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Biological systems consist of collections of heterogeneous cells 
with unique histories and developmental trajectories that act 
together to produce complex emergent phenotypes. For exam-

ple, the concerted action of billions of individual neurons allows 
people to think, feel, remember and act. Averaging over this cellular 
diversity can obscure key insights. Although the advent of single-
cell RNA sequencing (scRNA-seq) technology has made it possible 
to routinely obtain a snapshot of the transcriptome of thousands 
of single cells, it remains challenging to track individual cells over 
space and time with similar throughput.

First developed 25 years ago, cellular barcoding has emerged 
as an efficient strategy for tracking large numbers of cells through 
space, time and cell divisions. Its recent success has been fueled 
in part by breakthroughs in sequencing technology. Barcoding 
relies on the use of random, semi-random or evolving nucleic acid 
sequences (barcodes) as permanent or dynamic labels for individual 
cells. Because of the effectively unlimited number of possible bar-
code sequences, large populations of cells can be efficiently and cost-
effectively labeled and tracked at the individual level. Exhaustive 
labeling of organs or even organisms is therefore conceivable and 
an active area of research1–7. Today, cellular barcoding allows the 
origin or history of thousands to millions of cells to be tracked over 
developmental8,9 and evolutionary10 time scales, thereby speeding 
up the investigation of these biological systems by many orders of 
magnitude. Moreover, barcode functionalization makes it possible 
to record cellular features such as the response to stimuli11,12, and to 
map neuroanatomical features13–15.

Despite these diverse applications, the technology underlying 
all uses of cellular barcoding can be discussed in the same theoreti-
cal framework, and is subject to very similar design constraints. To 
highlight these similarities, we first review the foundations of cel-
lular barcoding, covering different types of barcodes, in vivo barcode 
generation strategies and the mathematics behind stochastic barcode 
assignment. We then detail classic applications of cellular barcod-
ing to prospective lineage tracing and high-throughput screens, and 
finally introduce the functionalization of barcode sequences to map 
neural anatomy and record cellular events. Although we do not dis-
cuss the use of barcodes to tag individual DNA or RNA molecules16–23  

or samples (including use in multiplexed scRNA-seq library gen-
eration)21,23–25, many of the same principles used for cellular barcod-
ing are relevant to molecular barcoding. We also do not discuss the 
somewhat different usage of the term “barcoding” in ecology26.

Principles and methods of cellular barcoding
Labeling cells with nucleic acid sequences. Cellular barcoding 
exploits the almost infinite number of unique molecules that can be 
generated with short sequences of nucleotides. In the simplest case, 
each cell is tagged with a specific sequence of a given length, such 
that the number of possible barcodes is equivalent to 4N, where N is 
the length of the sequence (because each position can encode one 
of four bases). A random 10-bp barcode therefore can assume any 
of 410 (~106) different sequences, and a random 30-bp barcode can 
assume any of 430 (~1018) different sequences, each of which can act 
as a unique label.

In addition to the use of random sequences (e.g., refs 13,27), bar-
codes can be composed of semi-random nucleic acid sequences 
(e.g., refs 9,10), in which some positions are constrained to one or 
more specific nucleotides. Barcodes can also be constructed from 
shuffled sequence segments (e.g., refs 6,28), which allows for easier 
error correction or in vivo barcode generation, at the cost of some 
potential barcode diversity. Finally, barcodes can be generated via 
random deletions in known sequences, as is common in CRISPR–
Cas9-based methods1–4,11. Which barcode type is chosen for any 
given study depends largely on the required barcode diversity and 
the method used to read out the barcodes.

Methods of barcode delivery. Conceptually, the easiest way to bar-
code a sample is to manually assign individual barcodes to cells one 
by one. The uniqueness of a barcode to the cell it labels is thus guar-
anteed, and the barcode space can be covered exhaustively—that is, 
every barcode will be used. One-by-one assignment has been pow-
erful in genome-wide screens29,30 and is still used to track a small 
number of conditions31. However, the approach is labor intensive 
and is limited to use with populations of cells, as it is currently very 
challenging to assign specific barcodes to individual cells. One-by-
one labeling is therefore used only under very limited conditions.
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Currently, the most common, robust and efficient method to 
barcode individual cells relies on the production of a large pool of 
barcoded vectors (plasmids, viruses, etc.) in vitro. The vector pool 
is transfected under conditions optimized to deliver a few barcodes 
at most to every transfected cell, and to transfect only the desired 
number of target cells. The most common delivery method for such 
pooled barcode libraries is retroviral (including lentiviral) transfec-
tion8,9, but other viruses such as Sindbis virus13 and pseudo-rabies 
virus32 can be used, as can nonviral delivery methods including 
plasmid injection33 and electroporation34. Given a sufficiently large 
number of barcodes relative to the number of transfected cells, it 
is very unlikely that the same barcode will be transfected into two 
different cells (Box 1, Fig. 1). Every transfected cell is therefore 
uniquely labeled by the barcode it takes up.

In vitro barcode production is very efficient, such that vec-
tor libraries containing billions of barcodes can be relatively eas-
ily constructed and used to label millions of cells35. Moreover, in 
vitro construction allows for very compact barcode design (e.g., 
30 random bases), thus facilitating readout by short-read sequenc-
ing technologies. However, applications are limited to organs, time 
windows and biological questions for which delivery is feasible and 
practical. Moreover, when barcodes are transfected under condi-
tions ensuring a few barcodes per cell at most, Poisson statistics 
dictate that some cells will remain unlabeled. Thus, if the ultimate 
goal of exhaustive labeling of every cell in a tissue or organism is to 
be achieved, alternatives to Poisson-limited barcode delivery must 
be developed.

One way to avoid the drawbacks of experimental access and 
exhaustive labeling is to evolve a unique barcode within each cell 
from an ‘ancestral’ sequence—a sequence that at time zero is iden-
tical across the population. As discussed below, implementations 
of such in vivo barcoding rely on either the shuffling of sequence 
fragments or the introduction of random insertions or deletions at 
a specific site. So far, neither approach has been able to generate 
sufficient diversity to exhaustively label an adult vertebrate, but the 
field is progressing quickly (Table 1).

Recombinase-based in vivo barcoding. Initial approaches for in 
vivo barcode generation centered on the action of a DNA recom-
binase on an array of possible targets. The first such method was 
Brainbow36,37. In Brainbow, Cre recombinase, which can excise or 
flip DNA sequences flanked by specific recognition sequences, acts 
on an array of fluorescent protein open reading frames. Repeated 
Cre action leads to stochastic shuffling and collapse of the target 
array, generating different combinations of fluorophores in each cell 
that can be distinguished by imaging.

Scientists can generate higher barcode diversity in vivo by replac-
ing fluorophores with shorter DNA sequences that can be read out 
by sequencing, which makes it possible to expand the array to con-
tain more targets6. However, because Cre intrinsically favors exci-
sion over flipping, the target array shrinks in size over time, leading 
to a low final diversity that increases only linearly with the num-
ber of targets in the array6 (Fig. 2a). Recently, the problem of array 
collapse was partially overcome with the Polylox method through 
limitation of Cre activity via temporary induction (thus stopping 
Cre action on the target array before its ultimate collapse), which 
allowed in vivo barcoding of hematopoietic stem cells28. Inducible 
Cre action, moreover, can restrict barcoding to a temporal win-
dow of interest. An alternative approach that avoids array collapse 
altogether involves the use of Rci DNA recombinase, which flips 
but does not excise DNA segments between recognition sites. The 
avoidance of excisions dramatically increases the potential barcode 
diversity to 2nn! for n segments (Fig. 2b), and has been used suc-
cessfully in bacteria6.

A fundamental drawback of recombinase-based barcoding 
approaches is that target arrays tend to be long and repetitive, 
as dictated by the low diversity of recombinase recognition sites 
and their minimum spacing requirements. To achieve high bar-
code diversity, target arrays must contain many segments, which 
necessitates barcode readout by lower-throughput long-read 
(e.g., PacBio6,28) sequencing. Future improvements in long-read 
sequencing technologies or in situ readout of barcodes4 might 
mitigate this drawback.
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Fig. 1 | the mathematics underlying cellular barcoding. a, For a large number of uniformly distributed barcodes (N) in the ensemble and a small 
number of used barcodes (k), the fraction of uniquely labeled cells can be approximated as F ≈  1 – (k/N). b, Relationships among barcode ensemble size, 
barcode distribution and the fraction of uniquely labeled cells. The larger the barcode ensemble is and the closer the barcode distribution is to a uniform 
distribution, the more cells can be labeled uniquely.

NAture Methods | VOL 15 | NOVEMBER 2018 | 871–879 | www.nature.com/naturemethods872

http://www.nature.com/naturemethods


Review ARticleNaTure MeThODs

CRISPR-based in vivo barcoding. Recent work by a number of labora-
tories demonstrates the use of CRISPR–Cas9 as an alternative to DNA 
recombinases for barcode generation. Cas9-induced double-strand 
breaks in genomic DNA are often repaired by nonhomologous end 
joining (NHEJ)38, an error-prone mechanism that introduces short 
random insertions and deletions at the cut site. These untemplated 
changes to the parental sequence act as a short barcode that can be 
used to distinguish cells. This basic idea was exploited successfully 
in ScarTrace3,39,40, which uses the sequence diversity generated by a 
CRISPR–Cas9-mediated cut in a (potentially multicopy) transgene 
for lineage tracing in zebrafish. A similar approach was also demon-
strated in Caenorhabditis elegans41. The GESTALT1 and MEMOIR4 
systems increase barcode diversity by designing arrays of many per-
fect or mismatched CRISPR target sites (Fig. 2c).

As an alternative approach to increasing barcode diversity, 
mSCRIBE11 and homing CRISPR barcodes2 rely on an engineered 
guide RNA that targets its own genomic spacer sequence, instead 
of a target array. In a first step, the guide RNA genomic locus is 
cut and mutated, which produces barcode diversity. Subsequently, 
the mutated locus produces new guide RNA that again targets its 
own already mutated genomic locus. Over time, the guide RNA 
sequence evolves, acting as a diverse barcode sequence (Fig. 2d).

CRISPR–Cas9 approaches hold the promise of high-diversity, 
organism-wide, time-resolved in vivo barcode production. The 
initial proof-of-principle studies generated diversities too low for 
organism-wide barcoding, in part because of NHEJ’s intrinsic bias 
toward the production of deletions (similar to Cre recombinase 
(described above)) rather than insertions, which leads to the col-
lapse of the CRISPR barcodes over time2. This effect can be over-
come through the use of several independently evolving barcodes 
per cell, which boosts the combined diversity to the product of the 
individual diversities3,4,40,42. Alternatively, an elegant approach to 
the production of highly diverse and compact CRISPR barcodes 
would be to modify NHEJ to favor insertions over deletions or to 

use CRISPR-directed base editors43. The field of CRISPR barcoding 
is developing rapidly, and these limitations may soon be overcome.

Methods of barcode readout. Nearly all work on cellular barcoding 
to date has relied on the extraction of nucleic acids followed by bar-
code detection or quantification in vitro. The methods used to read 
out barcodes have varied with the available technology, beginning 
with PCR amplification and sizing8 and progressing to microarray 
detection9,44, Sanger sequencing45,46 and high-throughput sequenc-
ing27,47. In a paradigm shift, scRNA-seq approaches have recently 
been applied to dissociated cells for the simultaneous readout of 
a cell’s barcode and transcriptome. This is an extremely power-
ful approach, as it combines information about cellular history or 
anatomy from the barcode with the independently measured high-
dimensional phenotype of the cell’s transcriptional state and tran-
scriptional cell type. The combination of cellular barcoding with 
scRNA-seq has been exploited in genome-wide screens48–53, lineage-
tracing approaches33,39,40,54 and neuroanatomy studies55.

Tissue lysis and the production of single-cell suspensions, how-
ever, irrevocably destroy the 3D arrangement of cells in vivo, and 
with it a lot of potentially valuable information. A strategy to avoid 
this adapts methods developed for in situ detection of nucleic acids 
to the detection of barcodes. Recently, the MEMOIR method4 
was used with highly multiplexed fluorescence in situ hybridiza-
tion (FISH)56 to read out a combination of in vitro and CRISPR–
Cas9-generated barcodes. Similarly, multiplexed FISH was used to 
register live images of bacteria to their cellular barcodes57,58. The 
detection of barcodes by FISH, however, constrains the compact-
ness and diversity of barcodes that can be used, as hybridization 
probes cannot easily differentiate among a large pool of barcode 
sequences. We note that fluorophore-based barcoding approaches 
such as Brainbow have similar conceptual constraints36,37.

In situ sequencing approaches59,60, in which RNA is sequenced 
de novo in tissue, may provide an alternative strategy not subject 

Table 1 | overview of in vivo barcoding techniques and their properties

Name enzyme theoretical 
diversity

demonstrated 
diversity per 
experiment

Barcode length readout reference(s)

Brainbow Cre — ~200 x insertion sites ×   
1,000–3,000 bp

Microscopy 36,37

Flpbow Flp — — x insertion sites ×   
1,000–3,000 bp

Microscopy 37

Polylox Cre-ERT2 1,866,868 849 1,942 bp PacBio 28

Rci 176,947,200 1,723 1,472 bp PacBio 6

Gestalt Cas9 — 4,195 257 bp Illumina 1

scGestalt Cas9 — 2,213 257 bp scRNA-seq; Illumina 54

scartrace Cas9 — 1,572 x insertion sites ×  700 bp 
rfp transgene

Illumina 3

Linnaeus Cas9 — 230 x insertion sites ×  700 bp 
rfp transgene

scRNA-seq; Illumina 40

scartrace Cas9 — — 8 insertions of H2A-gfp 
transgene

scRNA-seq; Illumina 3,39

mscribe Cas9 +  self-
targeting gRNA

— 1,890 20–70 bp Illumina 11

homing barcodes Cas9 +  self-
targeting gRNA

— — 20–100 bp Illumina; FISSEQ rolonies 2

MeMoIr Cas9 — ~256 28 ×  ~1,000-bp 
scratchpads

FISH 4

Dashes indicate quantities that are not provided in the cited publications or are not well defined. FISSEQ, fluorescent in situ sequencing.
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to these constraints. Indeed, the potential for readout of homing 
CRISPR barcodes by targeted fluorescent in situ sequencing has 
been demonstrated2. Another approach, BaristaSeq61, uses a com-
bination of padlock probe hybridization62 and gap filling followed 
by in situ sequencing for accurate and efficient in situ detection of 
cellular barcodes. Techniques such as this promise to combine the 
advantages of high-diversity barcode libraries with the high spatial 
resolution of imaging.

Every readout method is subject to errors in barcode detection. 
In bulk sequencing approaches, for example, these include PCR 
errors63–65 such as single base substitutions64,65, insertions/deletions65 
or template switches65,66, and sequencing errors67,68, as wells as errors 
specific to the barcoding method, such as those made by a viral 
polymerase during barcode transcription69. These errors must be 
taken into consideration during analysis, as they might lead to bar-
code misidentification. In many scenarios, however, the large range 

of possible sequences compared with the small number of actually 
used barcodes offers avenues for the correction of readout errors 
(e.g., ref. 70).

Applications of cellular barcoding
Lineage tracing and fate mapping. Developmental biology pro-
vides some of the most striking examples of the value of studying 
cells individually rather than in bulk. Reconstruction of the precise 
trajectories by which individual cells arrive at their mature and dif-
ferentiated states—that is, their cellular lineage—is one of the cen-
tral goals of developmental biology. One powerful approach for 
lineage reconstruction involves labeling a particular cell, or popula-
tion of cells, at one point in time and then faithfully identifying the 
cell’s progeny by the presence of the label (Fig. 3a; also see recent 
reviews71–73). Here, we distinguish between the related concepts of lin-
eage tracing and fate mapping. In lineage tracing, the developmental  
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history of a cell is decoded and a tree is produced, whereas in fate 
mapping, cells originating from a specific progenitor are marked 
identically, which can obscure information about intermediate steps. 
Lineage tracing requires that cells in intermediate states receive dis-
tinct labels. Note that in the literature, “lineage tracing” is also used 
as an umbrella term encompassing all methods that interrogate cel-
lular lineage, and as such often includes fate-mapping approaches.

Early fate-mapping experiments tracked just one or a few cells74,75. 
However, in a foundational paper published more than two decades 
ago, Walsh and Cepko applied cellular barcoding to map cell fates8. 
They sought to determine whether the descendants of individual 
neural progenitors in the developing rat neocortex stayed in a local 
columnar structure or dispersed across the cortex. They labeled  
several progenitors with randomly generated barcodes from a retro-
viral library and then detected the barcodes after some time. They 
observed that descendants of individual progenitors were spread 
widely throughout the adult cortex. Notably, the use of barcodes was 
necessary to reach this conclusion; traditional single-cell tracing 
approaches based on a single fluorescent marker would generally 
attribute widely dispersed clones to accidental labeling of multiple 
starter cells. Although this study and its follow-up76 used a low-
diversity barcode library (< 100 sequences identified by PCR8,76–78),  
subsequent cellular barcoding libraries quickly grew to allow 
researchers to trace more cells in parallel46 (Box 1). However, the 
throughput of single-cell-resolution fate mapping remained limited 
by the technology available to distinguish individual barcodes.

In 2008, Schepers et al.9 coined the term “cellular barcoding” to 
describe a high-throughput fate-mapping experiment in which they 
overcame the barcode-detection bottleneck by using microarrays 
for quantification. This advance allowed them to track thousands of 
barcodes in parallel, and thereby to address the relationship between 

T cell populations after immune challenge9. Shortly thereafter, de 
novo sequencing permitted researchers to rapidly quantify bar-
codes of arbitrary sequence. A proof-of-concept study using Sanger 
sequencing45 was quickly followed by high-throughput sequencing 
for barcode detection47 and quantification27.

Since these foundational studies, barcoding has been used exten-
sively in fate mapping of both multicellular organisms and com-
munities of unicellular microbes. In particular, studies of stem 
cell niches rely on the ability to infer the absolute number of stem 
cells from the number of labeled, expanded lineages (Fig. 3a). Fate 
mapping has been extended to the study of disease, including het-
erogeneity and clonality in cancer79 and the emergence of drug resis-
tance35, as well as to investigate microbial evolutionary dynamics10.

Other forms of cellular marking besides delivered barcodes have 
also been explored. The genomic site of a constant DNA sequence 
randomly inserted by retroviral infection80 or transposon activa-
tion81,82 acts as a heritable and unique cellular label, akin to a cel-
lular barcode. Similarly, naturally occurring somatic mutations 
have been used for fate mapping and lineage reconstruction83. 
Although these approaches share similarities with cellular barcod-
ing approaches, they are technically quite different, and have been 
reviewed elsewhere71.

Reconstruction of a complete lineage tree (i.e., true lineage trac-
ing as defined above) could theoretically be achieved by fate map-
ping of one cell division at a time—a truly enormous task for most 
multicellular organisms. The development of in vivo–generated, 
evolving barcodes, such as those generated by CRISPR–Cas9, now 
offers a potential path toward complete lineage tree reconstruction 
in a single experiment (Fig. 3b). A strategy common to GESTALT1, 
homing barcodes2, ScarTrace3,39,40 and MEMOIR4 is the use of the 
repeated action of Cas9 to progressively modify DNA targets. In 
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these methods, lineage relationships between cells at the experi-
mental end point can be inferred from barcode similarity (either the 
similarity of individual barcode sequences, when single barcodes 
label single cells, or the similarity of sets of barcodes, when single 
cells contain more than one barcode).

Before complete lineage trees comparable to the famous example 
from C. elegans84 can be reconstructed by barcoding, three impor-
tant challenges need to be addressed. First, barcode diversity needs 
to be high enough to allow every cell present at the experimental 
endpoint to be uniquely labeled. Diversity that is too low either 
stops lineage tracing before the endpoint (if, for example, Cas9 
target sites have collapsed and lost the protospacer-adjacent motif 
required for cutting) or severely impedes tree reconstruction, as 
cells in distant lineages will share the same barcode. Strategies for 
increasing CRISPR barcode diversity are discussed above. Second, 
and related, previously generated barcodes need to be protected 
against loss by ‘overwriting’ due to subsequent Cas9-mediated exci-
sion or mutation beyond recognition. Redundancy provided by 
multiple barcoding sites per cell or biasing of NHEJ toward inser-
tions over deletions could mitigate this problem. Finally, barcode 

evolution needs to be fast enough to capture individual cell divi-
sions that represent branch points in the reconstructed lineage tree. 
This can be achieved through the use of rapidly evolving barcodes, 
but at the cost of requiring very large potential barcode diversities. 
One attractive way to overcome this challenge is to synchronize bar-
code evolution to cell division by, for example, expressing Cas9 in a 
restricted phase of the cell cycle.

Barcode-derived lineage trees can be annotated using the tran-
scriptionally determined cell types of harvested cells. Single-cell-
resolution barcode and transcriptome readouts were recently 
conferred on GESTALT and ScarTrace/Linnaeus by scRNA-
seq39,40,54, thus providing unique multimodal insights into the corre-
spondence of lineage relationships and adult cell types in zebrafish.

High-throughput screens. Screens for gene function have tradi-
tionally been performed one gene at a time. Genome-wide one-by-
one (arrayed) screens85, although possible, are very labor intensive 
and often costly. Effort and cost, however, can be greatly reduced 
by screening of multiple constructs at the same time. Such pooled 
screens are made possible by infection of each cell with only one 

Box 1 | the mathematics underlying cellular barcoding

In order for individual cells in a population to be labeled uniquely, 
degenerate labeling (i.e., labeling of multiple cells with the same 
barcode) must be avoided. Ultimately, the number of available bar-
codes limits the number of cells that can be labeled. If the number 
of labeled cells exceeds the number of barcodes, some cells must 
share the same barcode. In practice, barcodes are usually selected 
randomly from the ensemble of available barcodes rather than as-
signed one by one to single cells (but see refs 29,30), so the number of 
cells that can be labeled uniquely does not approach the number of 
barcodes. It is thus important to understand how the number and 
distribution of barcodes within an ensemble influence the number 
of cells that can be uniquely labeled (Fig. 1).

First, we consider the case in which every barcode sequence is 
equally likely to be chosen from the ensemble. Consider the labeling 
of k cells, each with a single barcode drawn from an ensemble of N 
barcodes. Every cell has a probability of (1 – (1/N))k – 1 of being 
uniquely labeled and 1 – (1 – (1/N))k – 1 of being degenerately 
labeled. The expected number of degenerately labeled cells is a 
random variable X whose expectation E(X) is given by
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The fraction of uniquely labeled cells can accordingly be 
expressed as
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which, for N > >  k, can be simplified to (Fig. 1a)

≈ −F k
N

1

The appropriate barcode diversity depends on the number of 
labeled cells and on experimental considerations, most notably 
on how sensitive the experiment is to false positives arising from 
degenerate labeling. For a uniform distribution, a barcode ensemble 
100-fold larger than the number of labeled cells (N/k =  100) yields 

99% unique labeling, which for many applications results in an 
acceptably low error rate.

Now consider the more realistic case in which not all barcodes are 
equally likely to be chosen. Such skewed barcode representations in 
the ensemble arise naturally, for example, during the production of 
a virus library carrying in vitro–generated barcodes8,13,77, or because 
certain sequences are preferentially generated in vivo3,4,6,11,28. Under 
these circumstances it is important to determine the probability 
distribution of barcodes to assess the ensemble’s maximal labeling 
capacity. Following similar reasoning as for the uniform case, but 
weighting the contribution of each barcode by the probability of 
its being chosen (pi for barcode i =  1 . . . N), we can express the 
expected number of degenerately labeled cells as
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and the fraction of uniquely labeled cells F as
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Using this formula, we can determine the maximum number of 
cells to label for a given ensemble of barcodes before conducting an 
experiment (compare also ref. 13). We note that a uniform barcode 
ensemble minimizes the rate of double labeling, and that deviations 
from uniform labeling increase the number of double-labeled cells 
(Fig. 1b).

Knowing the distribution of specific barcodes within the 
ensemble not only allows for an estimation of the error rate due 
to double labeling, but also suggests a procedure for decreasing 
the error rate. By identifying and discarding the cells labeled with 
the most abundant barcodes in the ensemble, one can reduce the 
number of errors from degenerate labeling post hoc—at the cost of 
a reduced sample size. Such correction may be especially important 
for in vivo barcoding approaches, in which the biological processes 
that generate the barcodes are inherently biased3,4,6,11,28, and was 
indeed recently used in the analysis of Cre-based barcoding with 
the Polylox system28.
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uniquely barcoded construct. Each cell is then effectively fate-
mapped (i.e., linked to a genotype) and phenotyped to reveal the 
cell autonomous effect of the genetic modification (Fig. 3c).

This approach was first used to generate large-scale deletion 
libraries in yeast, in which every strain was tagged with a different 
barcode sequence29,30,86. The knockout strains generated in this way 
could be pooled and grown to enable researchers to assess the fit-
ness effects of individual deletions, thus laying the foundation for 
functional genomics in yeast and generating deep insights into cell 
biology (for a review, see ref. 87). Since then, researchers have devel-
oped short hairpin RNA (shRNA) screens in which each shRNA 
construct is tagged with a known unique barcode sequence. These 
constructs are pooled, packaged into a retroviral or lentiviral library 
and delivered to a population of cells. The approach allowed the 
first genome-wide screens in mammalian cells88–90. By measuring 
the abundance of each barcode over time, researchers can assess 
the effects of each shRNA on fitness. Subsequent CRISPR knockout 
libraries have replaced the shRNA with a guide RNA, which itself 
acts as a barcode91–93, for genome-wide screens in mammalian cells.

Barcode-enabled screening is traditionally limited to relatively 
simple phenotypes (e.g., viability) based on the enrichment of  
beneficial barcodes (Fig. 3c). Two recent proof-of-concept studies  
used live cell microscopy of engineered, barcoded bacteria to 
record and screen more complex, time-resolved phenotypes57,58. 
After fixation, the researchers read out cellular barcodes by serial 
FISH and then matched each cell’s phenotype to its genotype by  
registering live cell data to the FISH images. Pooled microscopy-
based screens have the potential to be very powerful in optically 
accessible systems. In particular, we are looking forward to appli-
cations in mammalian cells, potentially in combination with de 
novo barcode sequencing for increased barcode diversity and thus 
increased screening throughput.

Another important recent development provides rich, high-
dimensional phenotypes in pooled CRISPR perturbation screens by 
using scRNA-seq as a readout of both cellular phenotype and guide 
RNA (barcode) identity48–53.

Mapping the brain with barcodes. Beyond the traditional appli-
cations of lineage reconstruction and screening, barcodes are now 
being functionalized to record more than cellular identity. We 
recently introduced the use of cellular barcodes to rapidly and cost-
effectively map neural connectivity5. The ultimate goal in neuro-
anatomy is to determine the complete wiring diagram of a brain 
at single-cell and single-synapse resolution. Traditional neuroana-
tomical methods, however, are subject to similar tradeoffs between 
throughput and resolution as lineage tracing prior to the advent of 
cellular barcoding. The choice is to either quickly map the connec-
tions of large populations of neurons through bulk tracing94,95, or 
map connectivity one neuron at a time by single-neuron tracing96 or 
even electron microscopy reconstructions97.

To overcome this tradeoff, we functionalized cellular barcodes to 
record both cellular identity by sequence and neuroanatomical fea-
tures by localization. We developed MAPseq, a method that allows 
the long-range projections of large numbers of individual neurons 
to be determined simultaneously13. In MAPseq, a large number of 
neurons are barcoded in situ by viral infection. Unlike in conven-
tional cellular barcoding approaches, the barcodes are expressed as 
mRNA and trafficked into the axonal processes of each labeled neu-
ron (Fig. 3d). Dissection of potential target brain regions followed 
by bulk barcode sequencing allows projections of each labeled neu-
ron to be mapped through the quantification of barcode-labeled 
processes in each sequenced region. We have applied MAPseq to 
map projections from the locus coeruleus13 and primary visual cor-
tex14 in mouse, and combined it with in situ sequencing to map pro-
jections to the auditory cortex98, uncovering structures inaccessible 
at the bulk level in each case.

More recently, we demonstrated that researchers can also use 
barcodes to read out synaptic connectivity, by joining the cellular 
barcodes of connected neurons across the synapse15.

Barcodes as molecular recording devices. Another intriguing 
example of barcode functionalization is the CRISPR–Cas9-based 
mScribe system. mScribe uses the rate of barcode divergence 
from the ancestral sequence to record the intensity or duration of 
inflammatory stimulation by placing the mutagenic Cas9 under 
the control of an inflammation-responsive promoter11. Similar 
ideas underlie the ‘molecular ticker tape’ proposed to record fast 
events such as neural activity in DNA in a noninvasive manner and 
with single-cell resolution by, for example, amplifying DNA with 
a polymerase whose error rate is a function of cellular Ca2+ con-
centration99. Transient changes in Ca2+ concentration are therefore 
permanently recorded as errors in the amplified DNA, and can be 
read out by sequencing.

outlook
When it was first introduced, the use of barcodes was a means to 
track many cells over time. With the technological developments 
of the past two years, cellular barcoding is on the verge of becom-
ing the foundation for a comprehensive, multimodal understanding 
of tissues and organisms with cellular resolution through time and 
space100. For the brain, for example, we envision a not too distant 
future in which every cell will be uniquely labeled with a barcode 
sequence in a typical experiment. Barcode locations will be used 
to map all synaptic connections between neurons in the brain (the 
connectome), and the barcode sequence itself will carry complete 
lineage information and signatures of specific, salient events in 
each cell’s history. As all this information is stored in nucleic acid 
sequences, we envision that it will be read out by in situ sequencing 
methods, alongside each cell’s transcriptome, such that barcode-
based information can be integrated with transcriptomics and spa-
tially aligned technologies.

For this vision to become reality, several hurdles still need to be 
overcome. First, in vivo barcoding methods currently do not pro-
duce diverse enough barcodes to uniquely label every cell in many 
organs, including even small mammalian brains. Moreover, the 
biases with which barcodes are generated in vivo are not sufficiently 
understood. Second, although encouraging progress has been 
made, the functionalization of barcodes to read out neuroanatomi-
cal features and lineage is still at an early stage in its development. 
Specifically, it is currently not possible to read out synaptic connec-
tivity on the basis of barcoding at high efficiency, and lineage trac-
ing based on barcodes is hampered by the lack of synchronization 
between barcode mutation and cell division. Last, in situ readout of 
barcodes, or the cellular transcriptome, is currently slow, inefficient 
or biased. More technological development is needed.

Beyond these immediate extensions and combinations of 
existing ideas and technologies, we expect more cellular features 
and cellular histories to be written into nucleic acid barcodes in 
the future. One might imagine a time-stamped ‘interactome’ of 
immune cells over their lifetime, high-resolution molecular ticker 
tapes recording neural activity or histories of gene expression, and 
other, stranger ideas.
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