
 1 

Diversity and task-dependence of task representations in V1 during freely-moving decisions  1 
Anqi Zhang1,2,3, Anthony M. Zador1* 2 

1 Cold Spring Harbor Laboratory, Cold Spring Harbor NY  3 
2 Cold Spring Harbor Laboratory School of Biological Sciences, Cold Spring Harbor NY 4 
3 Present address: Department of Molecular and Cellular Biology, Harvard University, Cambridge 5 
MA  6 

*Correspondence: zador@cshl.edu 7 
 8 

Abstract 9 
Neurons in primary visual cortex (area V1) are strongly driven by both sensory stimuli and non-10 
sensory events. However, although the representation of sensory stimuli has been well 11 
characterized, much less is known about the representation of non-sensory events. Here, we 12 
characterize the specificity and organization of non-sensory representations in rat V1 during a 13 
freely-moving visual decision task. We find that single neurons encode diverse combinations of 14 
task features simultaneously and across task epochs. Despite heterogeneity at the level of single 15 
neuron response patterns, both visual and non-visual task variables could be reliably decoded from 16 
small neural populations (5-40 units) throughout a trial. Interestingly, in animals trained to make 17 
an auditory decision following passive observation of a visual stimulus, some but not all task 18 
features could also be decoded from V1 activity. Our results support the view that even in V1—19 
the earliest stage of the cortical hierarchy—bottom-up sensory information is combined with top-20 
down non-sensory information in a task-dependent manner.  21 
 22 

Introduction 23 
 The brain processes and transforms sensory inputs to generate appropriate motor outputs. 24 
How brain areas contribute to this goal is related to the features they can represent. In primary 25 
visual cortex, neural activity has historically been characterized in terms of stimulus parameters 26 
such as orientation, spatial frequency, temporal frequency, and direction of visual motion 27 
(Felleman and Van Essen 1991; Hubel and Wiesel 1959; Marques et al. 2018). By contrast, 28 
complex combinations of task-relevant and abstract features are often found in downstream areas 29 
in parietal and frontal cortices (Hanks et al. 2015; Krumin et al. 2018; Morcos and Harvey 2016; 30 
Raposo et al. 2014; Scott et al. 2017). Although it has been long been recognized that sensory 31 
cortices are not driven solely by bottom-up sensory inputs—the first single unit recordings reported 32 
attentional modulation of auditory responses in the cat (Hubel et al. 1959)—there has recently been 33 
growing recognition of the importance of non-sensory responses in primary visual cortex (V1), 34 
such as those related to locomotion, arousal, and body movements (Musall et al. 2019; Niell and 35 
Stryker 2010; Vinck et al. 2015). 36 
 The role of non-sensory responses in primary sensory cortices remains an open question. 37 
Although sensory representations in primary sensory cortices are important for perceptual 38 
decisions, the magnitude of stimulus-evoked activity in sensory cortices is frequently 39 
overshadowed by the magnitude of activity due to task-condition, movement or outcome (Musall 40 
et al. 2019; Niell and Stryker 2010; Orsolic et al. 2021; Otazu et al. 2009; Shuler and Bear 2006; 41 
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Stringer et al. 2019). Non-sensory signals both modulate and appear independently of sensory-42 
related activity in primary visual and auditory cortices (Guitchounts et al. 2020; Jaramillo and 43 
Zador 2011; Keller et al. 2012; Musall et al. 2019; Niell and Stryker 2010; Shuler and Bear 2006; 44 
Steinmetz et al. 2019; Stringer et al. 2019). In V1, non-sensory representations may support some 45 
visual computations, such as computing visual expectations during virtual reality locomotion or 46 
navigation, and in these cases are coherent with relevant sensory representations (Fiser et al. 2016; 47 
Keller et al. 2012; Poort et al. 2015; Saleem et al. 2018). However, non-sensory driven activity has 48 
also been observed when such computations are not necessary, and can both correlate with and 49 
occur independently of task variables (Musall et al. 2019). We set out to understand how task-50 
related non-sensory activity is organized and how it relates to sensory encoding and task demands.  51 
 Here we used extracellular methods to record responses from single neurons in area V1 of 52 
freely moving rats performing a visual discrimination task. We find that neurons in this area encode 53 
both sensory and non-sensory task variables. In control animals trained to perform a similar but 54 
non-visual task, the encoding of sensory stimuli was similar, but the fidelity with which some non-55 
sensory task variables were encoded was markedly diminished. Our results demonstrate that even 56 
in V1—the earliest stage of the cortical hierarchy—bottom-up sensory information is combined 57 
with top-down information in a task-dependent manner.  58 
 59 

Results 60 
 In what follows, we first describe a visual spatial discrimination paradigm for freely moving 61 
rats, along with software methods to constrain the animal’s viewing position and angle. Then, we 62 
characterize visual and nonvisual representations in V1 single neuron activity recorded using 63 
tetrode microdrives. We analyze this activity for representations of task parameters such as 64 
stimulus, choice, movement parameters, and outcome. We then investigate whether neurons are 65 
specialized for encoding single task features, or are influenced by combinations of task features 66 
within and across task epochs. Conversely, we ask to what extent these task features can be read 67 
out from neural populations at various points in the task. Finally, we compare V1 response profiles 68 
during the visual spatial discrimination to those during an analogous but visually-independent task.  69 

 70 
“Cloud of dots” visual discrimination task 71 
To probe the patterns of representations in primary visual cortex during a freely moving visually 72 
guided behavior, we first designed a fixed-time visual discrimination task for freely moving rats. 73 
Rats were placed into a behavior chamber containing three nosepokes (Uchida and Mainen 2003, 74 
Otazu et al. 2009). Rats self-initiated trials by poking into the center stimulus viewing port, and 75 
were presented with a 500ms-long visual stimulus of distributed flickering dots (Figure 1a). They 76 
were asked to judge the region of higher dot density (top versus bottom) presented in the stimulus 77 
and reported their decision by poking into one of the side nosepokes after delivery of a decision 78 
tone signaling the beginning of the decision period. Correct choices earned a small water reward, 79 
while incorrect choices earned a punishment tone and time-out.  80 
 The spatially distributed stimuli were designed to exploit the retinotopic organization in 81 
V1, but neural responses would only be interpretable if the stimulus could be oriented in a 82 
reproducible manner with respect to the animal's visual field over trials. We therefore additionally 83 
required animals to fulfill a head position criterion prior to and throughout the duration of stimulus 84 
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delivery. We did not control for eye position because we reasoned that the small amplitude eye 85 
movements made by rats, which are reduced further when the head is stationary (Wallace et al. 86 
2013), would not impact the low spatial resolution (upper versus lower) at which animals were 87 
required to discriminate. Instead of a physical head fixation protocol (Scott et al. 2013), we 88 
developed a non-invasive software-based method to virtually constrain the viable head positions 89 
at the stimulus viewing port (Figure 1b). We used Bonsai open source software to continuously 90 
acquire and segment online video of the behavior chamber (Lopes et al. 2015). Upon trial initiation 91 
by the animal, we measured the size and relative position of the animal’s ears in predefined regions 92 
of interest (adjusted on a per-animal basis). As long as both size and distance criteria (in both x 93 
and y dimensions) were met, the trial was allowed to continue. If any criterion was violated prior 94 
to or during stimulus presentation, the trial was aborted and a short time out was delivered. We 95 
trained animals to fulfill this postural criterion immediately following acquisition of the decision 96 
rule. Rats learned to adjust their head position over the first few sessions of head position training, 97 
improving their proportion of successfully completed trials (Figure 1c). 98 
 We trained 17 rats to perform this discrimination task, reaching a level of 90%+ accuracy 99 
on easiest trials over the course of 16 (median, IQR=16.75) sessions. Of these, 12 animals were 100 
trained to maintain head position, and recordings in V1 were made from 5 of these animals. Choice 101 
accuracy varied with stimulus difficulty, producing psychometric behavior within and across 102 
sessions (Figure 1d).  103 
 104 
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 105 
Figure 1. Rats reliably learn a “cloud of dots” visual discrimination task. a. Task design, with example stimulus 106 
frames for upper hemifield (top) and lower hemifield (bottom) trials (left: easy, right: difficult). Stimulus duration is 107 
0.5s, all other task epochs have variable duration. b. Virtual head fixation algorithm, condition is active for portion of 108 
trial marked by green line in A. c. Proportion of trials completed increased as animals were trained on head fixation. 109 
Across animals trained on head fixation after learning the visual rule, the mean proportion of completed trials on day 110 
1 of training was 0.498; this increased to 0.679 by day 9. Black trajectories denote animals whose neural recordings 111 
were included in this dataset, gray trajectories denote animals who were trained but no recordings were performed. d. 112 
Animals typically reached stable performance above 90% accuracy on easy trials in fewer than 30 sessions (median = 113 
16 sessions, +/-10 std). Color scheme as in c. e. Psychometric performance on single sessions after reaching 114 
performance criterion on easy stimuli, prior to neural recordings, for each animal included in neural dataset. Error bars 115 
indicate standard error of the mean. 116 
 117 
Diversity of responses in primary visual cortex during discrimination behavior 118 
We used 32-channel tetrode drives to record putative single unit activity in V1 during this visually-119 
guided (Figure 2a) decision task in order to understand the extent and specificity of task-related 120 
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information available to this early stage in the visual pathway. We recorded neuronal responses in 121 
V1 from 516 units in 5 rats. In what follows we analyze responses from well-isolated single units 122 
(n=407), defined as those with consistent, large-amplitude waveforms and fewer than 1% ISI 123 
violations. The peak mean activity of an individual unit could occur at any point during the trial, 124 
with an enrichment of units showing maximum activity during the movement epoch (Figure 2b,d). 125 
The activity patterns were similar in multiunit activity (n=109, Supplementary Figure 3).  126 
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 127 

Figure 2. Tuned representations of several task features during visual discrimination by V1 single neurons.  a. 128 
Recording sites, and definitions of task epochs used in analysis. Schematic adapted from Paxinos and Watson (2007). 129 
V1M: primary visual cortex (monocular); V1B: primary visual cortex (binocular); V2L: secondary visual cortex, 130 
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lateral area; V2MM: secondary visual cortex, mediomedial area; V2ML: secondary visual cortex, mediolateral area; 131 
ITI: intertrial interval. b. Mean trial-aligned z-scored activity for all single units in the cloud of dots task (N=5, n=407) 132 
spans the duration of the trial. Adjusted time aligns all trials to the same time axis to allow pooling of variable length 133 
epochs (see Methods). Task epochs as denoted by colored bar above. c. Firing rate distribution of putative single units. 134 
d. Proportion of single units displaying peak activity in each epoch, normalized to the mean duration of each epoch. 135 
e. Example neuron preferring stimuli with more dots in the lower half ("lower preferring"). f. Example cell displaying 136 
left choice preference during movement period activity. g. Example cell displaying reward preference during outcome 137 
epoch. h. Proportion of visual location tuned cells in recording dataset. i. Proportion of choice direction tuned cells. j. 138 
Proportion of reward tuned cells. k. Proportions of cells with significant modulation of activity (paired t-test of epoch 139 
rates within trials, p<0.05) during stimulus (s, green), movement (m, blue), or outcome (o, purple) epochs compared 140 
to pre-stimulus baseline (epoch 1 from panel b). l. Proportion of all single units (n=407) tuned to some combination 141 
of stimulus (s), choice (c), and outcome (o) across epochs.  142 

 We first quantified the tuning properties of single units to sensory and non-sensory task 143 
features during different task epochs. For each epoch of interest, we limited our analysis to single 144 
units firing more than 1 spike/s on average during that behavioral epoch. As a result, the set of 145 
single units included for each epoch differed slightly (for example, a neuron that fired during 146 
stimulus presentation but was silent during movement would be included in stimulus epoch tuning 147 
analyses but not movement epoch tuning analyses; see Methods for details). For each feature of 148 
interest (stimulus identity, choice side, outcome), we defined a selectivity index (si) to compare 149 
the activity evoked by different conditions within a given task epoch: 150 
 151 

𝑠𝑖 = 	 !"!"#$%&%"#_(#!"!"#$%&%"#_)
!"!"#$%&%"#_($!"!"#$%&%"#_)

     (1) 152 

 153 
where conditions A and B refer to the two conditions being compared. In the case of stimulus 154 
selectivity, for example, FReasy lower stimulus refers to the firing rate for the 0.5s following stimulus 155 
onset when an easy lower stimulus was presented. Comparing the observed selectivity indices to 156 
the distribution of indices calculated from the shuffled label control, we identified 39% (118/305) 157 
of the single units that were active during the stimulus epoch as significantly stimulus selective 158 
(Figure 2h).  159 
 We also observed many neurons with above-baseline activity during task epochs other than 160 
the stimulus epoch (Figure 2b, k). Activity in later task epochs was often tuned to non-visual task 161 
variables such as choice side and outcome. For example, we observed units that preferentially fired 162 
during the movement epoch to one choice side over the other, and units whose activity during the 163 
outcome period was modulated by reward delivery (Figure 2f,g). Applying the selectivity index 164 
analysis to the choice epoch, we found that 47% (165/348) of single units that fired >1 spike/s in 165 
this epoch had choice side selectivity across all difficult trials, and thus had “robust choice 166 
selectivity” (Figure 2i), while 72% (250/348) were significantly side selective compared to 167 
shuffled data controls on at least one trial condition. During the outcome epoch, 66% (200/306) 168 
had reward outcome selectivity (Figure 2j). Choice tuning was also significant in a sizeable 169 
proportion of units during the outcome epoch (42%, 127/306). Many neurons were selective for 170 
combinations of these three features across epochs (Figure 2l). Thus, choice and outcome strongly 171 
modulated single neuron activity in V1 during later task epochs, during which many neurons had 172 
their peak activity.  173 

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 7, 2022. ; https://doi.org/10.1101/2022.07.06.498845doi: bioRxiv preprint 

https://doi.org/10.1101/2022.07.06.498845
http://creativecommons.org/licenses/by-nc/4.0/


 8 

 We then asked how the specificity of the stimulus-evoked neuronal responses compared to 174 
the animals’ behavior. Across the population, the firing rates during the stimulus period were 175 
typically modest (mean 7.2 +/- 7.8 spikes/s, median 4.7 spikes/s, Figure 3a), and only a minority 176 
(39%) of neurons that were active (>1 spike/s) during the stimulus presentation were selective for 177 
upper vs lower stimuli. Of those that were selective, most were weakly selective: Only about 1% 178 
of neurons (4/305) had a selectivity index greater than +/- 0.7 (Figure 3b). Across the population, 179 
no single unit matched the sensitivity of the animal’s performance on the corresponding session 180 
(Figure 3c). We also assessed the trial-to-trial variability in stimulus epoch firing predicting the 181 
animal’s choice, by using either a selectivity index or ROC analysis to estimate choice probability. 182 
Consistent with previous reports in primates (Nienborg and Cumming 2006), choice probabilities, 183 
calculated as the selectivity for future choice from stimulus period activity for a given stimulus 184 
condition, were low in V1, with only 2% (5/305) of cells having significant choice probabilities 185 
during presentations of difficult stimuli, relative to a shuffle control (Figure 3d). Choice probability 186 
calculated using ROC analysis produced similar results (7/305, Supplementary Figure 3a). Thus, 187 
activity during the stimulus period reflected the true stimulus more than the perceived stimulus or 188 
upcoming choice.  189 

 190 

Figure 3. Stimulus epoch activity elicited by “cloud of dots” stimulus is spatially tuned, but less accurate than 191 
the animal’s behavior. a. Firing rate distribution across putative single neurons during stimulus epoch. b. Distribution 192 
of stimulus selectivity index across all cells active in the stimulus epoch. Blue (lower-preferring, 64/305) and orange 193 
(upper-preferring, 54/305) histograms denote cells with significant stimulus selectivity, compared to a shuffle control. 194 
c. Comparison of psychometric (black) with neurometric (blue) curve for best lower-preferring cell. Inset: Comparison 195 
of psychometric and neurometric slopes across all single units used for stimulus selectivity analysis. Dashed line 196 
indicates unity line. d. Selectivity index-based choice probabilities in V1 single neurons (see Methods). Cells with 197 
significant choice probabilities are shown in blue (3/305) and orange (2/305). 198 

To further understand non-sensory drivers of activity in V1, we asked whether non-sensory 199 
tuning was purely transient, arising only at the moment of the non-sensory event, or whether non-200 
sensory task parameters could exert a persistent influence that spanned trials. We found that some 201 
cells were modulated by previous trial parameters, such as whether the previous trial was rewarded, 202 
and which choice port was selected in the previous trial (Figure 4a). Such response profiles 203 
indicated that choice and outcome tuning do not only influence V1 activity transiently and 204 
instantaneously, but rather can be represented in a sustained or history-dependent manner within 205 
single cells.  206 

We then asked if there is a systematic relationship between stimulus preference and choice 207 
preference in single units. About a fifth (21%, 51/239) of units tuned to either stimulus or choice 208 
were tuned to both. However, co-tuning could not be predicted from task contingencies, with 209 
tuning opposite to the reinforced association in about half of these neurons (47%, 24/51; Figure 210 
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4b). Across the population, we found no correlation between stimulus and choice side selectivity 211 
indices (Pearson correlation, p=0.22). Thus, single neurons encoded combinations of stimulus and 212 
choice, including combinations that differed from task contingencies reinforced during training.  213 

Similarly, we compared the movement responses elicited during the two between-port 214 
movements in our task: the center-to-side choice movement, versus the side-to-center trial 215 
initiation movement. We found both cells that displayed similar tuning preferences and response 216 
dynamics across the two movements and cells that had different response amplitudes or tuning 217 
preferences (Figure 4c). For this analysis, we restricted initiation movements to those that were 218 
completed in < 0.5s between side port exit and center port entry, corresponding to direct port-to-219 
port movements of similar latency as choice movements. There was no significant correlation 220 
across the population between tuning direction and magnitude, when calculated by selectivity 221 
index, across these two epochs (Figure 4d). Thus, movement-direction tuning appeared to be 222 
modulated by task epoch.  223 

We repeated this correlation analysis for all pairs of task variables using the selectivity 224 
measure described above (Eq. 1). There was in general no systematic relationship between tuning 225 
preferences: We observed predominantly weak, insignificant correlations between selectivity to 226 
most pairwise combinations of task variables, indicating that tuning preferences were largely 227 
independent across task features (Fig. 4e). 228 

Taken together, these analyses show that responses in V1 during this task are driven by 229 
features not limited to sensory input, but also including movement direction and outcome, 230 
sometimes influenced by multiple parameters, such as previous trial features or current task epoch.  231 
 232 

 233 

Figure 4. V1 single neuron tuning to non-sensory task variables. a. Example cells showing modulation of task-234 
related activity by previous trial behavioral variables during stimulus and/or choice epochs. b. Left: Example cell 235 
showing anti-coherent tuning between stimulus and choice epoch. Right: No significant correlation between stimulus 236 
and choice selectivity across cells. c. Comparison of between-port movement responses within movement-responsive 237 
cells (initiation epoch, grey, versus choice epoch, blue). i) Example cell with similar leftward-preference during both 238 
task epochs. ii) Example cell with varying side preference and amplitude of movement side-selective responses 239 
between initiation and choice epochs. d. Side-selectivity index of between-port movements is uncorrelated between 240 
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choice and initiation movements. e. Selectivity indices across pairs of task features are mostly uncorrelated within 241 
neurons. Highlighted squares indicate pairs of features that are significantly correlated (p<0.05, Bonferroni corrected 242 
for multiple comparisons). Legend: s = stimulus, cp = choice probability, c = choice, os = outcome side, o = outcome, 243 
id = initiation direction, pc(s) = previous choice (stimulus period), pc(m) = previous choice (movement period) 244 

 245 
V1 neurons encode diverse, unstructured combinations of stimulus and task variables within 246 
and across task epochs 247 
 Having observed a variety of single neuron response patterns in V1, we next set out to 248 
quantify the relative influence of different task variables on single neuron activity over the course 249 
of a trial. To systematically interrogate how task features influenced single neuron activity at 250 
different points in the task, we fit a linear encoding model to estimate the relative influence of each 251 
task feature on the firing rate y of a given neuron during task epoch 𝑖	(Figure 5b), 252 

𝑦% =	𝛽%,' + 𝛽%,(𝑥( + 𝛽%,)𝑥) +⋯+ 𝛽%,('𝑥('   (2) 253 

where 𝑖 = 1…5  denotes the task epoch; 𝑥(… 	𝑥('  denote the following behavioral variables: 254 
stimulus identity (𝑥(), choice (𝑥)), reaction time (𝑥*), movement latency (𝑥+), choice correctness 255 
(𝑥,), reward delivery (𝑥-), port last exited on the previous trial (i.e., port visited directly preceding 256 
initiation poke, 𝑥.), previous trial choice (i.e., port first visited at previous trial decision time, 𝑥/), 257 
previous trial outcome (𝑥0 ), and previous trial stimulus identity (𝑥(' );  𝛽%,(…𝛽%,('  are their 258 
corresponding weight coefficients within epoch 𝑖, and 𝛽%,' is the intercept. Note that behavioral 259 
variables do not depend on the epoch, as each takes on only one value per trial, i.e. each trial has 260 
only one choice side, one reaction time, etc. The model was fit using Lasso regularization with 10-261 
fold cross validation, to derive weights to identify the most informative behavioral variables. We 262 
quantified the total variance explained by the model, as well as the relative contribution of each of 263 
those variables, by comparing the variance explained by the model when including versus 264 
excluding each variable.  265 

In previous analyses above (Fig. 2) we observed that a larger fraction of single neurons in 266 
V1 responded during choice and outcome epochs than during the stimulus presentation. Consistent 267 
with this, we found that the model also explained a larger total proportion of the variance of choice 268 
and outcome epoch activity (mean variance explained of 0.19 and 0.25, respectively, Figure 5b), 269 
compared to the stimulus epoch (mean variance explained of 0.09; distributions are significantly 270 
different by the Kolmogorov-Smirnov test, p<10-14 for both).  Furthermore, within the stimulus 271 
epoch, we found more total cells whose activity was better explained by one of several previous 272 
task features, such as previous choice, outcome, and exit port side, than by current stimulus identity. 273 
Thus, single neuron firing variability was consistently better explained by non-stimulus task 274 
variables, over the course of the trial and even during stimulus presentation.  275 
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 276 
Figure 5. Single neurons represent combinations of task features within and across task epochs. a. Design of 277 
linear encoding model. Trial divided into 5 epochs, as marked. Linear model was fit using 10 task parameters to predict 278 
trial-by-trial firing rates within epochs: 1) stimulus, 2) choice, 3) reaction time, 4) movement latency, 5) correctness, 279 
6) reward delivery, 7) previous trial last port visited, 8) previous trial choice, 9) previous trial outcome, 10) previous 280 
trial stimulus. b. Box and whisker plot of total variance explained by the model, by epoch. c. Relative variance 281 
explained by individual regressors in the linear encoding model, by epoch. Total variance explained for each neuron 282 
is shown in the rightmost column in each epoch. The left 10 columns show the proportion of the explainable variance 283 
attributed to each regressor for each neuron (darker shading = higher proportion of total variance explained, see 284 
Methods). Neurons (rows) are clustered and sorted within epochs. In some units, single regressors dominate the 285 
explainable variance, while in others, multiple regressors contribute to the encoding model, revealing the presence of 286 
both “specialized” and “mixed” encoding by cells during each epoch. d. Distribution of maximum contribution by a 287 
single task parameter to predictions. Thresholding at a relative contribution of 0.8 separates cells into “mixed” (orange 288 
shading) and “specialized” (blue shading) encoding profiles. Cells with maximum relative contribution near 0 are 289 
excluded as not being well-driven by any of the regressors. Right: Proportions of specialized versus mixed encoding 290 
cells across epochs. e. t-sne embedding of encoding profiles of single units in the outcome epoch, clustered by cluster 291 
identities from the choice epoch. Inset shows the same embedding, clustered by outcome epoch cluster identities. 292 
Color denotes cluster identity. f. Cluster goodness-of-fit measure (adjusted Rand Index; see Methods) for all pairwise 293 
comparisons of epochs A and B. Clustering different epochs produces fewer shared cluster members than two 294 
independent partitions of the same epoch.   295 
 296 

Of the activity explainable by our model, we wanted to know whether cells were 297 
predominantly “specialized” for encoding a single task variable, or encoded a “mixture” of task 298 
variables. Based on the distribution of the most prominent task feature’s contribution to the linear 299 
model, we set a cutoff that classified features surpassing a relative contribution of 0.8 as 300 
dominating a given neuron’s response, and that neuron was subsequently designated as 301 
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“specialized” during that epoch. Otherwise, the neuron was designated as having “mixed” 302 
representations, with more than one task variable contributing substantially to its activity in that 303 
epoch. In most epochs, the majority of single neurons (between 55% and 80%) were driven by a 304 
combination of task features, rather than a single feature. The closest ratio was in the choice epoch, 305 
where there were almost as many specialized choice-selective neurons as there were neurons 306 
encoding a mixture of stimulus, choice, and other movement related features such as reaction time 307 
(Figure 5d). Therefore, task information was encoded not by multiple independent groups of 308 
specialized cells, but rather by overlapping modulation of the activity of single cells.    309 
 The predominantly mixed profiles of neural responses argue against a simple labelled line 310 
model, in which each task variable is represented by a particular class of cells receiving input 311 
predominantly from a single source. We therefore considered a somewhat more complex model in 312 
which neurons within a cell class represent similar sensory and non-sensory variables between 313 
them, across epochs, i.e. two neurons that represent the same combination of features in the 314 
stimulus epoch will also look similar to one another in their encoding patterns in the choice epoch. 315 
To test this, we clustered neurons on the basis of the relative contributions of all task features in a 316 
given epoch (e.g. choice epoch), and used these clusters to sort the relative contribution of task 317 
features to their activity in each of the other epochs (e.g. outcome epoch, Figure 5e). We found 318 
that no distinct clusters emerged in the outcome epoch, when cells were ordered by their cluster 319 
identity in the choice epoch. We repeated this for all clustering epoch–test epoch pairs and saw 320 
that cluster identity always generalized poorly across all pairs of epochs (Figure 5f). This is 321 
reflected in the adjusted Rand Index, a standard measure which quantifies the overlap in cluster 322 
membership between two independent partitions, and was much lower for cross-epoch 323 
comparisons than within-epoch comparisons. The adjusted Rand Index, which ranges between 0 324 
and 1, is maximized when the same sets of neurons are clustered together in both partitions. Thus, 325 
single neurons represent diverse combinations of task variables both within and across epochs, 326 
without any evident organization or structure.  327 

  328 
Current and past trial task features can be decoded from V1 population activity 329 
 The single neuron encoding patterns we observed suggested that the encoding of task 330 
variables was distributed across a heterogeneous V1 population. Such shifting representations at 331 
the single cell level may nonetheless underlie stable representations at the population level. We 332 
therefore analyzed the information available in populations of simultaneously recorded cells 333 
throughout the duration of a trial. First, we used dimensionality reduction methods to inspect the 334 
population activity of simultaneously recorded units (both putative single units and multi-unit 335 
activity) over the course of single trials (Figure 6a). Activity patterns diverged over the course of 336 
the trial on the basis of stimulus identity, choice side, and outcome, and evolved along distinct 337 
dimensions during the stimulus, choice, and outcome periods. This suggested that it would be 338 
possible to read out these task features from V1 population activity at different points in the trial.  339 

To test how well features of the task could be decoded from the population activity at each 340 
timepoint, we trained a linear classifier to decode task variables: stimulus category, choice, and 341 
outcome, previous choice and previous outcome (Figure 6b). We found characteristic decoding 342 
timecourses for each feature. Stimulus category could be decoded primarily during stimulus 343 
presentation (see Methods: Decoding (Linear Classifier)). Task features associated with the 344 
previous trial, such as previous choice and previous outcome, could be decoded early in the trial, 345 
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with performance decreasing over the course of the trial. Consistent with this, choice and outcome 346 
were readily decoded both during and following their respective epochs. Outcome information 347 
could be decoded regardless of whether we pooled missed reward and punishment outcomes, or 348 
treated them separately (Supplementary Figure 4a). The timecourse of how well each feature could 349 
be decoded from the neural activity was similar across sessions for any given feature, which is 350 
reflected in the proportion of sessions with significantly better-than-chance decoding accuracy 351 
over the course of the trial (Supplementary Figure 4c-g). Thus, multiple task features could be read 352 
out from population activity at each timepoint over the trial, including during early epochs when 353 
single neuron activity was less well explained by the previous encoding model.  354 

Decoding accuracy improved on sessions with more simultaneously recorded units, but 355 
notably, even the smallest populations included in this analysis (5 units) were able to exceed a 356 
decoding accuracy of 60% for most task features (Figure 6c). In addition, classifier performance 357 
did not increase substantially with population size beyond about 20 units. Thus, despite the 358 
heterogeneity of single neuron activity patterns, task information could readily be decoded by a 359 
linear decoder from small V1 populations, with a similar timecourse over sessions.  360 

 361 
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 362 
Figure 6. Reliable decoding of task variables across trial duration from trial-by-trial population 363 

activity. a. Single trial (grey) and mean (within conditions, colored by trial difficulty) population activity trajectories 364 
for an example session, projected onto the first 3 principal components. b. Decoding accuracy in sliding 100ms bins 365 
over the course of a trial for features of the previous trial (choice side, outcome), and of the current trial (stimulus 366 
category, choice side, and outcome). Decoding accuracy calculated as proportion of test set classified correctly from 367 
activity at a given timepoint. Thin lines correspond to individual sessions, while bold lines denote the mean across 368 
sessions. c. Maximum decoding accuracy of trial features as a function of population size. Inset: Distribution of 369 
population sizes. 370 

 371 
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 372 
V1 representations during visually-independent choice task 373 
 The robust task-related representations we observed in V1 could be specific to visually-374 
guided decisions. Alternatively, non-sensory representations might be encoded in visual cortex 375 
independently of whether primary visual cortex is required for the decision process. To distinguish 376 
these possibilities, we interrogated V1 responses in a new cohort of subjects trained to perform a 377 
similarly structured task in which decisions were based on auditory rather than visual stimuli. In 378 
this modified task, visual stimuli were presented but not informative for the animal’s choice. 379 
Instead, animals were instructed as to the correct choice based on the location of the decision tone, 380 
which was presented on the side of the animal corresponding to the correct side port for that trial. 381 
The task structure was otherwise identical to that of the visual discrimination task (Figure 7a). 382 
During this task, the visual stimuli consisted of randomly dispersed dots over the full extent of the 383 
monitor on the majority (70%) of trials. On the remaining trials, animals were presented with one 384 
of the two “easy” stimuli from the discrimination task. Animals acquired this task to near-385 
perfection, and their choice profiles were uncorrelated with the distribution of the visual stimulus 386 
(Supplementary Figure 5).  387 
 We recorded from 253 well-isolated single units and 41 multi-units from 2 animals 388 
performing this task variant. The trial-averaged activity across the population was similar to that 389 
recorded in the visual discrimination task, with the majority of units having their peak firing during 390 
or after the movement epoch (Figure 7b). Firing rates were similarly modest, with a mean of 6.5 391 
(+/-4.4 std) spikes/s (Supplementary Figure 6a). Stimulus selectivity profiles were also similar 392 
between the two tasks: 41% of single units were stimulus selective in the visually-independent 393 
task (Figure 7c,g). The proportion of choice selective cells increased from the proportion of robust 394 
choice selective cells in the discrimination task (64% compared to 47%, Figure 7d,g), while the 395 
proportion of outcome selective cells decreased. Because errors were rare in this task, we instead 396 
compared rewarded versus missed reward trials (i.e. a correct choice where the animal’s choice 397 
port nosepoke was too short in duration to trigger a reward). 35% vs 24% of cells in the 398 
discrimination and visually-independent tasks were selective between rewarded versus missed 399 
reward trials, respectively (Figure 7e,g).  400 
 Decoding task features from population activity yielded timecourses similar to those 401 
obtained on the visually-guided task, with some differences in peak decoding accuracy. While 402 
stimulus and choice decoding were accurate to similar levels as in the discrimination task, the 403 
decoding performance for rewarded vs missed reward trials was significantly reduced (Figure 7f,h, 404 
Supplemental Figure 7a-c). In addition, the onset of outcome decoding was delayed, compared to 405 
in the discrimination task, to after the first 500ms of the outcome epoch. The slower and decreased 406 
rise in outcome information is consistent with the execution of different motor programs following 407 
reward versus no reward, in the late outcome period. Previous trial choice and outcome decoding 408 
accuracy were also reduced during the visually-independent task, further suggesting that the 409 
representation of some task features (stimulus, choice) in V1 are robust across task demands, but 410 
others (outcome, previous choice, previous outcome) are task-dependent.  411 
 Finally, when fitting the same linear encoding model across the two tasks, we found that 412 
single neuron activity in the visually-independent decision task was 1) similarly predominantly 413 
driven by more than one task feature at a time, and 2) similarly better described at later points in 414 
the trial (choice and outcome epochs) than at early points in the trial (including the stimulus epoch, 415 
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Supplementary Figure 6b-d), as in the visual discrimination task (Figure 5). However, the total 416 
proportion of the variance explained by our model was significantly lower in each epoch in the 417 
visually-independent decision task, compared to the same epoch in the visual discrimination task 418 
(Supplementary Figure 6e), which is consistent with decreased influence of some task features on 419 
V1 activity during the visually-independent task.  420 
 The comparison of the visually-guided task with the non-visual task reveals that while 421 
neural activity in V1 was broadly similar between the two tasks, encoding of the non-sensory task 422 
features we investigated here – choice and outcome – were differently affected by the behavioral 423 
context. Representations of outcome in single cells and across the population were less prominent 424 
in V1 during visually-independent decisions, while representations of choice remained robust. 425 
Previous trial features were also less well represented at the population level, further suggesting 426 
that processing of non-sensory information in V1 in a freely moving animal depends somewhat – 427 
but not entirely – on the behavioral demands related to visual processing.  428 
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 429 
Figure 7. V1 responses during a visually-independent decision task follow similar patterns. a. Task structure is 430 
identical to the structure of the visual discrimination task, except that decision tone (red arrow) is presented on one 431 
side only. A response to the same side as the decision tone yields a reward. b. Z-scored mean activity of single units, 432 
sorted by time of peak activity. c-e. Example neurons and proportion of single units selective for (c) stimulus, (d) 433 
choice side, and (e) reward delivery. f. Mean decoding trajectories over visually-independent decision sessions (solid 434 
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lines) for current trial stimulus, choice, and outcome, previous trial choice, and previous trial outcome. Dashed lines 435 
denote mean trajectories during the discrimination task, as shown in Figure 6. g. Comparison of proportion of tuned 436 
cells between visually-dependent and visually-independent choice tasks. h. Comparison of decoding accuracy for V1 437 
populations between visually-dependent and visually-independent choice tasks, during the 500ms of the trial with the 438 
best performance on decoding of each task feature. Bars (black = visually-dependent task, gray = visually-independent 439 
task) indicate mean decoding accuracy across trials, while overlaid points indicate accuracy on single trials. Significant 440 
differences in decoding accuracy between the tasks were found for the following non-sensory parameters: outcome, 441 
previous choice, and previous outcome (2-sample t-test, * p<0.05).  442 
 443 

Discussion 444 
In this study, we developed a novel visual discrimination task for freely moving rats to study 445 
representations in primary visual cortex during freely moving visual decisions. By recording single 446 
unit activity during this behavior, we found robust tuning for both sensory and non-sensory task 447 
features, and that tuning preferences were distributed and independent of stimulus-choice 448 
contingencies. Single cells were more likely to be driven by multiple features in each epoch than 449 
a single task feature. Task features could be decoded from small simultaneously recorded 450 
populations of units, with previous trial features best decoded early in the trial, and giving way to 451 
current trial features as the trial progressed. Finally, many of the tuning patterns described for the 452 
visual discrimination task held true during a visually-independent variant of the task, with the 453 
notable exceptions of outcome and previous trial task parameters, for which population decoding 454 
accuracy was significantly diminished.  455 
 To perform these experiments, we developed a virtual head fixation protocol that is 456 
noninvasive, compatible with experimental techniques, and learnable without a direct 457 
reinforcement signal. This allowed us to restrict the viewing angle of visual stimuli in a freely 458 
moving animal, which we combined with well-defined choice reports and measures of behavioral 459 
timing. This system allowed us to impose a real-time postural criterion into training protocols for 460 
our task. At the time these experiments were initiated, deep-learning based pose estimation 461 
algorithms were not yet available for implementation of real-time video tracking and reactive 462 
control of behavioral hardware (Mathis et al. 2018), although they have since been developed 463 
(Forys et al. 2020, Kane et al. 2020) and could be used to refine this training approach.  464 
The presence and organization of task representations in visual cortex have implications for the 465 
computations that can occur locally and in circuits involving V1. In frontal and parietal cortices, 466 
where representations of diverse task-related variables are more frequently studied, there is debate 467 
as to whether representations are randomly assorted across neurons, or organized into discrete 468 
classes, with potential implications for downstream decoding (Rigotti et al. 2013). Recent work 469 
has identified distributed encoding profiles in both cortical (Levy et al. 2020) and subcortical brain 470 
regions. In VTA dopaminergic neurons, different degrees of specialization arise in different task 471 
epochs (Engelhard et al. 2019), and the specific variables encoded by a given neuron also varies 472 
across task epochs. Here, we observed similar complexity in the encoding patterns in a primary 473 
sensory cortical area, V1, with cells tuned to the same variable during one task epoch later 474 
representing different variables between them in a later epoch, with uncorrelated tuning 475 
preferences. Within individual epochs, representations of a given task feature were distributed 476 
across the population. In the stimulus epoch, single neurons were less accurate than the animal at 477 
classifying the incoming stimuli, and over the trial, both sensory and non-sensory task parameters 478 
were decoded better with increasing neural population size of up to ~20 units. Taken together, our 479 
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results suggest that the primary visual cortex may share some organizational principles with frontal 480 
and parietal areas, in that task feature representations are distributed across neurons.  481 
 One striking observation was that the ability to decode task features from V1 populations 482 
could extend well past the event’s duration, into the next trial, during visually-guided but less so 483 
in visually-independent decisions. This argues against the possibility that non-sensory responses 484 
in V1 merely reflect an instantaneous “echo” of a brief event such as a motor command. Rather, 485 
visual cortex has the ability to carry sustained representations of different task parameters, in a 486 
task-dependent manner. Recent work has suggested that non-sensory responses in V1 help shape 487 
sensory processing by influencing the correlation structure and population activity space (Osako 488 
et al. 2021). Here, we found that sensory processing demands influence which non-sensory 489 
correlates are available in V1. 490 
 Which characteristics of the task influence whether V1 will carry these non-sensory 491 
representations? Because our two tasks are identical in trial structure, but differ in whether the 492 
animal is required to use a visual stimulus to guide its behavior, we suspect that the relevant 493 
characteristic is whether the task requires visual processing. Another possibility is that V1 task 494 
representations depend on the overall difficulty level of the task, i.e. whether difficult (perceptually 495 
ambiguous) trials are included. Either way, flexible routing of task-related information through V1 496 
suggests that non-sensory representations may serve a task-dependent computational role. For 497 
example, previous-trial parameters may support learning of expectations about the structure of the 498 
task and stimulus space. 499 
 The stimulus-choice associations that animals were trained on were not reflected in the co-500 
tuning preferences of single cells (Fig 4). This was surprising in light of previous studies (Poort et 501 
al. 2015, Puscian et al. 2020), in which coherence between visual encoding and behavioral 502 
response emerged over training. There are a number of differences in these tasks that could account 503 
for these differences. First, in previous studies the visual stimulus and the appropriate response 504 
overlapped in time, whereas in our task they were temporally separated. Second, in previous 505 
studies the stimuli and eventual outcome were deterministically paired (e.g. only one stimulus 506 
could lead to reward), whereas in our task both stimulus categories were equally likely to lead to 507 
reward. Finally, there are differences in the V1 neuronal populations sampled: the previous work 508 
used two photon imaging, which predominantly samples neurons in layer 2/3, whereas in our study 509 
we used tetrodes and thus sampled deep layers as well. Layer 5 neurons in V1 tend to have larger 510 
and more complex-like receptive fields (e.g. wider orientation tuning curves, (Niell and Stryker 511 
2008)), and it has been hypothesized that layer 5 V1 neurons may carry out distinct computational 512 
functions compared to neurons in layer 2/3 (Keller and Mrsic-Flogel 2018). Future work 513 
delineating the behavioral limits where coherence between sensory and non-sensory 514 
representations no longer develops may provide clues to how visual cortex processes non-sensory 515 
information to support different tasks.   516 
 In the context of recent work, our study adds to the growing evidence that the range of 517 
responses measured in visual cortex extends far beyond visual stimulus-driven activity. In 518 
particular, we contribute evidence for diverse, distributed task representations in V1 in freely 519 
moving rodents, complementing the growing literature on V1 activity in awake head-fixed rodents.  520 
 521 

  522 

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 7, 2022. ; https://doi.org/10.1101/2022.07.06.498845doi: bioRxiv preprint 

https://doi.org/10.1101/2022.07.06.498845
http://creativecommons.org/licenses/by-nc/4.0/


 20 

Materials and Methods 523 
 524 

Animals and surgical procedures 525 
All procedures were conducted in accordance with the institutional animal use and care 526 

policies of CSHL and NIH. 8-10 week old male Long Evans rats were obtained from Taconic 527 
Biosciences and Charles River, and started training after reaching at least 10 weeks of age. Rats 528 
were pair-housed until implantation of the microdrive, after which they were singly housed, in a 529 
reverse 12h light/dark cycle. Implant surgeries were performed under 2% isoflurane anesthesia. 530 
Custom-built microdrives were implanted according to stereotaxic coordinates, with the tetrode 531 
bundle targeted to left binocular primary visual cortex (bregma – 6.1mm AP, +4.5 mm ML).  532 

 533 
Task design and behavioral system 534 
 Custom behavioral chambers consisted of three ports attached to a clear wall panel through 535 
which a monitor was visible to the interior of the behavioral box. Interruption of an infrared beam 536 
inside the ports were used to determine timing of port entry and exit. We used the Bpod system 537 
(Sanworks, NY) to implement the behavioral state machine. The task structure was as follows: 538 
animal entry into the center port triggered the beginning of a pre-stimulus delay. The variable pre-539 
stimulus delay was drawn from an exponential function with a mean of 0.3s. Following this delay, 540 
a 500ms fixed time stimulus was delivered through Psychtoolbox (Brainard, 1997; Pelli, 1997; 541 
Kleiner et al, 2007). A 200ms fixed post-stimulus delay separated the stimulus off trigger from the 542 
decision tone. Any withdrawal from the center nosepoke at any point between the pre-stimulus 543 
delay initiation and the decision tone delivery led to a missed trial and a 2s time out. After 544 
implementation of the head position protocol, a missed trial could also be triggered by a head 545 
movement while in the center port during this peristimulus period. After the decision tone, the 546 
animal was given 3s to make a decision by poking into a side port. A 20 µL reward was delivered 547 
following a 50ms nosepoke into the correct port. A correct choice report that did not fulfill this 548 
duration requirement did not trigger reward, but no punishment was delivered either. No intertrial 549 
interval was specified following correct (either rewarded or missed reward) trials. A 1s punishment 550 
tone (white noise stimulus) and a 5-6s time out followed an incorrect choice.  551 
 The Psychtoolbox toolbox was used to generate and deliver visual stimuli and auditory 552 
decision and punishment tones. For each stimulus, 30 frames were delivered at 60Hz refresh rate, 553 
with stimuli randomly distributed across each frame according to the stimulus condition on that 554 
given trial. For the discrimination task, the stimulus consisted of two subregions of equal size, 555 
separated by a thin boundary region where no dots were ever present. For the stimulus-independent 556 
task, dots were presented across the full extent of the display. Across all frames, dots were 557 
presented at 1% of all possible locations. For the discrimination task, the less dense subregion on 558 
each frame was given the number of dots drawn from a Poisson distribution centered on the lesser 559 
mean dot value of that stimulus condition. The denser subregion was given the complementary 560 
number of points. Therefore, every frame had the same total number of individual dots. Each dot 561 
location contained a round white dot that subtended about 3° in visual space. For the stimulus-562 
independent task, the stimulus period was increased to 700ms, so 42 frames were delivered on 563 
each trial. A luminance detector module (Frame2TTL, Sanworks) reported luminance changes 564 

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 7, 2022. ; https://doi.org/10.1101/2022.07.06.498845doi: bioRxiv preprint 

https://doi.org/10.1101/2022.07.06.498845
http://creativecommons.org/licenses/by-nc/4.0/


 21 

during each trial and the onset of stimulus delivery by detecting a reporter pixel which flickered 565 
on/off with each frame update.  566 

 567 

Head position control 568 
 We implemented the closed-loop head position condition using Bonsai, a reactive 569 
programming software (Lopes et al. 2015). Bonsai was given video input from a webcam 570 
(Logitech) mounted above the animal at a 70° angle. This video input was binarized and regions 571 
of interest (ROIs) were defined on a per-animal basis from this field of view. These ROIs were 572 
centered on the position of each ear, such that the ear would entirely fall within the ROI when 573 
properly aligned. Built-in Bonsai functions carried out contour mapping of the image within each 574 
ROI, and filtered viable objects on the basis of size. The centroid positions of the resulting objects 575 
were calculated, and if their distance did not exceed a threshold of 10-15 pixels, a binary signal 576 
representing the animal's successful alignment was sent to the behavioral state machine. This 577 
condition was only tested for when the animal was in the port to prevent spurious detections or 578 
noise caused by background (e.g. behavior rig floor) objects. The algorithm performed a moment-579 
to-moment "and" computation on the comparison between the x values, the comparison between 580 
the y values, and the input trigger to output a binary trigger back to Bpod. The continuation of the 581 
Bpod states depended on the continuous on-state of this trigger. To ward against fast software- or 582 
camera-generated errors from producing false negatives, a short 50ms grace period followed every 583 
on-off transition of the trigger. If during this grace period the trigger returned to the on state, the 584 
trial was allowed to continue; otherwise, it was aborted.  585 

 586 
Extracellular recordings 587 

Tetrode drives were custom-built using Omnetics 36-channel EIBs and custom 3D printed 588 
drive skeletons. Each drive contained 8 tetrodes and 1 reference tetrode that travelled together in 589 
a single bundle. Subjects were implanted with tetrode drives under 2% isoflurane anesthesia 590 
following successful acquisition of both the visual discrimination (where applicable) and the head 591 
position requirement. 592 

We used the Intan-based OpenEphys recording system to acquire neural signals. Four of 593 
the seven animals reported here required light anesthesia to facilitate attachment of the recording 594 
tether (2/5 on the discrimination task and 2/2 on the visually-independent choice task). These 595 
animals were given 15 minutes to fully recover before the task began. After each recording session, 596 
tetrodes were lowered by 40-80μm. Recordings were made until tetrodes reached a depth of 1.5mm. 597 
We electrolytically lesioned at the tetrode tips, after which animals were sacrificed and brains were 598 
recovered for histology.  599 

Spike times were extracted through semi-automated spike sorting using Kilosort software 600 
on the raw continuous recording traces. The data was bandpass filtered and the mean across all 601 
channels was subtracted from all traces to remove any common noise events. We performed 602 
manual curation of detected spikes on the basis of their: amplitudes, waveforms, auto- and 603 
crosscorrelograms, firing dynamics over the session, and clustering in feature space. We further 604 
restricted single cell representation analyses to units with refractory period (2ms) violations of less 605 
than 1%. All analyses were performed in Matlab.  606 

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 7, 2022. ; https://doi.org/10.1101/2022.07.06.498845doi: bioRxiv preprint 

https://doi.org/10.1101/2022.07.06.498845
http://creativecommons.org/licenses/by-nc/4.0/


 22 

 607 
Time adjustment / neural data preprocessing 608 

Individual trials varied slightly in duration due to variable durations of pre-stimulus delays, 609 
reaction times, and lengths of stay in reward ports. For all analyses that did not rely on mean epoch 610 
firing rates, to allow comparisons of firing rate trajectories over trials and sessions, e.g. in figures 611 
2, 6, and 7, we first “stretched” individual trials to a common timecourse across all recorded 612 
sessions. We sampled individual activity traces at regularly spaced timepoints within each epoch, 613 
then mapped those sampled points back to the mean trial timecourse.  614 

 615 
Selectivity analyses 616 

To find the selectivity of a cell’s firing during various task epochs, a selectivity index was 617 
calculated on the mean firing rates between pairs of trial types defined by the task parameter of 618 
interest. We defined selective cells as those whose selectivity index exceeds the 95% bounds of a 619 
shuffle control distribution. The shuffle control distribution for a given cell was built by calculating 620 
the selectivity index across 1000 shuffles where the trial labels (e.g. upper or lower stimulus) were 621 
shuffled relative to the single trial firing rates for that cell. We carried out the same analysis to 622 
define movement side-selective cells during the choice epoch, and reward-selective cells during 623 
the outcome epoch. For each epoch of interest, of the total single units (n=407), only those with 624 
an average firing rate of more than 1 spike/s during that epoch were included in this analysis 625 
(stimulus epoch: 305 cells; choice epoch: 348 cells; outcome epoch: 306 cells).  626 
 Selectivity analyses in figures 2-4 were calculated for variables including: stimulus (more 627 
upper dots vs more lower dots); choice (left port entry at decision tone vs right port entry); choice 628 
probability (eventual choice, neural activity during stimulus delivery); outcome (rewarded vs not 629 
rewarded); outcome side (left port during outcome epoch vs right port); initiation direction 630 
(approach to center port from left vs right port); and previous choice (left vs right port selected on 631 
previous trial). 632 

 633 
Neurometrics 634 

ROC analysis was performed using the Matlab perfcurve function, using task variable as a 635 
binary label, and mean single trial firing rates in a given task epoch as the scores. To build the 636 
neurometric curve, we applied ROC analysis at each of the 3 stimulus difficulty levels presented, 637 
and took the area under the curve as the cell’s ability to discriminate between the two easy, the 638 
two medium, and the two difficult stimuli. These values were mirrored across the 50% point of the 639 
decision axis to estimate the full psychometric curve. For comparison of the slopes of the 640 
neurometric and associated psychometric curves, we fit a logistic function to the 6 points from the 641 
auROC analysis, and a second logistic function to infer the psychometric function from the choice 642 
behavior, and compared the slope parameter from these two fits.  643 
 644 

Linear Encoding Model 645 
We trained a linear model to predict the firing rate during each epoch given the set of 646 

behavioral predictors. Binary variables (e.g. choice, correctness, and reward delivery) were coded 647 
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as values of -1 and 1. Continuous-valued variables (e.g. reaction time and movement duration) 648 
were z-scored over the session. Stimulus identity took on a value between -1 and 1 which 649 
represented the comparison strength in the stimulus (proportion of dotslower – proportion of 650 
dotsupper).  We used Lasso regularization, setting lambda to minimize the deviance across validation 651 
sets. We carried out this model optimization using the Matlab lassoglm function, with 10x cross-652 
validation. Variance explained by the model predictions (𝜂)12345) was used as a measure of model 653 
fit, calculated as: 654 

𝜂)12345 = 1 −
𝑣𝑎𝑟(𝑦 − 𝑦𝑝𝑟𝑒𝑑)

𝑣𝑎𝑟(𝑦)  655 

where y is the measured firing rate, and ypred is the firing rate predicted by the model. Proportion 656 
of variance explained for predictor 𝑖 was used as a measure of the predictor’s contribution to the 657 
model, calculated as: 658 

	659 

𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑒	𝑐𝑜𝑛𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛% = 1 −
𝜂)%

𝜂)12345
 660 

where 𝜂)% 	is the variance explained by the model lacking the predictor 𝑖  (i.e. the weights for 661 
predictor 𝑖 are set to zero after training), and 𝜂)12345 	is the variance explained by the full model. 662 

Neurons were clustered by their encoding weights using k-means clustering with the 663 
number of clusters k determined by maximizing the adjusted Rand Index (ARI), a measure of 664 
clustering stability, as a function of number of clusters. We first removed all zero vectors 665 
(corresponding to cells that were not explained by the task variables), then computed ARI as the 666 
average similarity of 500 pairwise comparisons of independent clusterings of the encoding weights 667 
in a given epoch, for k = 2 to 10 clusters. In order to compare stability of clusters across epochs, 668 
we chose to use a constant number of clusters across epochs, so we pooled the ARI across epochs 669 
to find the peak of the mean curve as a function of k. This gave an optimal k of 6 for clustering 670 
cells with non-zero weight vectors, then for the sake of comparison between epochs, we added 671 
back the final “cluster” of zero weight vector cells for that epoch to make a total of 7 clusters per 672 
epoch.  673 

Comparison of clustering similarity across epochs was measured using the ARI as a 674 
measure of pairwise similarity of the clustering between pairs of epochs. This similarity was 675 
computed including the cells with zero weight vectors.  676 
 677 

Decoding (Linear Classifier) 678 
Population activity at a given timepoint was expressed as a vector of mean rates over a 679 

100-ms bin centered at the timepoint of interest, for all units recorded on a given session. To 680 
estimate the timecourse of activity, activity in 100-ms sliding bins were calculated every 10ms. To 681 
visualize activity trajectories over the trial, principal components decomposition was applied to 682 
the population activity matrix, and the activity was projected onto the first 3 principle components.  683 
 To assess the amount of information available about a given task variable in the population 684 
activity for downstream readout, we trained a linear classifier using the Matlab function fitclinear 685 
with 5-fold cross validation and lasso regularization on the activity patterns and task variable labels 686 
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from 90% of valid trials (more below), and assessed the accuracy of predictions on the held out 687 
10% of trials. We repeated this modelling 100 times to assess stability of the trained models. We 688 
trained the classifier independently at each timepoint, and then compared the learned weights 689 
across timepoints and across models. The weights were highly consistent across trained models at 690 
a given timepoint, but varied for a given neuron over the course of a trial.  691 
 Valid trials were defined as trials on which subjects completed the full trial (through 692 
stimulus presentation and the post-stimulus delay). To assess choice decoding, we further 693 
restricted the trials used to difficult trials, where stimulus discriminability was low and choice 694 
profiles approached chance. To assess stimulus decoding, we used trials where the easiest stimuli 695 
were presented, to facilitate a one-to-one comparison between the two tasks. To correct for the 696 
stimulus-choice correlation that existed in the visual discrimination task (but not in the visually-697 
independent auditory task, Supplementary Figure 4b), we subtracted from the stimulus-decoding 698 
accuracy at each timepoint a choice-decoding correction factor calculated as follows. We 699 
calculated the classification accuracy of the stimulus-trained decoder at predicting choice labels 700 
on difficult trials, using the same number of difficult trials as the stimulus test set, randomly drawn 701 
from the full set of difficult trials on each model repeat. Thus, the performance of the model that 702 
was due to actually decoding choice was removed by subtracting the mean accuracy of choice 703 
decoding on the correction set, leaving “true stimulus” decoding.  704 
 To assess whether the accuracy on the test set was significantly different from chance at a 705 
given timepoint, we trained a classifier on shuffled labels relative to the trial-by-trial stimulus 706 
activity. By repeating this on 100 shuffles of the data, we established a 95% confidence interval 707 
for each timepoint in each session. A classifier was labelled as significantly more accurate than 708 
chance if its test set accuracy exceeded the upper bound of the confidence interval. Comparisons 709 
to assess significance were done on a within-session basis to account for any structure arising from 710 
the distribution of trials on that session.  711 
  712 
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Supplementary Figures 847 
 848 

Supplementary Figure 1. Bonsai-mediated online head position training.  849 
 850 

Supplementary Figure 2. Timing of peak activity over recording dataset. 851 
 852 

Supplementary Figure 3. ROC analyses confirm low choice probabilities in V1.  853 
 854 

Supplementary Figure 4. Significance testing of population decoding timecourses.  855 
 856 
Supplementary Figure 5. Behavior on a visually-independent decision task depends on tone 857 
location, not visual stimulus distribution.  858 

 859 
Supplementary Figure 6. Linear encoding model reveals similar single neuron activity 860 
profiles between visual discrimination and visually-independent task.   861 
 862 
Supplementary Figure 7. Significance testing of population decoding on visually-863 
independent task.   864 
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 865 
 866 

 867 
Supplementary Figure 1. Bonsai-mediated online head position training. a. Bonsai workflow 868 
showing thresholding of camera input, identification of ROIs, and digital output to behavior 869 
control. Ear shapes are outlined in red for reference. b. Proportion of completed trials with training 870 
after introducing head position criterion.  871 

  872 

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 7, 2022. ; https://doi.org/10.1101/2022.07.06.498845doi: bioRxiv preprint 

https://doi.org/10.1101/2022.07.06.498845
http://creativecommons.org/licenses/by-nc/4.0/


 32 

 873 

 874 
 875 
Supplementary Figure 2. Timing of peak activity over recording dataset. a. Mean activity 876 
patterns of putative multi-units, sorted by peak activity timing. b. Counts of recorded units with 877 
peak in each epoch, normalized by epoch duration. c. Proportion of recorded units with peak in 878 
each epoch, as a proportion of recorded population. d. Peak activity timing distribution by animal.  879 
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 881 
Supplementary Figure 3. ROC analyses confirm low choice probabilities in V1.  882 
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 884 
Supplementary Figure 4. Significance testing of population decoding timecourses. a. Outcome 885 
epoch decoding is similar between decoding reward vs punishment, and reward vs missed reward. 886 
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b. “Stimulus” decoding persists in choice epoch due to strong stimulus-choice correlation in 887 
trained animals. c-g. Proportion of sessions with decoding accuracy significantly above chance for 888 
each feature in Figure 6.   889 
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 890 
 891 
Supplementary Figure 5. Behavior on a visually-independent decision task depends on tone 892 
location, not visual stimulus distribution. a. Proportion of left (L) and right (R) choices for both 893 
animals (AZ091: solid lines; AZ092: dashed lines) during each recording session, separated by 894 
visual stimulus identity. b. Decision accuracy, defined as choosing the same side as the go-tone 895 
was presented, remained stably above 90% across all recording sessions in both animals.  896 
  897 
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 898 
Supplementary Figure 6. Linear encoding model reveals similar single neuron activity 899 
profiles between visual discrimination and visually-independent decision task.  a. Firing rate 900 
distribution of single units recorded in visually-independent decision task. b. Distribution of 901 
maximum relative contribution of a single regressor to single neuron activity in the visually-902 
independent decision task, by epoch. The same cutoff threshold separating “specialized” from 903 
“mixed” neurons as in the visual discrimination task is shown in shaded regions. c. Proportions of 904 
cells with “specialized” versus “mixed” selectivity profiles in the visually-independent task, as 905 
classified using the threshold in (a). d. Proportion of variance explained by linear encoding model 906 
in the visually-independent task, across behavioral epochs. e. Comparison of variance explained 907 
by linear model between visual discrimination task vs visually-independent decision task, across 908 
behavioral epochs. Points indicate mean, error bars indicate standard deviation. Median variance 909 
explained is significantly larger in the visual discrimination task than in the visually-independent 910 
decision task within each epoch (Mann-Whitney U-test, all p<0.005). f. Measure of cluster stability 911 
(adjusted Rand Index) when clustering single neuron feature encoding profiles between pairs of 912 
epochs, compared to stability over independent partitions in the same epoch (diagonal).   913 
 914 

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 7, 2022. ; https://doi.org/10.1101/2022.07.06.498845doi: bioRxiv preprint 

https://doi.org/10.1101/2022.07.06.498845
http://creativecommons.org/licenses/by-nc/4.0/


 38 

 915 
Supplementary Figure 7. Significance testing of population decoding on visually-916 
independent task. 917 

 918 
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