data. Blue and red indicate negative and positive correlations, respectively. The diagonal of 1s has been
removed. The genes are sorted using hierarchical clustering to reveal block structure at E11.5. Block structure disappears
when genes are sorted the same way at later developmental stages, indicating that the correlational structure present at
E11.5 is no longer present.

corresponds to a gene and each column constitutes a principal
component; Σ is an n × m diagonal matrix containing how
much variance is explained by each component; and U is an
n×n matrix whose entries contain the coefficients that, when
scaled by Σ, reconstruct X in its new basis V . We focus on
the first principal component, PC1, at each stage,

Xtvt = σtut (2)

where t indicates the developmental stage (E11.5, E13.5, . . . ),
vt is the first column of Vt, also called PC1 and which we
will refer to as the principal eigengene (Fig. 2b), and σtut

is the first column in ui scaled by the first entry along the
diagonal of Σt. Consistent with the fact that Xt does not
contain information about the spatial organization of voxels,
the principal eigengene is also independent of the physical lo-
cations of the voxels: The loading profiles are identical if the
voxels’ positions are shuffled before computing the principal
component.

The principal eigengene can be thought of as a virtual
genetic probe which detects the degree to which that pattern

of genes is expressed in corresponding relative ratios, e.g.,
gene A is expressed twice as strongly as gene B and inversely
correlated with gene C, in any given cell. The probe reports
strong blue when there is an exact match between the prin-
cipal eigengene and the genes expressed in a cell, and lighter
blue for less perfect matches. If there is no match the probe
is white. In cells in which the match is the exact opposite,
the probe is red.

Fig 2b (left) shows the spatial loadings of the nine princi-
pal eigengenes—eight drawn from across mouse developmen-
tal stages and one for zebrafish–over the course of develop-
ment. Casual inspection reveals strong spatial structure in
the loadings: the brain at each stage is divided into about
two to four contiguous areas, in marked contrast to the ex-
pression of individual genes, which tends to be concentrated
in multiple hot-spots. Note that, because the principal eigen-
gene is computed in expression space and not physical space,
there is no a priori reason that individual voxels should show
any spatial organization at all. The dominant feature of the
spatial expression of the principal eigengene is the partition-
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Figure 2: Spatio-temporal expression of the principal eigengene is stable across development and evolution. (a)
Construction of principal eigengene for E11.5. The spatial expression pattern for all measured genes (upper left) is converted
into the gene expression matrix Xt (genes × voxels). Following singular value decomposition of this matrix, the principal
eigengene is extracted, and the spatial expression pattern is color-coded, with voxels in which the loading is positive shown in
blue and those in which it is negative shown in red (lower left). (b) The principal eigengene computed at each developmental
stage has the same expression pattern when applied at later stages. The eigengene computed at a given stage partitions the
brain into two contiguous global regions, roughly along the dorso-ventral axis (left column). The E11.5 eigengene induces
almost the same partitioning (r2 > 0.7) when applied to later stages or even onto the zebrafish (right column). This result
holds for any combination of source eigengene and target stage (see Fig. 3a). (c) The eigengene measured at E11.5 does not
reveal any structured expression pattern on randomized data (left), nor does an eigengene with randomly drawn loadings
(right). In both cases, there is no correlation with the original pattern (panel c, top row), r2 = 0 .
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Figure 3: The aggregate spatio-temporal expression of small random sets of genes correlates with the eigengene

expression pattern a The squared correlations of eigengene loadings across different stages (lower triangle) and their spatial
expression (upper triangle). The matrix diagonal shows the correlation of each eigengene with itself, which are trivially 1.0
for both in terms of their loadings and their spatial expression, and the top row shows the projection of all stages onto the
E11.5 eigengene (also shown in Fig. 2b). “Random” rows and columns represent randomly drawn eigengene loadings and
expression voxels, respectively. The large values of the upper triangle indicate that spatial expression is stable whereas the
low values in the lower diagonal indicate that the eigengene itself changes across development. b The rank of each gene
in the eigengene loading vector is not consistent across developmental stages. Each line represents a gene, with bold lines
indicating the top ten ranked genes at E11.5. The histogram of average ranks per gene matches the mean rank distribution
for random ranks (shown in red). c Random subsets of genes recompute the eigengene at E11.5, demonstrating robustness.
The r2 similarity of P56 and 6dpf zebrafish voxels projected onto this recomputed eigengene (black line) is compared with
an eigengene with random loadings (red line). The subsets sampled at each size are non-overlapping, ensuring no gene is
included in multiple sets of the same size.

ing of the embryo globally, roughly along its dorso-ventral
axis.

We next asked about the projection of the principal
eigengene computed at one developmental state t to another
developmental state t′. Just as the expression of the princi-
pal eigengene in each voxel can be found through the prod-
uct Xtvt, we define the expression of a principal eigengene vt
computed at one developmental stage and assessed at another
stage t′ through the product

qt→t′ = Xt′vt, (3)

where qt→t′ is the expression of the eigengene at stage t onto
the voxels of stage t′.

Strikingly, the expression pattern of the E11.5 eigengene
applied to later developmental stages yields almost exactly
the same dorso-ventral partitioning (Fig 2b, right). More-
over, the E11.5 principal eigengene is is not special: The
projection between any pair of source and target stage yields
similar spatial patterns (Fig. 3a), quantified as the squared
correlation

r2t→t′ =

(

q̂Tt→t′ q̂t→t′
)2

||q̂t→t′ ||2||q̂t→t′ ||2
, (4)

where q̂t→t′ = qt→t′ − q̄t→t′ is the mean-subtracted version of
qt→t′ . To test whether this dorso-ventral partitioning some-
how arises as the inevitable consequence of this projection
operation, we projected onto random gene expression vec-
tors instead of the principal eigengene as a control. However,
these global patterns are not present when the analysis is
applied to randomized expression data, nor when the voxels
are projected onto a random axis rather than the eigengene
(Fig 2d,3a). These results reveal that a signature of that the
brain’s gene expression covariance is stable throughout the
course of development.

Even more strikingly, the eigengene measured at mouse
E11.5 not only preserves its spatial expression pattern across
mouse development, but also across more than four hundred
millions years of evolution since the mouse and zebrafish
shared a common ancestor (Fig 2c). The projection from
mouse to zebrafish was performed by selecting all homologous
genes in zebrafish data from the genes available in the mouse
data, without recomputing any loadings. Using this selection,
the eigengene measured in E11.5 also elicits a dorso-ventral
partition in the larval zebrafish brain. This result suggests
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Figure 4: Simple lineal constraints can explain global eigengene patterns, whereas cell-cell interactions alone

do not. (a) The lineal model is captured in a lineal model of gene expression. The gene expression ci of cell i is modeled as
a normally distributed deviation δi ∼ N (µ=0, σ=1) from its mitotic parent (See Eq. 5). The lineage tree is laid out in the
spatial x, y-plane according to an H-tree fractal. (b) The leaves of a simulated lineage tree of 14 generations (214 = 16384
cells), with each cell expressing 1000 genes. The leaf cells of this tree are collected, and the eigengene is measured across all
leaves. The sign of the eigengene expression (red, negative; blue, positive) partitions the leaves into two spatially contiguous
groups that correspond to the respective progenies of c0 and c1. The split in mitotic lineage thus implies a global partition
both in gene expression space, as measured by the eigengene, and in physical space. (c) Multiple stages of development
were generated by measuring the leaves of the simulated lineage after 2, 4, 6, and 14 rounds of division, analogous to the
stages of mouse development. Then, the analysis of Fig. 2c was repeated for the simulated expression data. As in the
experimental data, the principal eigengene measured at an early stage patterns the simulated tissue at the late stage, even
after 14 generations of divisions. (d) The neighborhood model is captured in a local cell-cell interaction model of gene
expression. An initially random grid is generated with 64 × 64 = 4096 cells that each express 1000 genes. The grid is then
spatially blurred to induce spatial correlations. The principal eigengene across these simulated expression data only globally
pattern the tissue when the range of the blur is large enough to break the assumption of locality, here with a width and
height of 32 cells, i.e., half the size of the space. (e) However, when the range of the blur does not scale with the size of the
tissue—this panel shows a range of 8—the eigengene expression does not form a global pattern, but rather a collection of
blotches comparable to the random eigengene control in Fig. 2c). Furthermore, the local interaction model does not preserve
the eigengene from early development (top row) to late development (bottom row): Comparison of the left and right column
of the bottom row shows that when the early eigengene is projected to late expression data (4 → 12), the spatial (12 → 12)
is not preserved (r2 ≈ 0.05).

that the specific spatial covariance pattern among genes is
preserved across much of the vertebrate lineage and perhaps
beyond.

The partitioning induced by the principal eigengene is
similar to that caused by dorso-ventral patterning events,
driven by genes such as Shh and BMP, early in develop-
ment. Because our data begin at E11.5, considerably after
these events, they cannot address the initial establishment
of these patterns. However, the data suggest that whatever

mechanisms establish the dorso-ventral gradient initially, the
eigengene expression pattern is maintained through inheri-
tance in absence of the original inducers, indicating a robust
and conserved framework for spatial organization throughout
development.

The preservation of the spatial covariance pattern could
be explained if the eigengene’s loading vector itself remained
constant throughout development. However, as shown above
(Fig. 2a), the expression of typical single genes tend to fluc-
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Figure 5: The developing brain is recursively partitioned into a hierarchy of eigengenes. (a) Eigengene expression
splits the mouse and zebrafish brains in two regions, red and blue. We then measure the two eigengenes across only the voxels
in one region, i.e., either only the red or only the blue voxels, and measure the eigengene expression within the regions. This
yields a red-blue split within each region. We apply this procedure recursively to produce a hierarchy of nested regions. The
figure shows only the first few generations, but the hierarchy continues until each region consists of only a single voxel. (b)
The contiguity of each region is quantified. We define contiguity as the number of voxels in the largest connected component
divided by the total number of voxels. The contiguity is 1.0 if all voxels are connected. If none of the voxels are connected,
then the contiguity asymptotes to 0 as the number of voxels goes to infinity. Each node in the tree corresponds to a region.
The center node is the root of the hierarchy, which trivially has a contiguity of 1 because it contains all the voxels. The
leaves of the hierarchy (not shown) also have a contiguity of 1 because they all contain a single voxel. Each concentric circle
corresponds to a tier in the hierarchy. The color of the tier is the average contiguity of the regions within the tier. The
lineal model generates a perfect contiguity. The blurred control has poor contiguity. Zebrafish and Mouse brains have high
contiguity in select branches, and a higher average contiguity than the blurred control case.

tuate strongly over the course of development. Indeed, we
observe that the loading vectors measured at different time
points are largely uncorrelated (Fig. 3a,b). Despite their
lack of correlation, their spatial expressions are very similar
(r2 > 0.7). This observation presents an apparent paradox:
How can the axis of covariance change, while its spatial pro-
jection remains constant?

A mathematical fact resolves this paradox: The ex-
pected correlation of two random vectors becomes very low
for high dimensions. The expected r2 for two random vectors

of 1000 genes is on the order of 1/10002 = 10−6. Thus, the
observed correlations, despite being small in single-variate
terms, are not negligible in multi-variate terms. However,
despite there being no mathematical contradiction, the cor-
relations do indicate that loadings of the eigengenes rotate
much more over time than their corresponding spatial ex-
pression patterns.

We next asked whether a small set of genes, such as
those known to be involved in dorso-ventral patterning, are
responsible for the emergence of this global spatial pattern.
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The natural metric of importance is the rank of a gene’s load-
ing coefficient in the eigengene. However, we find that these
ranks are essentially random over the measured eigengenes
(Fig. 3b). Moreover, the conservation of the mouse projec-
tion to zebrafish using only a small subset of homologous
genes could be explained if the spatial patterns are not con-
tained in the covariance of just a few specific genes, but are
instead spread across many subsets of genes.

To test this possibility, we measured the spatial patterns
revealed by random subsets of genes of various sizes. We find
that random subsets generate the same eigengene expression
pattern, regardless of the selected genes, even when the sub-
sets have no genes in common (Fig. 3c). Seemingly, the only
requirement is that the subset be sufficiently large. This re-
sult indicates the spatial pattern information is broadly dis-
tributed across genes.

The lineal model explains eigengene expression patterns

Sydney Brenner contrasted two models by which cells as-
sume their identity during development, which he termed
the American Plan and the European Plan. The European
Plan, named after the notion that Europeans inherit their
identity from their lineage, emphasizes the role of cell lin-
eage in determining cell identity and thus gene expression
patterns. In this model, gene expression patterns of daughter
cells are similar to that of their parents and thus largely deter-
mined by each cell’s developmental history. According to the
European Plan, spatial correlations in gene expression arise
mainly from inheritance through cell division, and the fact
that most cells don’t migrate very far, rather than from lo-
cal cell-cell interactions (Kerstjens et al., 2022). By contrast,
the American Plan, named after the idea that Americans de-
rive their identity from the neighborhood in which they live,
posits that local interactions between cells, mediated by sig-
naling molecules and gradients, determine gene expression
patterns. In this model, a cell’s fate and gene expression
are determined by its local environment and the signals it
receives from neighboring cells. The American Plan empha-
sizes the importance of cell-cell communication and the role
of morphogens in establishing spatial patterns of gene ex-
pression. In what follows we will refer the European plan as
the lineal model and the American plan as the neighborhood

model.
We have shown so far that the expression of the prin-

cipal eigengene partitions the brain along the dorso-ventral
axis throughout development and into adulthood, and that
this pattern of gene expression is preserved over more than
four hundred million years of evolution. How does this perva-
sive spatial pattern arise? One possibility is that the spatial
correlations arise from the neighborhood model, according to
which communication among nearby cells drives them into a
pattern of similar gene expression. Alternatively, the per-
sistence of the principal eigengene across development could
arise from the lineal model, as a direct consequence of con-
straints on mitotic division. To compare these two possi-
bilities, we formulated simplified models of the lineal and

neighborhood models.
In the lineal model (Fig 4a–c), a cell’s expression is the

expression of its parent plus a differential expression vector
that is drawn from a normal distribution. For a parent cell ci
with daughter cells ci0 and ci1, the expression of the daugh-
ters are

ci0 = ci + δi0

ci1 = ci + δi1

δi ∼ N (µ=0, σ=1),

(5)

where δi is a vector of differential expression that is normally
distributed with zero mean µ and unit standard deviation σ.
Note that the δi’s are not random variables. Rather, they
model the complex yet deterministic changes in gene expres-
sion between parent cells and their daughters. These changes
are assumed to be distributed normally, but not drawn ran-
domly. To model the spatial layout of cells we use an H-tree
fractal, in which spatially proximal cells tend to be closely
related in lineage (Espigulé, 2013; Mandelbrot, 1983).

In the neighborhood model (Fig 4d–e), the expression of
each cell is drawn from a normal distribution with µ = 0 and
σ = 1, without regard for lineage. Then, the space of voxels is
‘blurred’ by performing a moving average window over spa-
tial neighbors, causing neighboring voxels to be correlated.
This blurring model intends to capture spatial correlations
induced by local interactions among cells.

In simulations of both models, we find that the prin-
cipal eigengene partitions the developing brain into regions
(Fig. 4b,d). However, there are some important differences
between the two models. First, in the lineal model global
partitioning arises at every simulated developmental stage
(Fig. 4c). In the neighborhood model, by contrast, the range
of interaction is determined by the diffusion-mediated ”blur-
ring” (Fig. 4d,e), which causes nearby cells to be similar.
So, to preserve a global pattern, the range of interaction
must scale as the tissue grows. For large tissues, the in-
teraction range may be larger than is physiologically plau-
sible through simple diffused morphogens (Goodhill, 2016).
Thus, the neighborhood model must invoke additional mech-
anisms for different sized brains (over development and across
species) to explain the global partitioning, whereas the global
partitioning is a natural prediction of the lineal model.

Second, the neighborhood model does not trivially pro-
duce a consistent pattern over time, especially as the tissue
grows in size. This is because the characteristic frequency
of the spatial pattern is a function of the interaction radius,
and so for the frequency to decrease, the radius must increase
as the tissue grows (Fig. 4d). By contrast, by virtue of the
hierarchical nature of growth across generations in the lineal
model, the model is intrinsically scale-free, and explains the
temporal persistence and scaling (Fig. 4c).

Beyond scalability, the lineal model predicts that the
hierarchical nature of the growth process is installed in the
tissue as a hierarchy of nested spatial regions, each with a
gene expression signature measurable as the eigengene that
dominates the variance in that region. To assess whether the
experimental expression data shows evidence of a hierarchi-
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cal growth process, we performed an iterative hierarchical de-
composition, similar to a hierarchical clustering. The method
used here is adapted from (Kerstjens et al., 2022). First, the
eigengene across all voxels is calculated, as in Fig. 2b. Then,
the voxels are divided along the eigengene expression into two
halves—namely those with positive and negative coefficients;
and the main axis of variance is calculated within each of
these halves. We repeat this process recursively until the tis-
sue has been divided down into single voxels. This recursive
process results in a tree of voxel subsets: The root of the
hierarchy contains all voxels, and each leaf exactly one voxel.

We find that this hierarchy indeed exists in both
the mouse and zebrafish brain, as well as in our lineal
model (Fig. 5a). By contrast, a hierarchy only exists in the
interaction model if the interactions occur over long large dis-
tances. As such, the hierarchy produced by the interaction
model is not scale-free (Fig. 5a). We have quantified the hi-
erarchy by the contiguity of the sub-regions (Fig. 5b). Each
node of the hierarchy corresponds to a collection of voxels
that are positioned in 3D physical space. These voxels may
either be all contiguous, i.e., there exists a path between each
pair of voxels passing only through immediately adjacent vox-
els, or be a collection non-contiguous voxels. We measure the
contiguity as the size of the largest connected component di-
vided by the total number of voxels in the region. This yields
a number between 0 and 1, where 0 indicates there are many
individual voxels that are all disconnected, and 1 indicates
all voxels are contiguous (Fig. 5c). We find that our lineal
model and both the zebrafish and mouse data create hier-
archies of contiguous regions, whereas the interaction model
does not (Fig.5b).

Eigengene hierarchy enables efficient axon navigation

We have identified a global hierarchical feature of spatial
gene expression that is conserved across mouse and zebrafish
brains. Building on a previous mechanistic model of axonal
navigation (Kerstjens et al., 2022), here we provide an intu-
ition for how this hierarchy might be more than an epiphe-
nomenon of lineal development, by providing the foundation
for an efficient mechanism for wiring the brain.

The brain is wired as billions of neurons extend their
axonal arbors to make trillions of connections. Each branch
of the axonal arbor is guided by the growth cone at its tip,
which measures subtle molecular gradients across the width
of the cone. Molecular cues are not intrinsically attractive
or repulsive. Rather, the cone’s molecular pathways decide
which gradient to ascend or descend based on the cone’s intra-
cellular state and extracellular context. To travel over longer
distances, growth cones re-configure themselves—e.g., by ex-
changing its receptors—to tune into a different set of molecu-
lar gradients, or change the valence of the same cue. Axonal
journeys are split into multiple legs by such re-configurations,
which are triggered by extracellular cues and mediated by
molecular pathways (Dorskind & Kolodkin, 2021; Goodhill,
2016; Stoeckli, 2018).

How might the mechanism that guides the individual

time complexity

space complexity

O(n²)

O(n log n)

1GB 10TB 100TB

(a)

(b)

(c)

Figure 6: Three potential strategies for axon navigation with
different time and space complexities. Strategies (b) and (c)
navigate through a field of cells (circles) with various gene
expression signatures (colors) without any spatial structure
among them. Strategy (c) treats all axons independently,
and thus stores the routes to all targets in each axon. The
space complexity of this strategy is O(nmk), where n is the
number neurons, m the average number of targets per neu-
ron, and k ≪ n the average number of legs in a journey from
a source neuron to a target. The time complexity is also
O(nmk), as every axon branch finds its targets in k ≪ n
steps. In strategy (b) the routes are not stored, and so the
space complexity is reduced by a factor k to O(nm). Instead,
the axon finds its targets by systematically visiting every cell
in the tissue. However, each neuron needs to visit every other
neuron, which implies a time complexity of O(n2). Strate-
gies (b) and (c) is only tractable at small scales. Strategy
(a) assumes the tissue is organized as a lineage-induced hier-
archy, whose identification and mechanism of generation are
the main topics of this paper. Exploiting this organization
allows an axon to find its target in O(log n) steps by effec-
tively tracing the lineage, bringing the whole algorithm to a
time complexity of O(nm log n); and, it does this with no
additional data over what has been already described to dif-
ferentiate cells to their specific fates, so the space complexity
amortizes to O(1). The details of this navigation algorithm
are published in (Kerstjens et al., 2022).

axonal branches scale to wire a whole brain? The straight-
forward strategy is to treat every axon individually (Fig. 6c).
That is, each growth cone is guided to its target by its
own stereotyped sequence of configurations. However, this
strategy does not scale to large brains. For example, if a
growth cone needed to navigate an axonal branch through
ten regions, it would need to re-configure itself ten times.
Each of these re-configurations requires a molecular path-
way that is triggered by a cue in the growth cone’s environ-
ment, and effects a change in its internal state. A second
growth cone navigating to a different target might need to
re-configure itself with ten different configurations that fol-
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low slightly different rules and so employ slightly different
molecular pathways, even if it is a branch of the same axon.
As the number of growth cones and targets increases, the
number of re-configurations that must be encoded grows to
become prohibitively large. Even if receptors and ligands are
re-used, the genome cannot explicitly encode all growth cone
re-configurations: With k legs per growth cone, m targets per
axon, and n neurons, the total number of re-configurations
would be the product of these three numbers: nmk. For
a human brain with n ≈ 1010 neurons, m ≈ 104 targets
per neuron, and k ≈ 10 legs per journey, the number of
growth cone re-configurations is at least of the order ∼1015.
With only ∼109 base pairs, the human genome cannot ex-
plicitly encode triggers and pathways for all growth cone re-
configurations. So, we must consider more efficient strategies
to explain how large numbers of axons are informed of their
individual routes.

Computer science studies the efficiency of strategies, and
uses the notion of algorithmic complexity to speak about such
questions. The space complexity of an algorithm is the the
relation between the size of the problem at hand, and amount
of data the algorithm uses to solve it. For example, the
space complexity of wiring the brain by explicitly encoding all
growth cone re-configurations is O(nmk), as described above.
(The big-O denotes that nmk is not the exact amount of data
requires, but that the real amount scales asymptotically as
nmk.) Analogous to space complexity, there is also time com-
plexity, which captures how many steps are needed to execute
the strategy. The time complexity for the explicit encoding
strategy would also be O(nmk), because n neurons need to
take k navigation steps for each of m axonal branches. An
algorithm is tractable if both its time and space complexity
are sufficiently small. In our case, the global wiring algo-
rithm must fit in the genome and execute within the period
of gestation.

The essential issue with the explicit encoding strategy
(Fig. 6c) is not that each axon needs to store re-configurations
for the k legs of its journey. One could imagine a strategy
whereby the axon finds its target by systematically searching
the whole brain, completely eliminating the need to encode
the source-target trajectory (Fig. 6b). This unrealistic strat-
egy would take a prohibitive amount of time to execute, as
each of n neurons would need to visit every other neuron
to check whether it is one of its targets, implying a total
time complexity of O(n2). However, even this time-intensive
scheme would only reduce the space complexity with a factor
k, because each of n axons would still need to encode a list
of all its m targets, yielding a space complexity of O(nm).
That is, the amount of encoded information still scales with
the total number of connections nm, which is of the order
1014—still 5 orders of magnitude larger than the information
storage capacity of the genome.

It follows that growth cone re-configurations must derive
from a simpler strategy whose time and space complexities
are not proportional to the number of connections in the
brain. In previous work (Kerstjens et al., 2022) we proposed
an axonal navigation strategy whereby growth cones do not

reconfigure using their own locally stored regulatory infor-
mation, but rather co-opt the information already in place
through cell differentiation (Fig. 6a). The intuition behind
this strategy is that the blueprint for building a brain region
can also be used as a map to navigate it. If a growth cone
can partly recapitulate the regulatory logic of differentiation,
it could re-use it to generate growth cone configurations for
navigation. The question of which regions are traversed then
reduces to which differentiation programs the cone can suc-
cessfully recapitulate. Because neither the axon’s targets nor
their routes are explicitly encoded, this strategy incurs only
the fixed information cost (space complexity O(1)) needed
to convert differentiation logic to navigation logic. In other
words, the information required to navigate axon using this
scheme does not grow with the size of the brain, which could
explain how the same strategy can be used to wire a ∼1g
mouse brain and a ∼1kg human brain.

However, this efficient navigation scheme requires that
the brain’s tissue be organized as the lineage tree, along
which cells differentiate. In this paper we offer a mecha-
nism whereby the lineage tree embeds its hierarchical struc-
ture onto the physical and epigenetic relations among cells
(Figs. 4,5). In other work we have detailed how axons might
use such a space for efficient navigation (Kerstjens et al.,
2022).

The model presented here (Fig. 4) does not specify how
differentiation is regulated, nor how it informs the growth
cone. It merely demonstrates a mechanism whereby lineal
constraints provide an organized space that supports at least
one axon navigation strategy whose information cost does
not grow proportionally to the number of connections in the
brain1. Future models might capture the phenomenological
constraints we assert here in a more mechanistic model of the
gene regulation network of differentiation, and the molecular
pathways that allow its re-use in axon navigation.

Discussion

We have analyzed the spatial expression of genes across
mouse brain development and in larval zebrafish. We find
that, even though the expression of individual genes is highly
dynamic, a simple function of gene expression—the principal
eigengene—is remarkably conserved across space, ontogeny,
and phylogeny. This eigengene can be recovered even when

1Computer scientists have long recognized that globally organizing a
space of objects provides powerful algorithmic advantages. For example,
we organize our English Dictionaries to be in alphabetical order so that
we can find an arbitrary word in relatively few steps: If we want to
find the word epiphenomenon we start by picking a word roughly in the
middle of the dictionary, perhaps mystery. Now, we can reject every
word that occurs after mystery because we know epiphenomenon will
occur before mystery. Continuing, we can reject half the remaining
words at each iteration, and find one word among a million in only 20
steps; this algorithm is called ”bisection search”. In general, we will
need at most O(log2 n) iterations to find any word among n sorted
words. By contrast, if the dictionary were not sorted, there would be
no other choice but to go through each word one by one until we found
our target. This strategy would take at most O(n) iterations, and is the
reason our dictionaries come pre-sorted.
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computed from only a small random subset of genes, indi-
cating that it is not the direct result of a small number pat-
terning genes. These features can be explained by a simple
model of inheritance in which the transcriptomes of daugh-
ter cells tend to be similar to that of their parent, but not
by a simple model of cell-cell interactions alone. We specu-
late that the global nature of the eigengene hierarchy might
provide a conserved global strategy for imparting positional
information that could be used for long-range developmental
processes such as pattern formation and axon guidance.

Eigengenes in mice and fish

We observe in both mouse and zebrafish that the measure-
ment of expression covariance across any sufficiently large set
of genes at a single developmental stage yield an eigengene
that reveals a stable pattern of differential gene-expression
across the entire brain (Fig. 2c). The pattern is hierarchi-
cal (Fig. 5), and so ranges in scale from single voxels to the
whole brain. The pattern is stable over all available develop-
mental observations (Fig. 2c,3a). Moreover, the expression
covariance measured in mouse can be used to predict the
spatial pattern observed in a fundamentally different species,
the zebrafish (Fig. 2c).

This result is surprising for a number of reasons: Firstly,
our analyses do not use explicit spatial information: The
eigengene is measured across the full collection of data voxels
without regard to their x, y, z-location. Therefore, whatever
spatial information is present in the data, must be implicit
in the gene expression itself and not entailed by our analysis.
This is confirmed by our computational controls (Fig.2d).

Secondly, the hierarchy of eigengenes is temporally static
and spatially global, despite the dynamic and local nature of
gene expression during development, and the many streams
of cell migration. Establishing such global structure is not
trivial, as biological development lacks an external construc-
tor that can control development from the outside and pro-
vides a global reference frame. Instead, cells must negotiate
global structure through their individual local behaviors.

One hypothesis as to how non-local structure might
emerge is through the emission of molecular signals that dif-
fuse over long distances. However, the effective range of a dif-
fused signal is insufficient to establish global structure (Good-
hill, 2016). Other mechanisms for establishing long range
gradients exist, but require complex regulation to establish
molecular relays and amplifiers. From this perspective, it is
surprising to find a global organization of gene expression
that spans all measured genes and stages of development.

Thirdly, the eigengene is agnostic to the specific genes
that are measured (Fig. 3). The default hypothesis for the
emergence of a spatial pattern across a developing tissue is
for there to be a specific molecular pathway that directly reg-
ulates molecular gradient, which in turn effects changes in
downstream targets. Although possible, it is not trivial that
gene expression across all measured genes should align with
some inducing gradient signal. However, we observe that the
eigengene pattern is present across virtually any set of genes

in the analyzed data. This implies that either the majority
of genes align with a global morphogenic signal, or that some
other mechanism, not relying on morphogenic signals alone,
is responsible for the eigengene gradient. Note that this does
not imply that the eigengene pattern is not subject to genetic
regulation or morphogenic action. Rather, morphogenic ac-
tion may leverage, consolidate, and/or shape the eigengene
pattern that is induced through other mechanisms, such as
the lineal model we propose here.

Fourthly, the eigengene expression pattern is preserved
across mouse and zebrafish. It is known that the genes re-
sponsible for establishing the main body axes are highly con-
served. For the dorsal-ventral patterning of the neural tube,
for example, Shh and BMP are known players across species
that have a notochord. However, we have not specifically se-
lected Shh, BMP, or any of their known downstream targets;
nor have we selected a developmental stage when these genes
are known to be active. Yet the eigengene expression is con-
served across an arbitrary selection of genes; at an arbitrarily
selected developmental stage.

Lineage induces an eigengene hierarchy

We considered two hypotheses for how global eigengene pat-
terns may emerge. It is clear that nearby cells have similar
expression, and that this can cause a covariance gradient.
However, this observation alone does not answer why and
how neighboring cells become similar. One could propose var-
ious mechanisms by which cells could negotiate similar cell
expression through local interactions (Gierer & Meinhardt,
1972; Turing, 1952). Indeed, we have offered a phenomeno-
logical version of a neighborhood model (Fig. 4).

An alternative hypothesis, which we propose here, is that
the eigengene variance axis is a direct result of constraints
on cell division. Although this hypothesis also implies that
nearby cells will have similar expression, our hypothesis is
stronger as it predicts that cells of the same lineage retain a
similar gene expression, even after many rounds of division.
As such, it has a temporal aspect in addition to a spatial
aspect.

There are several differences between the expression pat-
terns that emerge from the two models. Firstly, the pattern
induced by the lineal model is scale-free. That is, the tissue
retains the eigengene expression pattern induced at an early
developmental stage as it grows to an arbitrary size. That
is, both the pattern’s size and characteristic space constant
increase as the tissue grows (Fig. 4c). On the other hand,
the local neighborhood model needs to adapt its action ra-
dius, i.e., the kernel size of the moving average window, as
the tissue grows (Fig. 4d). This implies that cells would need
to signal over much longer distances to form long-range sim-
ilarities. Although conceivable, such signalling requires the
adaptive regulation of the signal radius, and signal relays
that overcome the limited distance over which morphogens
diffuse. Such relay signalling may be implemented for spe-
cific genes, but it is harder to imagine how it would affect
expression covariance across many genes (Stapornwongkul &
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Vincent, 2021).
Secondly, the lineal model explains how the eigengene

measured at E11.5 can persist throughout the development of
the organism (Fig. 4c). As the lineage tree grows, the original
variance induced at an early stage is inherited by the progeny.
Although each individual cell gradually loses similarity with
its distant ancestor, the ancestral expression profile becomes
shared among an increasing number of progeny. This bal-
ance retains the early variance between mitotic siblings as
the principal component among their respective progenies.
On the other hand, the local neighborhood model has no in-
herent mechanism that could retain the eigengene over time.
More complex neighborhood interaction models that support
specific regulation may be able to maintain an eigengene over
time. However, the temporal maintenance of the eigengene
would need to be explicitly regulated, whereas in the lineal
model it is inherent.

Thirdly, the lineal model predicts that, beyond the
global eigengene, each sub-region within the global eigengene
(blue versus red in Fig. 2) has their own eigengene pattern
that globally patterns the sub-region. This prediction ap-
plies recursively to generate a hierarchy of regions (Kerstjens
et al., 2022). By measuring the first principal component re-
cursively in this fashion, we uncovered a consistent hierarchy
in both the mouse and zebrafish brains (Fig. 5). The model
predicts that this hierarchy should be shaped as the lineage
tree of cell divisions. However, testing whether the hierarchy
follows true mitotic relations, e.g., through lineage tracing,
is beyond the scope of the present paper. Interestingly, an
eigengene hierarchy is also predicted by the neighborhood
model (not shown) (Shinn, 2023). However, this hierarchy
would not be temporally consistent, and require interactions
at the scale of the whole organism.

Of course, the lineal and neighborhood models are not
mutually exclusive. And, to some extent, a minor form of
local interaction is already captured by the lineal model,
namely the interaction between mitotic siblings that causes
their differential expression. Future models should incor-
porate specific regulation, and aspects of both inheritance
of expression state through the lineage and communication
through interactions with spatial neighbors. Although these
interactions were not necessary to explain the qualitative
emergence of eigengene patterns, we expect they will be nec-
essary to explain the specific geometry of eigengene patterns,
which will depend on specific ‘traditional’ gene regulation.

Global pattern formation

Our results raise the following view of global pattern forma-
tion:

During early development, all cells are close to one an-
other, and each cell communicates with every other through
short-range molecular signals. These cells behave as one
tightly coupled dynamical system of intra- and inter-cellular
dynamics, and collectively negotiate their respective gene
expression. These dynamics induce a stereotyped spatio-
temporal distribution of gene expression states across cells.

As the tissue continues to grow, cells will leave one an-
other’s signalling range, so that the initial unified region splits
into two adjacent regions with relatively independent dynam-
ics. However, as cells inherit their expression state from their
mitotic parent, the original spatial distribution of expression
states, observed as the principal eigengene across the grand
region, is preserved across the tissue as a whole. The sub-
regions each establish their own distribution of gene expres-
sion states on top of the inherited distribution, and thereby
layer an additional principal eigengene onto their domain of
the global tissue (Fig. 4). This process is recursively repeated
to establish a hierarchy of spatio-temporal eigengenes. Each
induced eigengene acts as an invariance, as it is preserved
throughout the rest of development, largely unaffected by
subsequent changes in tissue shape, size, and gene expres-
sion.

Although an hierarchical view of embryonic pattern for-
mation has been proposed in terms of hierarchical regulatory
networks that cause hierarchies of progenitor fields (Davidson
& Erwin, 2009; Davidson & Peter, 2015), we instead propose
that hierarchical patterning is not the result of specific regu-
lation, but in fact largely unavoidable in a tissue of dividing
cells (Kerstjens et al., 2022). The surprising prediction from
this counter-regulatory view is that the patterns should not
be embedded in a small collection of dedicated patterning
genes, but rather in the co-variance across essentially all dif-
ferentially expressed genes. This prediction is confirmed in
the specific spatial patterns of the eigengenes we have mea-
sured here.

An important open question is whether the eigengene
has a mechanistic function in development, or whether it is
an epiphenomenon of gene expression. The spatial pattern-
ing of the developing organism is a well-studied phenomenon.
However, most, if not all, instances of such patterns (Briscoe
& Small, 2015; Goodhill & Xu, 2005; Hubert & Wellik, 2023;
Jaeger, 2011) are induced by a hand-full of specific mor-
phogens and cover relatively small tissues. How do these mor-
phogenic models of patterning (Gierer & Meinhardt, 1972;
Turing, 1952) relate to the observation of a static expression
hierarchy across eigengenes? And, could the hierarchy of
eigengenes provide a global system for imparting positional
information (Wolpert, 1969) to individual cells?

A global hierarchy of eigengenes is compatible with mor-
phogens. One possible relation is that individual morphogens
are representative factors of eigengenes. Such a relation
would cast morphogens as the molecular mechanism for how
positional information is imparted by the eigengene to indi-
vidual cells. However, more complex relations, where single
morphogens represent multiple eigengenes, are also conceiv-
able. The exact relation between morphogens and eigengenes
is an interesting avenue for future investigation.

The currently prevailing view is that there is no global
system for imparting positional information. Instead, local
coordinate spaces are separate, and long range developmen-
tal processes, such as long range navigation of axons, ‘stitch’
together a sequence of local spaces to form a global one. How-
ever, here we raise the possibility that there exists a global
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hierarchical coordinate space that the local spaces are sec-
tions of. Such a global structure would be especially useful in
efficiently coordinating global developmental processes, such
as long range migration of cells and axons (Fig. 6).

The theory of pattern formation hypothesized here raises
the exciting possibility that the complex spatio-temporal dy-
namics among individual genes may be understood parsimo-
niously at the statistical level of their principal eigengenes
that are invariant across ontogenesis and phylogenesis; anal-
ogous to how the complex interactions among many individ-
ual particles are understood parsimoniously at the statistical
level of pressure, volume, and temperature.

References

Briscoe, J., & Small, S. (2015). Morphogen rules: Design principles of
gradient-mediated embryo patterning. Development, 142 (23),
3996–4009. https://doi.org/10.1242/dev.129452

Crick, F. (1970). Diffusion in embryogenesis [Publisher: Nature Publish-
ing Group]. Nature, 225 (5231), 420–422. https://doi.org/10.
1038/225420a0

Davidson, E. H., & Erwin, D. H. (2009). An integrated view of precam-
brian eumetazoan evolution. Cold Spring Harbor Symposia on
Quantitative Biology, 74, 65–80. https://doi.org/10.1101/sqb.
2009.74.042

Davidson, E. H., & Peter, I. S. (2015). Genomic control process: De-
velopment and evolution. Elsevier. https://doi.org/10.1016/
C2012-0-02817-7

Delaunay, B. N. (1934). Sur la sphère vide. Bulletin de l’Académie des
Sciences de l’URSS. VII. Série, 1934 (6), 793–800.

Dorskind, J. M., & Kolodkin, A. L. (2021). Revisiting and refining roles
of neural guidance cues in circuit assembly. Current Opinion
in Neurobiology, 66, 10–21. https://doi.org/10.1016/j.conb.
2020.07.005
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Methods

Experimental data

The mouse data was collected by the Allen Insti-
tute(Thompson et al., 2014). From their data we have se-
lected only the genes that have valid measurements across at
least 90% of the voxels compiled across all time points, and
only the voxels that have valid measurements across at least
90% of the remaining genes. This resulted in a set of 1256
genes.

Remaining missing values are filled with the mean ex-
pression value across the gene. This goes against the rec-
ommendation of the Allen Institute, which is to interpolate
the value from the surrounding voxels. However, we decided
to avoid risking any artificial induction of local similarities.
Filling the value with the mean expression value does not
introduce any additional variance.

Each gene’s expression is normalized to zero mean and
unit variance within the voxels of their time point. This al-
lows expression values to be both positive or negative, which
we conceptually interpret as differential expression above and
below a mean baseline.

The zebrafish data was collected by the Mapzebrain
team (Shainer et al., 2023). The zebrafish data contains
290 genes. Of these genes, there is an overlap of 45 with
mouse. The source data did not indicate valid versus invalid
measurements, so the pre-processing step of excluding genes
with high failure rates was not performed. Otherwise, all
analyses are identical. Homologous genes were selected by
choosing genes that have the same name in the mouse and
zebrafish datasets.

Eigengene

To calculate the eigengene, i.e., the global axis of variance,
we use the ‘PCA’ routine of the ‘scikit-learn’ python pack-
age(Pedregosa et al., 2011). Although this routine calculates
all principal components, we only consider the first.

Projecting a collection of voxels X, where the columns
are genes and the rows the individual voxels, onto a compo-
nent ν, is an ordinary matrix-vector multiplication Xν = s
yielding the eigengene expression s.

Hierarchical decomposition

The hierarchical decomposition was performed by recursively
applying the eigengene analyses(Kerstjens et al., 2022). The
first tier of the hierarchy is calculated as described in the
previous section, and the voxels are projected back onto the
eigengene to yield the eigengene expression s. This vector
has one value per voxel. Then, all voxels are sorted based on
whether their expression si (the ith voxel in expression vector
s) is positive or negative. The negative voxels go into one bin,
and the positive into another. The sign corresponds to the
red (negative) and blue (positive) colors across our figures.
The eigengene projection is then repeated for each bin inde-
pendently. This process is then recursively applied untill only

single voxels remain. Note that we do at no point calculate
the second principal component, or remove any variance from
the data. Each subsequent eigengene analysis is performed
on the full expression data, without removing the variance of
the previous eigengene analysis. The only difference is that
the analysis is performed on subset of voxels.

Connectedness metric

To measure the ‘connectedness’ of the data we employ the
following measure. We first infer a geometric graph from the
positions of the voxels in 3D space. For this we use a De-
launay tessellation (Delaunay, 1934; Virtanen et al., 2020)
followed by applying the Gabriel criterion (Gabriel & Sokal,
1969). The result is a spatial graph where cells are connected
to their immediate neighbors, while reducing the number of
connections that cross open spaces. For example, in the case
of a 2D images, as generated by our simulations, this proce-
dure will make the expected square grid with adjacent pixels
connected, but no connections across the diagonals.

A region of the hierarchical decomposition contains a
collection of voxels. The spatial graph is established over all
voxels. The voxels of a region make a sub-graph contain-
ing only the edges that have both their end-points in the
regions. I.e., half-edges are not considered. The resulting
spatial graph may be one large connected component. How-
ever, in general, the graph will consist of multiple collections
of voxels that cannot be traversed between following only
the remaining edges in the sub-graph. (We used the python
package NetworkX (Hagberg et al., 2008) for its graph algo-
rithms.)

Intuitively, if the region consists of one large connected
component, the connectedness metric should be 1. If the
region consists of independent singular voxels, the connect-
edness metric should go to 0. We chose a metric that depends
on the number of voxels, so that a region with many indepen-
dent voxels is closer to 0 than a region with few independent
voxels. However, we wanted to avoid the case where the con-
nectedness score of one giant connected component of many
voxels would be dramatically reduced by a few single separate
voxels.

To accommodate these features, we chose the following
metric:

C(R) =
maxc∈R |c|
∑

c∈R |c|
,

where c ∈ R are the connected components in region R, |c|
is the number of voxels in that component.

Lineal model

We describe the expression of a cell with index i as a vector

ci =











g1
g2
...

gM











,
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where each entry gj is the expression of a hypothetical gene
with index j. Although transcription measurements, such as
RNA counts, are usually discrete and strictly positive, we al-
low real-valued expression for simplicity. These values can be
thought of as deviations from a baseline average expression.

Genes are indexed 1 through M , where M is the total
number of genes considered. Cells are indexed according to
their position in the mitotic lineage. The initial cell at the
root of the tree has no index. Its daughters are indexed 0
and 1. The daughters of cell 0 are indexed 00 and 01, and
the daughters of cell 1 are indexed 10 and 11. This indexing
scheme continues recursively, where in general the daughters
of cell i are numbered i0 and i1.

We model the expression of a cell as a difference with its
parent:

ci0 = ci + δi0

ci1 = ci + δi1
.

where ci is the expression of a cell i that has two daughters
i0 and i1, and δi0 and δi1 are the differential expressions
between the parent and the daughters, respectively. This
formulation is, in principle, without loss of generality, because
each cell can be described in terms of a differential expression
with its parent. This formulation does not preclude complex
mechanisms of regulation or cell-cell signalling.

The generality is marginalized now we constrain the dif-
ferential expression vectors δi are constrained to be normally
distributed:

δi ∼ N (0, σ),

where σ is the standard deviation of the distribution. This
constraint implies that the daughters are one “step” away
from their parent.

Interaction model

The interaction model starts with a random matrix of size
n×n×M , where n2 is the number of cells, andM the number
of genes. The values in the matrix are normally distributed
with a zero mean and unit standard deviation. This matrix
is then blurred by applying a uniform convolution kernel of
size k × k × 1. That is, each gene is independently blurred
by replacing each value with k × k moving average window.
The edges of the matrix, where the window would exceed the
bounds of the sample, are padded by reflecting the values
inside-out(Virtanen et al., 2020).

Code & data availability

All code used for this work will be available upon fi-
nal publication. All data is made available by the Allen
Brain Institute (Thompson et al., 2014) and the Mapzebrain
team (Shainer et al., 2023).
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