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Animals are born with extensive innate behavioral capabilities, which arise from neural
circuits encoded in the genome. However, the information capacity of the genome is
orders of magnitude smaller than that needed to specify the connectivity of an arbitrary
brain circuit, indicating that the rules encoding circuit formation must fit through a
“genomic bottleneck” as they pass from one generation to the next. Here, we formulate
the problem of innate behavioral capacity in the context of artificial neural networks in
terms of lossy compression of the weight matrix. We find that several standard network
architectures can be compressed by several orders of magnitude, yielding pretraining
performance that can approach that of the fully trained network. Interestingly, for
complex but not for simple test problems, the genomic bottleneck algorithm also
captures essential features of the circuit, leading to enhanced transfer learning to novel
tasks and datasets. Our results suggest that compressing a neural circuit through the
genomic bottleneck serves as a regularizer, enabling evolution to select simple circuits
that can be readily adapted to important real-world tasks. The genomic bottleneck also
suggests how innate priors can complement conventional approaches to learning in
designing algorithms for AI.

neural computation | neural networks | machine learning | AI

Many animals are born with impressive and elaborate behavioral capacities. Soon after
birth, a spider can build a web, a whale can swim, and a monkey fears snakes. From
an evolutionary perspective, it is easy to see why such innate abilities would be selected
for: Those individuals that can survive beyond their most vulnerable early hours, days,
or weeks are more likely to survive until reproductive age and hence produce progeny
at a higher rate. Of course, in practice, there is no crisp distinction between innate and
learned abilities; innate abilities form a foundation for learning, and animal behavior
arises from the interaction between these two processes. Although learning has been
studied extensively in the context of AI, there has been much less theoretical attention
devoted to the structure of innate behaviors.

Innate behaviors are encoded in the genome and can be expressed in the neural circuits
already present at birth. However, this poses a challenge: How can a complex neuronal
connectivity diagram be encoded into a genome? The size of the genome provides an
approximate upper bound on the amount of information transmitted from generation
to generation. The genome of a simple worm Caenorhabditis elegans is about 108 base
pairs (1), so it could transmit up to about 2 × 108 bits. This in principle would be
more than adequate to explicitly encode the highly stereotyped connectivity among the
302 neurons in the C. elegans brain, since even a dense 3022 connection matrix would
take at most 9 × 104 bits to store, times a small factor associated with the number of
bits per synaptic weight. On the other hand, the human genome is only about an order
of magnitude larger than that of C. elegans (∼109 bits), whereas the human cortex has
about 1010 neurons, so even the (sparse) cortical connectivity matrix might require at
least 1015 bits to specify. This implies that the human cortex would require about 5 to
6 orders of magnitude more information to specify than is available in the genome if
every connection were specified explicitly (2). Since the genome encodes the rules for
wiring up the nervous system, a natural question is how the small amount of information
contained in the genome can instruct the creation of the large-capacity cortex. We refer
to the long recognized (3–5) mismatch between the information capacity of the genome
and the complexity of the resulting neural circuit as a “genomic bottleneck” (2).

The mismatch described by the genomic bottleneck implies that the connectivity
of most neuronal circuits, including the mammalian cortex, is not explicitly specified,
neuron-by-neuron, in the genome. Rather, the genome specifies connectivity rules. It has
long been recognized that simple rules can give rise to surprisingly complex structures
(6, 7), and it is straightforward to formulate simple, low-complexity rules that specify
the connectivity in arbitrarily large networks. For example, the simple rule “connect
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to your four nearest neighbors” specifies a grid of potentially
unlimited size (Fig. 1A). Another class of rules specifies connec-
tions between cells based on the surface markers they express
(4, 8, 9) (Fig. 1B); axons can exploit these markers to find their
destinations (10). The columnar organization that is observed
in many brain regions allows for the replication of similar
connectivity modules throughout the brain, thus limiting the
number of parameters needed to wire the circuit (11). Complex
structures such as orientation columns in the visual cortex can be
induced to self-organize from simple use-dependent rules (12).
Developmental rules such as these can dramatically reduce the
amount of information needed to specify the connectivity of a
neural circuit, before extensive experience.

Despite this extensive literature on modeling development,
these simple developmental rules do not typically specify net-
works with the capacity to perform complex general computa-
tions. Thus, although such rules can readily specify the formation
of repeated modules that enable the emergence of receptive
fields in the retina or the visual cortex (13), such stereotyped
modules cannot directly encode more specialized knowledge like
a spider’s capacity to build a web or a rat’s innate fear of fox
odor (14). We therefore set out to explore how low-complexity
rules can give rise to networks that perform complex well-defined
neural computations. Within the framework of artificial neural
networks (ANNs), we seek to compress the complex connectivity
(weight matrix) into a much smaller “genome.” The decoding of
this genome into the initial weights of the network enables the
network to perform well upon initialization, without additional
training. This decoding is analogous to the neurodevelopmental
processes by which the genome provides a blueprint for circuits
that enable animals to perform essential tasks at or soon after
birth. We hypothesized that under some conditions, compressing
the weight matrix through a “genomic bottleneck” would extract
the most useful and important features of the connectivity; the
genome would act as an “information bottleneck” (15–17). In
this way, a physical constraint—the limited size of the genome—
might be an algorithmic advantage, serving as a regularizer and
thereby turning a potential “bug” into a feature.

Implementation of the Genomic Bottleneck

To test these ideas, we first trained standard feedforward ANNs
on well-studied supervised learning tasks. ANNs consist of nodes
(“neurons”) connected by weights (“synapses”). When an ANN
learns a task, the “knowledge” of the task is summarized in
the weights of the ANN. Artificial neural networks are typically
initiated randomly—tabula rasa—and acquire their functionality
through learning, although most ANNs [e.g. convolutional neu-
ral networks (18)] are endowed with domain-specific inductive
priors via their architecture. Here, we use “connectivity” to de-
scribe both the specification of which connections are nonzero, as
well as the strengths or weights of those connections. We refer to
the trained network as the “phenotype network,” or “p-network.”

We sought to compress the p-network through a genomic
bottleneck, preserving as much of the performance as possible.
The compression mechanism serves to initialize the network,
endowing it with innate abilities prior to learning. To search
widely over the space of possible compressions, we used a separate
ANN—a “genomic network” or “g-network”—to generate the p-
network (Fig. 1C ). The formulation of the neurodevelopmental
process as an ANN allows us to focus on the genomic bottleneck
at a conceptual level, without the need to model the complexities
of neural development. This leads to a model in which genomes
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Fig. 1. Simple rules can specify networks. (A) A very simple nearest-neighbor
wiring rule. (B) A somewhat more complex rule (“only connect to nearest
neighbors of opposite color”) leads to a more complex network. (C) Network
specification through a genomic bottleneck. The input to the genomic
network (“g-network”) is a pair of neurons (pre- and postsynaptic) specified
by binary strings. Each neuron has a unique label, consisting of a unique
binary string. The two binary labels are passed through the g-network, which
assigns the strength of the connection between the two neurons in the “p-
network.” Because the number of parameters in the g-network is smaller
than the number of parameters in the p-network, the g-network is effectively
compressing the p-network. (D) G-networks seek to discover p-networks that
both solve the problem well and are compressible.

and the circuits they encode are co-optimized in nested loops: an
inner loop corresponding to “learning” in animals and an outer
loop corresponding to “evolution.” For reasons of efficiency, in
our model, both the inner and outer loops are optimized by
gradient descent and are not intended as detailed models of
learning or evolution.

The inputs to the g-network are the identifiers of a pair of
pre- and postsynaptic neurons, each represented by a unique
binary vector. In these binary vectors, individual digits represent
the presence of one type of a “molecular tag” in the expression
profile of this neuron. Thus, for example, if each neuron is
represented by 10 binary digits, the input layer of the g-network
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will consist of 20 units (10 each for presynaptic and postsynaptic
neurons; see Methods). The output of the g-network is the
expected strength of the connection between these neurons. The
connectivity is effectively guided by the interactions of pairs of
molecules expressed on the pre- and postsynaptic membranes.
This formulation is inspired by neurodevelopmental rules based
on local pair-wise interactions between neurons (4, 8), but it is
not intended as a realistic model of neural development (19, 20).
To facilitate the efficient search for g-networks that achieve good
compression, we used stochastic gradient descent (21) rather than
evolutionary algorithms (5, 19) to achieve the optimization of
both the g-network and the p-network.

Although a sufficiently large g-network could, in principle,
perfectly recapitulate the p-network by “memorizing” all of the
connections exactly, this would fail to compress the p-network,
and thus would be unlikely to extract more general wiring motifs.
We therefore focused on a regime where the size (complexity)
of the g-network is substantially smaller than the size of the
p-network, encouraging the g-network to discover compact
wiring rules. Our goal is to find network architectures that are
both high-performance and compressible (Fig. 1D). This setting
can be viewed as a lossy compression problem, where the success
of compression is measured not by, e.g., the reconstruction error
as in typical lossy image compression, but rather by the ability
of the uncompressed weight matrix to perform well on the target
task without further training.

Our approach can be described as the search for a solution that
balances two competing goals. First, we wish to achieve a good
innate performance, i.e. we wish to minimize the error E0(G),
where E0(G) is the error of the p-network on a target task before
the training of the p-network encoded by the corresponding
g-network G. Second, we also wish to limit the complexity of the
genomic network, specifically the entropy H(G) of the genome
G. We use the number of parameters specifying the g-networks
as a surrogate for the entropy H(G). Conceptually, we can thus
formulate our overall goal as a lossy compression problem in
which we seek to minimize an objective function J with respect
to the genome parameters G:

J = E0(G) + H(G), [1]

where  is a positive parameter that specifies the tradeoff between
the two goals. (In practice, we select a particular complexity
H(G) and then minimize the error for that network). In this
formulation, the second term can be seen as a regularizer, related
to techniques such as weight pruning (22, 23), that seek to keep
the weight matrix simple.

We train g-networks iteratively to generate compressible and
efficient p-networks as follows. First, we initialize a p-network
using random weights and train it for several steps by updating
its weights W (1) to reduce the cost function on the p-network’s
target task. Throughout the training process, we maintain
the domain-specific architecture of the ANN, such as the
convolutional or feedforward structure. The p-network’s updated
weights W (1) are then used to train g-networks. A training set for
a g-network consists of vectors {bi, bj} encoding the {i, j} position

in W (1) as inputs, and scalars w(1)
ij containing the strengths of

corresponding weights as outputs. The g-network generates an
approximation Ŵ (1) of the p-network’s weight matrixW (1). The
cost function of the g-network training is the difference between
p-network weightsW (1) and the approximation generated by the
g-network Ŵ (1). This approximation is then used to initialize
the p-network’s weights which serve as the initial weights for the

second iteration W (2) = Ŵ (1). The p-network is trained again
directly on its target task. The process is iterated, yielding the
sequence Ŵ (2) . . . Ŵ (K ) that aims to converge at high zero-shot
(innate) performance of the p-network while occupying limited
space in the genome (stored in g-networks).

Supervised Learning

Application to the MNIST Dataset. We first tested our approach
on a classic supervised learning problem: handwritten digit
recognition. In this problem, a network is trained with examples
of handwritten digits (0 to 9) taken from the MNIST dataset
(Fig. 2A; Methods) and learns to assign labels to new examples of
these digits it has not previously encountered. For the p-network,
we used a standard fully connected network architecture with
28 × 28 = 784 pixel units at the input layer and one hidden
layer with 800 units, for a total of 6 × 105 parameters. With
random weights at the initialization, the performance rose during
the training from random (10%) to about 98% (Fig. 2D) after
about 20 epochs.

We then used a much smaller g-network with only 30 hidden
units (GN30), or about 2 × 103 parameters, to compress the
p-network (Fig. 2B). To assess the p-network’s performance here
and in all subsequent results, we used held-out test data. The
g-network trained using the algorithm described above generated
a p-network with 94% correct performance upon initialization.
Thus the g-network was able to achieve 322-fold compression
while maintaining innate performance almost equal to that of
the fully trained network. We observed a tradeoff between the
degree of compression and the innate performance (Fig. 2 C
and D), but a good innate performance of 79% correct could
even be achieved using the GN5, a network with 1,038-fold
compression. To test whether the g-net was learning more than
the initial distribution of weights (e.g. Xavier), we performed
a control experiment in which we shuffled the weights at test
time (Fig. 2D, dashed yellow line). Initial performance was at
chance (0.1), although learning was markedly accelerated. These
results demonstrate that there exist p-networks that are both
compressible and high-performance.

To explore the effect of the genomic compression on features
extracted by the p-network, we applied the multidimensional
scaling (MDS), a nonlinear dimensionality reduction technique
(24), to the weights in both the compressed and uncompressed
networks. Fig. 2E shows that for the same level of the MDS
stress—a measure of the embedding accuracy—the compressed
network has fewer dimensions than the uncompressed network,
suggesting that the compressibility is a somewhat general
property: The compressibility by a g-network has led to the
compressibility by the MDS. Interestingly, the MDS features
of the compressed network seem to resemble the Gabor filters
(Fig. 2F ) whereas those from the uncompressed network seem
more like filters tuned to individual digits (Fig. 2G).

To illustrate how high innate performance could provide an
evolutionary advantage, we formulated a simple model in which
an organism’s survival to reproductive maturity—its fitness—was
proportional to its performance on this task. In this model, the
probability p(t) that the organism is still alive at time t is given by

p(t + 1) = p(t)[1− �(1− c(t))]. [2]

Here, c(t) is the rate of correct performance at the time t and
0 < � < 1 is a parameter that determines the contribution
of this trait to survival. This model thus relates the correct
performance on the task to survival (Fig. 2H ). Fig. 2I shows
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Fig. 2. Genomic bottleneck approach to MNIST. (A) Examples of handwritten
digits from the MNIST dataset. (B) We used a two-layer fully connected MNIST
network created by individual g-networks for each layer (GN301 denotes
a g-network with H = 30 units in the hidden layer for the first MNIST
layer). GN30 corresponds to 322-fold compression. (C) Initial performance
for several levels of compression. Here and below, the performance is
shown for held-out test data. Performance is excellent even with 1,038-fold
compression. (D) Training dynamics of p-networks initialized with different
levels of compression. The first point for each curve corresponds to the test
set accuracy of an untrained p-network initialized by a g-network, as specified.
(E) The MDS stress for g-network-generated weights (red) and the weights of
the network trained without g-network (blue). (F and G) The average-case
filters, applied to pixel space, in (F ) the g-network-generated weight and (G)
a weight learned without a g-network. (H) The fitness advantage of a model
organism with high innate performance. (I) A model organism with high innate
performance dominates the population. (J) Example of the F-MNIST dataset.
(K ) Failure of transfer learning the F-MNIST dataset. Blue, dotted, and solid
red lines represent results for training a network using the F-MNIST dataset
that is initialized by random, MNIST weights, and weights generated using
GN30 trained on the MNIST data respectively.

how, over successive generations, the fraction of individuals with
high innate performance increases at the expense of individuals
who rely solely on learning to acquire fitness. As expected, over
several dozen generations, the individuals with higher innate
fitness dominate the population, completely supplanting those
initialized tabula rasa, who must learn everything from the
environment. Many factors in the real world could serve to
complicate this simple model, which for example does not explain
the prolonged period of postnatal helplessness of mammals.
Nonetheless, the model provides an intuition for why evolution
might be expected to maximize high innate performance.

We hypothesized that passing the wiring diagram through the
genomic bottleneck would extract the most useful and important
features of the connectivity and enable generalization to related
tasks. To test this idea, we used the related Fashion-MNIST
dataset (below, we will call it F-MNIST for brevity), which
has the same format as the MNIST dataset but consists of ten
different categories of clothing (shirts, shoes, etc; Fig. 2J ). Disap-
pointingly, we observed no enhancement of F-MNIST learning
upon initializing weights using a MNIST-trained g-network.
Indeed, the p-network adapted from the MNIST dataset showed
somewhat slower learning than a naive network (Fig. 2K ), as
though the network first had to unlearn the MNIST dataset
before learning the F-MNIST. We hypothesized that this failure
to generalize across visual recognition tasks was due to overfitting
on the specifics of the MNIST dataset, due to the relative
simplicity of the tasks and the network used to solve them: Both of
these datasets are too simple to require learning general properties
of images that can be transferred to novel visual problems.

Application to the CIFAR-10 Dataset. To test whether there are
conditions where the genomic bottleneck might extract features
that generalize over multiple datasets, we applied the algorithm
to a more complex problem that requires a deeper network.
We used the CIFAR-10 dataset, which consists of 60 k color
images drawn from 10 categories such as airplanes, cars, and
cats (Fig. 3A). For the p-network we used a standard 9-layer
convolutional neural network (CNN) architecture with about
1.4 × 106 weights (Methods). We compressed each CNN layer
of the p-network with a separate g-network (Fig. 3B). Similarly
to MNIST, the compressed CIFAR-10 network reached high
performance. GN50, a network with 92-fold compression,
achieved initial performance of 76% (vs. naive 10%), fairly close
to the fully trained performance of 89% (Fig. 3 C and D).
Excellent compression was also achieved with two larger datasets,
ImageNet-1K and Caltech-256, confirming the scalability of our
approach (SI Appendix, A). Thus, as with MNIST, the g-network
achieved approximately two orders of magnitude compression
while maintaining good initial performance.

The learning dynamics (Fig. 3D) demonstrate the utility of ge-
nomic compression for achieving enhanced initial performance.
However, it was not clear whether this was also associated with
faster learning. To our surprise, genomic compression did not
affect the learning trajectory; the only speedup was due to the
higher initial performance, as though the p-network was “hot-
started” by the g-network (Fig. 3E). Thus genomic compression,
at least under these conditions, did not affect the learning rate.

To assess whether the structure that g-networks extracted from
the CIFAR-10 dataset could be useful for other datasets, we
tested transfer from the CIFAR-10-trained network to a related
problem. We used the Street View House Numbers (SVHN)
dataset, which contains images of house numbers in a format
similar to the CIFAR-10 dataset (Fig. 3F ).

4 of 12 https://doi.org/10.1073/pnas.2409160121 pnas.org

D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//w

w
w

.p
na

s.
or

g 
by

 C
O

L
D

 S
PR

IN
G

 H
A

R
B

O
R

 L
A

B
O

R
A

T
O

R
Y

 o
n 

Se
pt

em
be

r 
12

, 2
02

4 
fr

om
 I

P 
ad

dr
es

s 
14

3.
48

.3
0.

40
.

https://www.pnas.org/lookup/doi/10.1073/pnas.2409160121#supplementary-materials


GN1

GN2

GN3

GN4

GN6

GN7

GN8

GN9

GN5

0.76 0.72

0.56

0.1

C D

A

F

GN50 
(92x)

GN30 
(146x)

GN10 
(361x)

No GN

20bits
H

10
GN5

layer 1

layer 2

layer 3

layer 4

layer 5

layer 6

layer 7

layer 8

layer 9

“horse”
B

SVHN training epoch

ecna
mrofrep tes tseT

G

*

*

etar tcerroc laitinI

E

CIFAR-10 Training Epoch (shifted)

No GN

GN30     SVHN(L1)
GN30     SVHN(L1-2)
GN30     SVHN(L1-3)
GN30     SVHN(L1-9)
GN30     SVHN(L8-9)
CIFAR    SVHN(L1)
CIFAR    SVHN(L1-2)
CIFAR    SVHN(L1-3)

CIFAR    SVHN(L1-9)

100 101 102

CIFAR-10 Training Epoch

0

0.2

0.4

0.6

0.8

1

C
or

re
c t

r a
te

GN10 (361x)
GN30 (146x)
GN50 (92x)
No GN

100 101 102
0

0.2

0.4

0.6

0.8

1

C
or

re
ct

ra
te

GN10 (361x)
GN30 (146x)
GN50 (92x)
No GN

Fig. 3. Genomic bottleneck approach to CIFAR-10. (A) Examples of images from the CIFAR-10 dataset. (B) To classify the CIFAR-10 images, we used a nine-layer
convolutional network. Each layer was created by individual g-networks. (C) The p-network achieves excellent tabula rasa performance even for greater than
100-fold compression. (D) Dynamics of learning for different levels of compression. (E) The learning rate of the compressed networks is the same as tabula
rasa networks. For each level of compression, the curve in D is shifted to the tabula rasa curve. (F ) Example of images from the SVHN dataset. (G) Transfer
learning to SVHN dataset. Results are shown as training curves on the SVHN dataset for networks initialized using different sets of layers transferred from the
CIFAR-10 dataset as indicated. For example, the green solid curve (GN L1-2) shows results for layers 1 and 2 initialized using g-networks trained on the CIFAR-10
data, while the remaining layers are initialized randomly (shaded regions show SD of the mean). For the CIFAR-10 L1-2 curve, layers 1 and 2 were initialized by
direct transfer from the CIFAR-10 dataset. GN L1-2 is shifted compared to CIFAR L1-2 (red arrow) indicating the advantage of our approach. A similar feature
is observed for layer one transfer curves (orange). Stars indicate statistical significance (ANOVA, P = 0.015 for L1 and P = 0.0005 for L1-2). The GN L8-9 curve
shows worse performance than naive training (No GN), similar to Fig. 2K.
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We first confirmed the effectiveness of a standard algorithm
for transfer learning. We trained the p-network on the CIFAR-
10 dataset without compression and then used the p-network’s
weights as a starting point for the SVHN training (CIFAR-
10 transfer). As expected, this procedure accelerated learning,
reducing training time from about 20 training epochs (Fig. 3G,
blue line, “No GN”) to a single epoch (Fig. 3G, “CIFAR L1-9”).
This implies that the CIFAR-10 dataset contains features similar
to the SVHN dataset.

We next compared the standard transfer learning algorithm
to an algorithm based on the genomic bottleneck. To achieve
transfer with the genomic bottleneck, we used g-networks
to generate a p-network as described above and then used
this p-network as an initial condition for SVHN training
(g-network mediated transfer). Remarkably, the performance
of g-network mediated transfer was indistinguishable from the
standard approach (Fig. 3G, orange solid line, “L1-9”), even
though in this case the number of transferred parameters was 92
times fewer. These results indicate that whatever is crucial for
transfer from the CIFAR-10 to SVHN is captured by the nearly
92-fold smaller g-network.

To further dissect the consequences of genomic compression,
we examined the effect of transferring one or a few layers at a time.
When only the first two lower layers (layers 1 to 2) were trans-
ferred from the CIFAR-10 to SVHN, while randomly initializing
the remaining layers, genomic transfer yielded faster learning than
direct transfer (Fig. 3G, red arrows). For example, when layer 1
was initialized with g-network, 50% performance was reached in
about 3.2 training epochs, while similar levels were only achieved
in 4.8 epochs using direct CIFAR-10 transfer—a 1.5-fold
difference. Thus, it appears that the lower layers of the network
contain features that generalize across datasets, and these features
are extracted well using our compression algorithm. On the other
hand, transferring the last two layers of the network resulted in
slower training compared to the naive case, a result reminiscent of
our MNIST-to-F-MNIST transfer (Fig. 2K ). This result implies
that the last two layers of the CIFAR-10-trained network con-
tained features that are specific to the dataset and were not useful
for the recognition of the house numbers in the SVHN data.

Taken together, these findings demonstrate that g-networks
can extract structure that is generalizable across datasets. Com-
pression with g-networks yields performance that is comparable
to—and in some cases better—than simple uncompressed weight
transfer, indicating that g-networks identify a special subclass of
p-networks that are compressible and capture essential structure
of the data (Fig. 1D). This enhancement is particularly evident
in the rate of transfer of the lower layers in deep nets (Fig. 3G).
Interestingly, the receptive fields of neurons in the lower visual
system show substantial similarities between different species,
while higher layers are more specialized (25). This parallel with
our results suggests that the early visual system may have extracted
a simple yet potent set of features while subject to genomic
bottleneck-like constraints.

Reinforcement Learning

The results described so far demonstrate the efficacy of genomic
compression in the context of supervised learning. However,
supervised learning is unlikely to play a major role in animal
behavior (2). We therefore turned our attention to reinforcement
learning paradigms, in which an agent seeks to maximize its
reward in a given environment by taking actions based on its
current state and its history of actions and rewards. The actions

are determined by a policy that maps the agent’s state to actions.
Learning in this context consists of adapting the policy. Many of
the most successful modern approaches use ANNs to implement
the policies (26).

We first tested the genomic compression algorithm on the
ANN-based policies used for solving BeamRider (27), a video
game (Fig. 4B). In this task, the input is a set of 80 × 80 pixels
and the output is one of 9 actions (e.g. move left, fire, etc).
We used the Dueling Deep Q-Network (28) to train a standard
p-network with 3.3×106 parameters (Fig. 4A). With training, the
performance doubled after several hundred episodes (Fig 4C ). We
then compressed the p-network 492-fold using a g-network with
about 104 parameters. The initial performance of the compressed
network indicated that the g-network was able to capture almost
all of the structure inherent in the connections of the p-network.
We then tested greater levels of compression and found that
the innate performance of the compressed network remained
excellent up to about 3,500-fold compression (Fig 4D). Similar
results were obtained for another video game, SpaceInvaders
(Fig. 4 E–G). These results show that the genomic compression
approach is not limited to supervised learning, but can be readily
extended to a reinforcement learning setting.

We next tested the genomic compression algorithm on a more
challenging reinforcement learning task, HalfCheetah (Fig. 5A).
In this task, a simulated cheetah must learn to maximize its
forward velocity in a simulated physics environment, MuJoCo
(29). Here, the state space consists of the positions, angles,
and velocities of 8 joints, and the continuous action space
consists of the forces applied to those joints. With a random
initialization, the cheetah cannot move forward (Fig. 5B). After
several thousand episodes of training, the cheetah sometimes
learns to move forward conventionally, but typically adopts
unconventional solutions such as tumbling on its head or flipping
upside down and gliding along its back (Fig. 5C ), a phenomenon
sometimes referred to as “reward hacking.” Such solutions often
yield rewards comparable to those obtained by conventional
solutions and can be viewed as overfitting.

The genomic bottleneck algorithm was able to achieve ex-
cellent compression on this task. After 4.9-fold compression,
performance on episode 0 is excellent, approaching asymptotic
performance (Fig. 5E). Initial performance on episode 0 declined
only modestly with increasing compression (Fig. 5F ). Thus, the
genomic compression algorithm could be effectively applied even
in the more challenging setting of the HalfCheetah.

Interestingly, solutions obtained from p-networks initialized
by g-networks did not appear to engage in reward hacking,
unlike those obtained following random initialization; following
compression, only conventional strategies without tumbling and
flipping were learned (Fig. 5D). This suggested that compression
was acting as a regularizer, discouraging overfitting by reward
hacking. To further explore this, we tested performance in a
modified environment in which gravity has been increased by
50%. (In the MuJoCo simulation environment, gravity can be
conveniently modified with a single parameter, which can be
viewed as a surrogate for changes in body size that would occur
over an animal’s lifetime). In this modified environment, initial
performance at episode 0 even for the p-network initialized
by a g-network is poor, but performance improved relatively
quickly after several hundred trials (Fig. 5 G, red and J ).
By contrast, conventional transfer learning, in which the fully
trained uncompressed network is used in the new environment,
learned much more slowly (Fig. 5 G, green; H and I ). The
superior transfer learning observed with the genomic bottleneck
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Fig. 4. Genomic bottleneck approach to reinforcement learning. (A) The network architecture of p-network consists of 5 layers, each of which was compressed
by a corresponding g-network. (B) Application to the video game BeamRider, in which the goal is to shoot down enemy ships. (C) Dynamics of learning for an
uncompressed network (blue) is slower than for a 492-fold compressed network (red), which achieves nearly perfect performance on episode 0. Shaded regions
show the SD of the data. (D) Performance over the first 5 episodes as a function of compression. Nearly perfect initial performance is achieved by the 3570-fold
compression. (E-G) Analogous modeling for the video game SpaceInvaders.

approach arises because the reward-hacked strategies observed
in networks trained without compression do not generalize well
to the new environment, so the agent must first unlearn these

unconventional strategies. Taken together, our results suggest
that the genomic bottleneck approach can be effectively applied
to both supervised and reinforcement learning problems.
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Fig. 5. Genomic bottleneck applied to HalfCheetah. (A–D) Snapshots of sample episodes. (A) Task screenshot. (B) Upon initialization without compression, the
HalfCheetah typically flails about, largely in place. (C) After 3,000 episodes of training, the agent finds an effective but often unconventional strategy for moving
forward. In this example, the strategy involves intermittent sliding on its chin. (D) The agent trained with the genomic bottleneck approach adopts an effective
and conventional strategy even in episode 0. (E) Learning time course for 4.9-fold compressed (red) vs. randomly initialized (blue) networks. The shaded region
shows the SD of the data for four independent training runs. (F ) Initial performance of the HalfCheetah network averaged over the first 5 episodes as a function
of compression. Performance is shown for individual genomic networks (dots) and the average (solid line). (G) The results of weight transfer to the environment
with higher gravity. Learning time course for 4.9-fold compressed (red) vs. uncompressed (one fold, direct transfer) (green) networks. (H) Performance averaged
over the first 400 training episodes as a function of the gravity scale. Dots/lines show results for individual networks and their average. Colors are the same
as in (G). (I and J) Skeleton diagrams showing subsequent time steps for networks initialized by direct transfer (I) and 4.9-fold compressed g-network (J) in the
increased gravity environment.
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Discussion

We have proposed that a genomic bottleneck arises inevitably
because of the need for a relatively low-capacity genome to specify
the complex neural circuits required for innate behaviors. We
argue that under a wide range of conditions, there is evolutionary
pressure for organisms to be born with as much innate ability
as possible, and thereby to maximize their fitness at birth (Fig.
2H ). This leads to a model in which genomes, and the circuits
they encode, are co-optimized in nested loops: an inner loop
corresponding to “learning” in animals, and an outer loop
corresponding to “evolution.” Our results suggest that dividing
the usual machine learning problem into such nested loops linked
by a low-information bottleneck serves as a regularizer on the
resulting neural circuit, guiding it to find simple circuit motifs
that can be reused and can adapt to changes in the environment.

The genomic bottleneck can be viewed as a constraint forcing
lossy compression of the weight matrix (Eq. 1). The idea of
minimizing the description length, or Kolmogorov complexity,
of the weights has a long history (30, 31). Although the genomic
bottleneck algorithm was motivated by the considerations of the
relative size of the genome and the connectome, it has close
parallels with the “information bottleneck” method (15). We
hypothesize that, by squeezing the neural circuit diagram through
a much smaller genome, evolution has extracted the most useful
and important network motifs.

To perform tasks, the compressed (genomic) representation
must be uncompressed into a functional network through a
process analogous to neural development. For the reasons of
efficiency, we have used gradients to optimize both the inner
and outer loops. Evolution, which can be viewed as a form
of optimization that does not exploit a gradient, is in general
a relatively slow and inefficient algorithm, successful because
it operates on massive numbers of individuals in parallel over
hundreds of millions of years. The feedback in our algorithm
that guides the gradient from each generation—the fact that the
trained weight matrix in the kth generation is used to modify
the genome in the (k + 1)st generation—can be viewed as
a form of Lamarckian evolution, and is, as such, biologically
unrealistic. The net effect of our approach, however, is similar
to Darwinian evolution. Our algorithm can also be seen as an
implementation of the Baldwin effect (32, 33), according to
which, if the ability to learn a particular behavior rapidly confers
a selective advantage, that ability would, throughout evolution, be
“genetically assimilated” and might appear to have arisen through
a Lamarckian process.

We developed a genomic bottleneck algorithm that could
achieve several orders of magnitude compression on standard
supervised and reinforcement learning benchmarks. Although
it might seem surprising that these networks could be so
highly compressed with relatively little loss of performance, our
results are consistent with considerable literature on network
compression (34). For example, a standard technique—weight
pruning—can eliminate 90% of parameters with minimal loss of
accuracy (22, 23). Network pruning can be viewed as a method of
network compression, complementary to the genomic bottleneck
mechanism considered here. Convolutional neural networks (18)
can be viewed as an example of network pruning prior, where
each neuron only connects to a small fraction of other neurons
in lower layers. Another example is the lottery ticket hypothesis,
according to which the number of weights in a well-performing
network can be substantially reduced by discovering “winning
ticket” sparse subnetworks (35). Cortical networks are inherently

sparse, with each neuron connecting to only a minute fraction
of other cortical cells. Evolution may have selected sparse and
functionally important connections due to physical constraints,
such as space and time limitations (36).

Even after sparsification, the organization of cortical connec-
tions cannot be encoded in the genome with a single-neuron
precision. For example, sparse connectivity, such as that produced
by the lottery ticket, will require H Ns logNs bits to encode (Ns is
the number of synapses), which amounts to about 260 TB in case
of cortical connectivity(9). Thus, pruned connectivity does not
by itself resolve the discrepancy between cortical and genomic
information capacities. This implies that other mechanisms
must be used to further compress pruned networks. Similarly,
the approach based on HyperNetworks (21) trains lower-rank
representations of the weight matrices. Such an algorithm should
be able to compress a square N × N weight matrix using only
H ND bits of information, where N and D are the number of
neurons in the network and the reduced rank respectively. In
its present form, this algorithm is thus limited to compressing a
square weight matrix into the amount of space between H N and
H N 2 (in the case ofDN ). Our algorithm offers a fundamentally
different solution. In our approach, the vectors representing
individual neurons are not expected to be stored in the genome.
The minimum size needed to store a p-network in the genome
scales with the number of parameters in the g-network. The latter,
in the minimal case, is determined by the size of g-net inputs,
i.e. the size of binary vectors representing individual neurons in
the p-network. A p-network with N neurons requires log2 N
binary tags to specify each neuron uniquely, so the input to
the g-network is log2 N units (binary digits) for each neuron.
Thus, the minimal size of the g-network needed to encode the
p-network of sizeN scales asH logN . Thus, in our approach, the
small amount of information parameterizing the g-network can
be used to encode even very large p-networks making it distinct
from other approaches.

Our results contribute to a growing literature highlighting the
importance of inductive biases in machine learning. Much of
this literature is focused on achieving faster learning. Perhaps
the most successful examples are convolutional neural networks
(18), which exploit the translational invariance of images with
an architecture inspired by the structure of receptive fields in the
early sensory cortex (37). However, the present work—inspired
by evolutionary constraints (Fig. 2D)—is focused not on faster
learning but rather on enhanced initial performance, a goal that
has received comparatively less attention (but see ref. 38). Indeed,
in our experiments, we find that genome-initialized networks
start at a higher level of performance but then follow the same
trajectory as randomly initialized networks (Fig. 3D). Although
these results highlight the potential dissociation of two distinct
processes—better initial performance and faster learning through
inductive biases—there is likely strong evolutionary pressure to
maximize both.

The relative importance of genomically encoded innate struc-
tures in determining specific human abilities such as language
has been hotly debated, but the importance of innate factors
to the behavior of other animals is less controversial. For both
humans and animals, the better question is usually not whether
a behavior is innate, but rather how innate and learned factors
interact. For example, the propensity to form “place fields” in the
hippocampus is innate—a map of space emerges when young
rat pups explore an open environment outside the nest for the
very first time (39)—but the content of place fields is learned,
as new place fields form whenever the animal enters a new
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environment. In this example, it appears that, as suggested by
our experiments, innate performance has been maximized by
providing a scaffolding for place fields to appear.

The genomic bottleneck takes its inspiration from funda-
mental considerations about the evolution and development of
brain circuits. Although the genomic bottleneck algorithm builds
on existing machine learning techniques and yields surprisingly
effective performance, we have not attempted to optimize this
approach to compete with state-of-the-art benchmarks. The
bottleneck framework is potentially quite rich and could be
extended in several directions. For example, we have not explored
variations in the structure of the genomic network, e.g. by
imposing a sparseness constraint. Such a constraint would
have the physical interpretation of limiting interactions among
surface neuronal markers. Similarly, at present, each layer is
compressed with its genome, but it would be natural to attempt to
extract regularities among layers by encoding them with a single
genome. Furthermore, in the current formulation, the decoding
of the genomic network is deterministic, whereas developmental
rules are often stochastic, so the decoding framework might
be generalized to include rules like “let each neuron connect
on average to 10% of nearby neighbors” or a more complex
stochastic rule (40). Finally, the framework could be extended to
co-optimize the learning rules and the wiring.

Methods

MNIST/F-MNIST Dataset. For the MNIST and F-MNIST datasets, we used a fully
connected 2-layer network that included 800 hidden layer ReLU units (41). We
did not use data augmentation for simplicity and our network could be trained
to 98% performance on testing data. The number of parameters in the MNIST
network was, therefore, 282

× 800 + 800× 10 weights and 800 + 10 biases
amounting to the total of 636,010. We used three g-networks to encode two
weight matrices and one bias vector for the hidden layer. The ten biases for the
output layer were not compressed since the corresponding g-network would
include more than ten parameters. The structures for various configurations of
the three g-networks are listed in Table 1. The schematic of the structure of the
g-network for the MNIST dataset is shown in SI Appendix, Fig. S.1B.

Each neuron was described by a binary label of length 10. For the neurons in
the input image, the label encoded two coordinates of the neuron’s position in
the image, 5 bits for the x and y coordinates. Both coordinates were represented
by the Gray code. The neurons in the hidden layer were represented by simple
binarycodesrangingfrom1to800sincetheirorder isofnoparticular importance.
The ten neurons in the output layer were encoded by the one-hot vector of 10
bits. Each neuron in the networks was therefore described by a ten-bit label.
The inputs into each of the two g-networks that generated weight matrices
represented pairs of neurons and had a length of 20 bits. The output of
g-network is the value of the corresponding weight between two input neurons
and was a single real number (Table 1). For the network generating biases for
the hidden layer, the input contained the binary label for the neuron and was
therefore 10 bits long.

To train g-networks, we developed the intermittent training paradigm. Before
the first iteration, the p-networks are initialized randomly. In each iteration of this
method, we train the p-network using a subset of images. For the MNIST network,
this training used 10,000 images from the training set or 1/6th of the epoch.
This yielded a higher-performance p-network with the set of weights described

by matrix Wn. We then train g-networks to approximate this weight matrix by
backpropagating the difference between the g-network output (W̃n) andWn. We
used different numbers of weights to train each of the three g-networks on each
iteration (105, 104, and 104 for hidden layer, output layer, and hidden layer
biases g-networks, respectively). This amounted to about 1/6th of all weights
and further accelerated training in each generation. We then used the adjusted
g-networks to generate the complete set of p-network weights W̃n+1 that served
as initial conditions for the next generation (SI Appendix, Fig. S.2A). This set of
iterations mimicked real biological evolution as it alternated the generation of p-
networks from g-networks, analogous to neural development, and improvement
of p-networks similar to natural selection. We repeated these iterations 500 times
to achieve the asymptotic performance. We provide the details in Algorithm 1.

CIFAR-10/SVHN Datasets. In this example, we used an all-convolutional
9-layer implementation of network (42) (SI Appendix, Fig. S.1C). Between layers
3 and 4, we included the dropout layer with 50% dropout probability. The
network could be trained to 89% correct rate without data augmentation. Each
layer in this 9-layer CNN was generated via two g-networks, one for the weight
matrix and one for the biases. To provide inputs into the g-networks for weights,
we described positions in the weight matrix by a 20-bit binary number. For the
lowest 8 layers, the binary number was composed of 2 + 2 bits containing
Gray code representation for the input coordinates within the CNN kernel, 8 bits
representing the input filter type, and 8 bits representing the output filter type.
The latter two components were formed as consecutive binary numbers since
input/output filter identity is not expected to form a continuous topographic
space. In this representation, the input neurons were identified by a 12-bit
binary label (2 + 2 Gray + 8 binary) while the output neurons are identified by
the 8-bit label. The binary labels for the last CNN layer were composed of 1 +
1 binary Gray (dummy) bits representing two coordinates within the kernel, an
8-bit binary number representing the input filter, and a 10-bit one-hot vector
encoding the output class. The bias networks for the first eight layers received an
8-bit label encoding the output filter. The bias network for the last layer received
the one-hot vector encoding one of the ten output classes. The structures of
different g-networks used are summarized in Table 2.

To train the 18 g-networks described above, we used the intermittent training
strategy described for the MNIST network. We used minibatch sizes of 10, 100,
and 1,000 for bias g-networks for layers 1 to 3, 9, bias g-networks 4 to 8, and
all weight matrix g-networks, respectively. We used the minibatch size of 128
to train the CIFAR-10 network. We used the stochastic gradient descent (SGD)
optimizer for the CIFAR-10 network with a learning rate of 0.05 and a momentum
of 0.9 for stability. We used the adaptive momentum (ADAM) optimizer for all
g-networks. In each iteration, we first trained the CIFAR-10 network using 10
complete epochs, i.e. 10 complete sweeps through the entire training set of
images. In the second step, we trained weight and bias g-networks using 2 and
10 epochs respectively (we trained g-network weight networks for layers 1 and
9 using 12 epochs in each iteration) to match the CIFAR-10 network adjusted
weights resulting from the first step. This sequence of two steps was repeated
500 times.

Because our network was relatively deep (9 layers), we encountered a
problem with the initialization of g-networks. Indeed, if g-networks are initialized
randomly, they produce p-networks that are far from the optimal fixed point.
We found that such p-networks are impossible to train. This problem is
exacerbated in moderately deep p-networks due to the exponential divergence
of initialization errors from layer to layer. In practice, such p-networks return
zero activations, which yield no gradients of weights. To solve this problem, we
implemented the weight annealing strategy. In each iteration of our algorithm
(out of 500), before the p-network was trained, the weight matrices and biases

Table 1. The structure of g-network for the MNIST dataset
g-network Bias net g-network MNIST

g-network name structure structure parameters parameters Compression

GN5 (20− 10− 5− 1)× 2 10− 5− 1 613 636,010 1,038×
GN20 (20− 20− 10− 1)× 2 1,353 470×
GN30 (20− 30− 10− 1)× 2 1,973 322×
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Algorithm 1: Training g-networks and p-networks

Input: p_network, g_networks, p_dataset, generations, learning schedule "
Input: p_fraction, g_fraction #fractions of dataset to train on
Input: p_cost, g_cost, p_optimizer, g_optimizer, p_batch_size, g_batch_size

for generation from 1 to generations do
# Train the p-network for a fraction of an epoch:
for p_batch_number from 1 to (p_fraction * size(p_dataset) / p_batch_size) do

[p_inputs, p_targets] = p_dataset.get_next_batch()
p_predictions = p_network(p_inputs) #forward pass
cost = p_cost(p_predictions, p_targets) #typically cross-entropy
cost.backward() #backpropagation
p_optimizer.step() #update p-network weights

end for

# Train the g-networks for a fraction of an epoch:
for layer in p_network.layers do

all_g_inputs = all_g_inputs_all_layers[layer] #coordinates in the weight matrix
all_g_targets = flatten(layer.weight) #weight matrix values
for g_batch_number from 1 to (g_fraction * length(layer.weight) / g_batch_size) do

[g_inputs, g_labels] = [all_g_inputs, all_g_labels].get_next_batch()
g_predictions_for_p_weights = g_networks[layer](g_inputs) #forward pass
cost = g_cost(g_predictions_for_p_weights, g_targets) #typically MSE
cost.backward() #backpropagation
g_optimizer.step() #update g-network weights

end for
end for

# Combine p-network weights and g-network output:
for layer in p_network.layers do

g_inputs = all_g_inputs_all_layers[layer] #coordinates in the weight matrix
g_predictions_for_p_weights = g_networks[layer](inputs) #forward pass
" = "[generation]
layer.weight = " * layer.weight + (1 - ") * g_predictions_for_p_weights

end for
end for

of the p-network were combined from the results of the CIFAR-10 training in
the previous iteration, Wn−1, and the weights generated by g-network in the
previous iteration, W̃n−1(G):

Wn = �(n)Wn−1 + W̃n−1(G)[1− �(n)] [3]

The coefficient �(n) determined the degree to which the inputs from g-networks
affect the p-network’s weight matrix. If �(n) = 1, the weight matrix of the
p-network is entirely determined by the result of the previous iteration of the
CIFAR-10 training and is not sensitive to the inputs from the g-network. In
the other extreme, when �(n) = 0, the values of p-network weights and
biases are entirely generated by the g-networks. We, therefore, assumed that
�(n) ≈ 1 at the beginning of training, when g-networks are naive, and
�(n) → 0 at the end of training. We adopted an exponential annealing
schedule with �(n) = exp(−n/�), where parameter � = 20 determined
the number of iterations in the intermittent training over which the g-networks
are assumed to be naive and irrelevant, and initialization using g-networks
is assumed to be detrimental. Since, in our approach, the total number of

iterations is 500, the initialization period is negligibly short compared to the
whole training (�� 500).

RL Methods. We performed experiments on two reinforcement learning tasks
from the OpenAI Gym environment (43): BeamRider and HalfCheetah. The
details of the experiments follow.

For the first experiment, we tested the genomic bottleneck on solving the
BeamRider task, which is part of the ATARI benchmark (27). The task in the
BeamRider is to traverse a series of sectors where each sector contains 15
enemies and a boss at the end. Additionally, the agent needs to avoid or destroy
the debris coming its way. The agent is equipped with three torpedoes that can
be used to kill the enemies or destroy the debris.

We used the pixel images of ATARI frames as our state space. ATARI frames are
210× 160-pixel images with a 128 color palette. This makes it computationally
expensive to use it directly as input to the network. To reduce the dimension
of the input, we performed the following preprocessing steps on the images:
conversion of the RGB image to grayscale, cropping it to get an image of size
190× 144, and finally resizing it to the size 84× 84. The action space is of size

Table 2. The structure of g-network for the CIFAR-10 dataset
g-network Bias net g-network CIFAR-10

g-network name structure structure parameters parameters Compression

GN10 (20− 10− 10− 1)× 9 8− 10− 1 3,798 1,369,738 361×
GN30 (20− 30− 10− 1)× 9 9,378 146×
GN50 (20− 50− 10− 1)× 9 14,958 92×
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9 with various possible actions: fire up, fire, up, left, right, left fire, right fire, up
left, up right, and do nothing. The score obtained while playing the game was
used as the reward signal.

For the p-network, we used Dueling Deep Q Network (Dueling DQN) (28) to
train them on this task. Dueling DQN breaks the calculation of the Q-value into
two parts. Q(s, a) = V(s) + A(s, a), where V(s) represents the value of state
s and A(s, a) represents the advantage of performing an action a while in the
state s. The value of a state is independent of action. This aids us in avoiding the
overshoot of the Q-value that otherwise occurs in deep Q networks (44). Since
the states are independent of action, action would not have a high Q-value to
train on and thus Q-value would not overshoot. This makes the training smooth
and less time-intensive.

The p-network architecture includes three 2D convolutional layers and three
fully connected layers with a total size of ∼3 M parameters. The input to the
Dueling DQN is our preprocessed image of size 84× 84 and the output is the
Q-value associated with each action.

For the second task, we moved to a more challenging task i.e. HalfCheetah
(29). One challenging aspect of this task is that the HalfCheetah uses continuous
action spaces rather than discrete unlike most of the ATARI games. This leads to
a performance deficit in value approximation-based methods like Dueling DQN.

The state-space of the HalfCheetah is of size 17 which contains the position,
angles, and velocities of 8 joints (6 hinge + 2 slider joints). The action space
is a 6-dimensional continuous space consisting of the torques applied to each
hinge joint respectively. Since we want to maximize the velocity with minimum
force generation, the reward function needs a combination of two components.
The first component provides a reward for velocity and the second component
gives a penalty for using more force.

For training the p-network for this task, we need a training method that can
deal with continuous action spaces. The class of methods that addresses this
domain includes policy gradient methods because they can directly approximate
the policy of the agent from the state. Proximal policy optimization (PPO) (45)
is one of the most popular policy gradient methods and is heavily used for such
continuous action space tasks. One of the main reasons behind this is that policy
gradient methods have a convergence problem which is usually addressed
by the natural policy gradient. However, in practice, natural policy gradient
involves a second-order derivative matrix, making it not scalable for large-scale
problems. PPO uses a slightly different approach. Instead of imposing a hard
constraint, it formalizes the constraint as a penalty in the objective function.
By not avoiding the constraint at all costs, PPO was able to use a first-order
optimizer like the gradient descent method to optimize the objective resulting
in faster convergence. The p-network architecture of the HalfCheetah consists of
three fully connected layers with 6,092 trainable parameters. The input to our
p-network is the state vector of the environment and the output is the action the
agent should take given that state.

Data, Materials, and Software Availability. There are no data underlying
this work.
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