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Abstract: Neuroscience has long been an essential driver of progress in artificial intelligence (AI). We
propose that to accelerate progress in AI, we must invest in fundamental research in NeuroAI. A core
component of this is the embodied Turing test, which challenges AI animal models to interact with the
sensorimotor world at skill levels akin to their living counterparts. The embodied Turing test shifts the
focus from those capabilities like game playing and language that are especially well-developed or
uniquely human to those capabilities – inherited from over 500 million years of evolution – that are
shared with all animals. Building models that can pass the embodied Turing test will provide a roadmap
for the next generation of AI.

Over the coming decades, Artificial Intelligence (AI) will transform society and the world economy in
ways that are as profound as the computer revolution of the last half century and likely at an even faster
pace. This AI revolution presents tremendous opportunities to unleash human creativity and catalyze
economic growth, relieving workers from performing the most dangerous and menial jobs. However, to
reach this potential, we still require advances that will make AI more human-like in its capabilities.
Historically, neuroscience has been a critical driver and source of inspiration for improvements in AI,
particularly those that made AI more proficient in areas that humans and other animals excel at, such as
vision, reward-based learning, interacting with the physical world, and language1,2. It can still play this
role. To accelerate progress in AI and realize its vast potential, we must invest in fundamental research in
“NeuroAI.”

The seeds of the current AI revolution were planted decades ago, mainly by researchers attempting to
understand how brains compute3. Indeed, the earliest efforts to build an “artificial brain” led to the
invention of the modern “von Neumann computer architecture,” for which John von Neumann explicitly
drew upon the very limited knowledge of the brain available to him in the 1940s4,5. Later, the Nobel-prize
winning work of David Hubel and Torsten Wiesel on visual processing circuits in the cat neocortex
inspired the deep convolutional networks that have catalyzed the recent revolution in modern AI6–8.
Similarly, the development of reinforcement learning was directly inspired by insights into animal
behavior and neural activity during learning9–15. Now, decades later, applications of ANNs and RL are
coming so quickly that many observers assume that the long-elusive goal of human-level intelligence –
sometimes referred to as “artificial general intelligence” – is within our grasp. However, in contrast to the
optimism of those outside the field, many front-line AI researchers believe that major breakthroughs are



needed before we can build artificial systems capable of doing all that a human, or even a much simpler
animal like a mouse, can do.

Although AI systems can easily defeat any human opponent in games such as chess16 and Go17, they are
not robust and often struggle when faced with novel situations. Moreover, we have yet to build effective
systems that can walk to the shelf, take down the chess set, set up the pieces, and move them around
during a game, although recent progress is encouraging18. Similarly, no machine can build a nest, forage
for berries, or care for young. Today’s AI systems cannot compete with the sensorimotor capabilities of a
four-year old child or even simple animals. Many basic capacities required to navigate new situations –
capacities that animals have or acquire effortlessly – turn out to be deceptively challenging for AI, partly
because AI systems lack even the basic abilities to interact with an unpredictable world. A growing
number of AI researchers doubt that merely scaling up current approaches will overcome these
limitations. Given the need to achieve more natural intelligence in AI, it is quite likely that new
inspiration from naturally intelligent systems is needed19.

Historically, many key AI advances, such as convolutional ANNs and reinforcement learning, were
inspired by neuroscience. Neuroscience continues to provide guidance – e.g., attention-based neural
networks were loosely inspired by attention mechanisms in the brain20–23 – but this is often based on
findings that are decades old. The fact that such cross-pollination between AI and neuroscience is far less
common than in the past represents a missed opportunity. Over the last decades, through efforts such as
the NIH BRAIN initiative and others, we have amassed an enormous amount of knowledge about the
brain. The emerging field of NeuroAI, at the intersection of neuroscience and AI, is based on the
premise that a better understanding of neural computation will reveal fundamental ingredients of
intelligence and catalyze the next revolution in AI. This will eventually lead to artificial agents with
capabilities that match those of humans. The NeuroAI program we advocate is driven by the recognition
that AI historically owes much to neuroscience and the promise that AI will continue to learn from it–but
only if there is a large enough community of researchers fluent in both domains. We believe the time is
right for a large-scale effort to identify and understand the principles of biological intelligence and
abstract those for application in computer and robotic systems.

It is tempting to focus on the most characteristically human aspects of intelligent behavior, such as
abstract thought and reasoning. However, the basic ingredients of intelligence – adaptability, flexibility,
and the ability to make general inferences from sparse observations – are already present in some form in
basic sensorimotor circuits which have been evolving for hundreds of millions of years. As AI pioneer
Hans Moravec24 put it, abstract thought “is a new trick, perhaps less than 100 thousand years
old….effective only because it is supported by this much older and much more powerful, though usually
unconscious, sensorimotor knowledge.” This implies that the bulk of the work in developing general AI
can be achieved by building systems that match the perceptual and motor abilities of animals and that the
subsequent step to human-level intelligence would be considerably smaller. This is good news because
progress on the first goal can rely on the favored subjects of neuroscience research – rats, mice, and
non-human primates – for which extensive and rapidly expanding behavioral and neural datasets can
guide the way. Thus, we believe that the NeuroAI path will lead to necessary advances if we figure out the
core capabilities that all animals possess in embodied sensorimotor interaction with the world.



NeuroAI Grand Challenge: The Embodied Turing Test

In 1950, Alan Turing proposed the “imitation game” as a test of a machine’s ability to exhibit intelligent
behavior indistinguishable from that of a human25 (Figure 1, left). In that game, now known as the Turing
test, a human judge evaluates natural language conversations between a real human and a machine trained
to mimic human responses. By focusing on conversational abilities, Turing evaded asking whether a
machine could “think,” a question he considered impossible to answer. The Turing test is based on the
implicit belief that language represents the pinnacle of human intelligence and that a machine capable of
conversation must surely be intelligent.

Until recently, no artificial system could come close to passing the Turing test. However, a class of
modern AI systems called “large language models” can now engage in surprisingly cogent
conversations26. In part, their success reveals how easily we can be tricked into imputing intelligence,
agency, and even consciousness to our interlocutor27. Impressive though these systems are, because they
are not grounded in real-world experiences, they nonetheless continue to struggle with many basic aspects
of causal reasoning and physical common sense. Thus, the Turing test does not probe our prodigious
perceptual and motor abilities to interact with and reason about the physical world, abilities shared with
animals and honed through countless generations of natural selection.

We therefore propose an expanded “embodied Turing test,” one that includes advanced sensorimotor
abilities (Figure 1, right). The spirit of the original Turing test was to establish a simple qualitative
standard against which our progress toward building artificially intelligent machines can be judged. This
embodied Turing test would benchmark and compare the interactions with the world of artificial systems
versus humans and other animals. Similar ideas have been proposed previously28–32. However, in light of
recent advances enabling large-scale behavioral and neural measurements, as well as large-scale
simulations of embodied agents in silico, we believe the time is ripe to instantiate a major research effort
in this direction. Because each animal has its own unique set of abilities, each animal defines its own
embodied Turing test: An artificial beaver might be tested on its ability to build a dam, and an artificial
squirrel on its ability to jump through trees. Nonetheless, many core sensorimotor capabilities are shared
by almost all animals, and the ability of animals to rapidly evolve the sensorimotor skills needed to adapt
to new environments suggests that these core skills provide a solid foundation. This implies that after
developing an AI system to faithfully reproduce the behavior of one species, the adaptation of this system
to other species – and even to humans – may be straightforward. Below we highlight a few of the
characteristics that are shared across species.



Figure 1. Turing tests: comparisons between the performance of AI systems and their living counterparts.
Left: The original Turing test as proposed by Alan Turing25. If a human tester cannot determine whether
their interlocutor is an AI system or another human, the AI passes the test. Modern large language models
have made substantial progress towards passing this test26. Right: The embodied Turing test. An AI
animal model – whether robotic or in simulation – passes the test if its behavior is indistinguishable from
that of its living counterpart. No AI systems are close to passing this test. Here, an artificial beaver is
tested on the species-specific behavior of dam construction.

Animals engage their environments. The defining feature of animals is their ability to move around and
interact with their environment in purposeful ways. Despite recent advances in optimal control,
reinforcement learning, and imitation learning, robotics is still far from achieving animal-level abilities in
controlling their bodies and manipulating objects, even in simulation. Of course, neuroscience can
provide guidance about the kinds of modular and hierarchical architectures that could be adapted to
artificial systems to give them these capabilities33. It can also provide us with design principles like partial
autonomy (how low-level modules in a hierarchy act semi-autonomously in the absence of input from
high-level modules) and amortized control (how movements generated at first by a slow planning process
are eventually transferred to a fast reflexive system). These principles could guide the design of systems
for perception, action selection, locomotion, and fine-grained control of limbs, hands, and fingers.
Understanding how specific neural circuits participate in different tasks could also inspire solutions for
other forms of ‘intelligence,’ including in more cognitive realms. For example, we speculate that
incorporating principles of circuitry for low-level motor control could help provide a better basis for
higher-level motor planning in AI systems.

Animals behave flexibly. Another goal is to develop AI systems that can engage a large repertoire of
flexible and diverse tasks in a manner that echoes the incredible range of behaviors that individual
animals can generate. Modern AI can easily learn to outperform humans at video games like Breakout
using nothing more than pixels on a screen and game scores34. However, these systems, unlike human
players, are brittle and highly sensitive to small perturbations: changing the rules of the game slightly, or
even a few pixels on the input, can lead to catastrophically poor performance35. This is because these
systems learn a mapping from pixels to actions that need not involve an understanding of the agents and
objects in the game and the physics that governs them. Similarly, a self-driving car does not inherently
know about the danger of a crate falling off a truck in front of it unless it has literally seen examples of



crates falling off trucks leading to bad outcomes. And even if it has been trained on the dangers of falling
crates, the system might consider an empty plastic bag being blown out of the car in front of it as an
obstacle to avoid at all costs rather than an irritant, again, because it doesn’t actually understand what a
plastic bag is or how unthreatening it is physically. This inability to handle scenarios that have not
appeared in the training data is a significant challenge to widespread reliance on AI systems.

To be successful in an unpredictable and changing world, an agent must be flexible and master novel
situations by using its general knowledge about how such situations are likely to unfold. This is arguably
what animals do. Animals are born with most of the skills needed to thrive or can rapidly acquire them
from limited experience, thanks to their strong foundation in real-world interaction, courtesy of evolution
and development36. Thus, it is clear that training from scratch for a specific task is not how animals obtain
their impressive skills; animals do not arrive into the world tabula rasa and then rely on large labeled
training sets to learn. Although machine learning has been pursuing approaches for sidestepping this
tabula rasa limitation, including self-supervised learning, transfer learning, continual learning, meta
learning, one-shot learning and imitation learning37, none of these approaches comes close to achieving
the flexibility found in most animals. Thus, we argue that understanding the neural circuit-level principles
that provide the foundation for behavioral flexibility in the real-world, even in simple animals, has the
potential to greatly increase the flexibility and utility of AI systems. Put another way, we can greatly
accelerate our search for general-purpose circuits for real-world interaction by taking advantage of the
optimization process that evolution has already engaged in38–45.

Animals compute efficiently. One important challenge for modern AI – that our brains have overcome –
is energy efficiency. Training a neural network requires enormous amounts of energy. For example,
training a large language model such as GPT-3 requires over 1000 megawatts-hours, enough to power a
small town for a day46. Biological systems are, by contrast, much more energy efficient: The human brain
uses about 20 watts47. The difference in energy requirement between brains and computers derives from
differences in information processing. First, at an algorithmic level, modern large-scale ANNs, such as
large language models26, rely on very large feedforward architectures with self-attention to process
sequences over time23, ignoring the potential power of recurrence for processing sequential information.
One reason for this is that currently we do not have efficient mechanisms for credit assignment
calculations in recurrent networks. In contrast, brains utilize flexible recurrent architectures that can solve
the temporal credit assignment problem with great efficiency. Uncovering the mechanisms by which this
happens could potentially enable us to increase the energy efficiency of artificial systems. Alternatively, it
has been proposed that the synaptic dynamics within adjacent dendritic spines could serve as a
mechanism for learning sequential structure, a scheme that could potentially be efficiently implemented in
hardware48. Second, at an implementation level, neural circuits differ from digital computers. Neural
circuits compute effectively despite the presence of unreliable or "noisy" components. For example,
synaptic release, the primary means of communication between neurons, can be so unreliable that only
one in every ten messages is transmitted49. Furthermore, neurons interact mainly by transmitting action
potentials (spikes), an asynchronous communication protocol. Like the interactions between conventional
digital elements, the output of a neuron can be viewed as a string of 0s and 1s; but unlike a digital
computer, the energy cost of a “1” (i.e. of a spike) is several orders of magnitude higher than that of a
“0”50. Because biological circuits operate in a regime where spikes are sparse – even very active neurons



rarely fire at more than 100 spikes per second and typical cortical firing rates may be less than 1
spike/second – they are much more energy efficient51. Spike-based computation has also been shown to be
orders of magnitude faster and more energy efficient in recent hardware implementation52.

A roadmap for solving the embodied Turing test

How might artificial systems that pass the embodied Turing test be developed? One natural approach
would be to do so incrementally, guided by our evolutionary history. For example, almost all animals
engage in goal-directed locomotion; they move toward some stimuli (e.g. food sources) and away from
others (e.g. threats). Layered on top of these foundational abilities are more sophisticated skills, such the
ability to combine different streams of sensory information (e.g. visual and olfactory), to use this sensory
information to distinguish food sources and threats, to navigate to previous locations, to weigh possible
rewards and threats to achieve goals, and to interact with the world in precise ways in service of these
goals. Most of these – and many other – sophisticated abilities are found to some extent in even very
simple organisms, such as worms. In more complex animals, such as fish and mammals, these abilities are
elaborated and combined with new strategies to enable more powerful behavioral strategies.

This evolutionary perspective suggests a strategy for passing the embodied Turing test by breaking it
down into a series of incrementally challenging ones that build on each other, and iteratively optimizing
on this series53. Specifically, the embodied Turing test comprises challenges that include a wide range of
organisms used in neuroscience research, including worms, flies, fish, rodents and primates. This would
enable us to deploy the vast amount of knowledge we have accumulated about the behavior,
biomechanics, and neural mechanisms of these model organisms to both precisely define each
species-specific embodied Turing test and serve as strong inductive biases to guide the development of
robust AI controllers that can pass it.

The performance of these artificial agents could be compared with that of animals. Rich behavioral
datasets representing a large swath of a species’ ethogram have now been collected and can be deployed
to benchmark performance on species-specific embodied Turing tests. Furthermore, these datasets are
being rapidly expanded given new tools in 3D videography54–57. Additionally, detailed biomechanical
measurements support highly realistic animal body models, complete with skeletal constraints, muscles,
tendons, and paw features58. Combined with the open-sourcing of powerful, fast physics simulators and
virtual environments59,60, these models will afford the opportunity for embodied Turing test research to be
performed in silico at scale33. Finally, existing extensive neural datasets with simultaneous neural
recordings across multiple brain regions during behavior, combined with increasingly detailed neural
anatomy and connectomics, provide a powerful roadmap for the design of AI systems that can control
virtual animals to recapitulate the behaviors of their in vivo counterparts and thus pass the embodied
Turing test.

Importantly, the specifics of the embodied Turing test for each species can be tuned to the needs of
different groups of researchers. We can test the capacity of AI systems in terms of sensorimotor control,
self-supervised and continual learning, generalization, memory-guided behavior on both short and



life-long timescales, and social interactions. Despite these potentially different areas of interest, the
challenges that compose the embodied Turing test can be standardized to permit the quantification of
progress and comparison between research efforts. Standardization can be fostered by stakeholders
including government and private funders, large research organizations such as the Allen Institute, and
major collaborations like the International Brain Lab, with an eye toward the development of common
APIs and support for competitions as has been an important impetus for much progress in machine
learning and robotics61,62. Ultimately, virtual organisms that demonstrate successful recapitulation of
behaviors of interest can be adapted to the physical world with additional efforts in robotics and deployed
to solve real-world problems.

What we need

Achieving these goals will require significant resources deployed in three main areas. First, we must train
a new generation of AI researchers who are equally at home in engineering/computational science and
neuroscience. These researchers will chart fundamentally new directions in AI research by drawing on
decades of progress in neuroscience. The greatest challenge will be in determining how to exploit the
synergies and overlaps in neuroscience, computational science, and other relevant fields to advance our
quest: identifying what details of the brain’s circuitry, biophysics, and chemistry are important and what
can be disregarded in the application to AI. There is thus a critical need for researchers with dual training
in AI and neuroscience to apply insights from neuroscience to advance AI and to help design experiments
that generate new insights relevant to AI. Although there is already some research of this type, it exists
largely at the margins of mainstream neuroscience; training in neuroscience has thus far been motivated
and funded mainly by the goal of improving human health and of understanding the brain as such. This
lack of alignment between fields might explain, e.g., the multi-decade gap between Hubel and Wiesel’s
discovery of the structure of the visual system6 and the development and application of convolutional
neural networks in modern machine learning8. Thus, the success of a NeuroAI research program depends
on the formation of a community of researchers for whom the raison d'être of their training is to exploit
synergies between neuroscience and AI. Explicit design of new training programs can ensure that the
NeuroAI research community reflects the demographics of society as a whole and is equipped with the
ethical tools needed to ensure that the development of AI benefits society63.

Second, we must create a shared platform capable of developing and testing these virtual agents. One
of the greatest technical challenges that we will face in creating an iterative, embodied Turing test and
evolving artificial organisms to pass it is the amount of computational power required. Currently, training
just one large neural network model on a single embodied task (e.g. control of a body in 3-dimensional
space) can take days on specialized distributed hardware64. For multiple research groups to iteratively
work together to optimize and evaluate a large number of agents over multiple generations on
increasingly complex embodied Turing tests, a large investment in a shared computational platform will
be required. Much like a particle accelerator in physics or large telescope in astronomy, this sort of
large-scale shared resource will be essential for moving the brain-inspired AI research agenda forward. It
will require a major organizational effort, with government and ideally also industry support, that has as
its central goal scientific progress on animal and human-like intelligence.



Third, we must support fundamental theoretical and experimental research on neural computation. We
have learned a tremendous amount about the brain over the last decades, through the efforts of the NIH, in
no small measure due to the BRAIN Initiative, and other major funders, and we are now reaching an
understanding of the vast diversity of the brain’s individual cellular elements, neurons, and how they
function as parts of simple circuits. With these building blocks in place, we are poised to shift our focus
toward understanding how the brain functions as an integrated intelligent system. This will require insight
into how a hundred billion neurons of a thousand different types, each one communicating with thousands
of other neurons, with variable, adaptable connections, are wired together, and the computational
capabilities – the intelligence – that emerges. We must reverse engineer the brain to abstract the
underlying principles. Taking advantage of the powerful synergies between neuroscience and AI will
require program and infrastructure support to organize and enable research across the disciplines at a large
scale.

Fortunately, there is now broad political agreement that investments in AI research are essential to
humanity’s technological future. Indeed, IARPA (Intelligence Advanced Research Projects Activity) was
a pioneer in this field, launching the Machine Intelligence from Cortical Networks (MICrONS) project.
This project spearheaded the collection of an unprecedented data set consisting of a portion of a mouse
connectome and associated functional responses with the specific goal of catalyzing the development of
next-generation AI algorithms65. Nonetheless, community-wide efforts to bridge the fields of
neuroscience and AI will require robust investments from government resources, as well as oversight of
project milestones, commercialization support, ethics, and big bets on innovative ideas. In the U.S., there
are currently some lines of federal resourcing, such as the NSF’s National Artificial Intelligence Research
Institutes, explicitly dedicated to driving innovation and discovery in AI from neuroscience research, but
these are largely designed to support a traditional academic model with different groups investigating
different questions, rather than the creation of a centralized effort that could create something like the
embodied Turing test. Likewise, AI support grants in the U.S. are predominantly ancillary programs
through the NIH, NSF, DoD, and even the EPA – each of which have their own directives and goals – and
this pattern is shared by funding agencies globally. This leaves a significant funding gap for technology
development as an end in itself. The creation of overarching directives either through existing entities, or
as a stand-alone agency, to support NeuroAI and AI research would drive this mission and consequently
unlock the potential for AI to benefit humanity.

Conclusions

Despite the long history of neuroscience driving advances in AI and the tremendous potential for future
advances, most engineers and computational scientists in the field are unaware of the history and
opportunities. The influence of neuroscience on shaping the thinking of von Neumann, Turing and other
giants of computational theory are rarely mentioned in a typical computer science curriculum. Leading AI
conferences such as NeurIPS, which once served to showcase the latest advances in both computational
neuroscience and machine learning, now focus almost exclusively on the latter. Even some researchers
aware of the historical importance of neuroscience in shaping the field often argue that it has lost its



relevance. “Engineers don’t study birds to build better planes” is the usual refrain. But the analogy fails,
in part because pioneers of aviation did indeed study birds66,67, and some still do68,69. Moreover, the
analogy fails also at a more fundamental level: The goal of modern aeronautical engineering is not to
achieve “bird-level” flight, whereas a major goal of AI is indeed to achieve (or exceed) “human-level”
intelligence. Just as computers exceed humans in many respects, such as the ability to compute prime
numbers, so too do planes exceed birds in characteristics such as speed, range and cargo capacity. But if
the goal of aeronautical engineers were indeed to build a machine with the “bird-level” ability to fly
through dense forest foliage and alight gently on a branch, they would be well-advised to pay very close
attention to how birds do it. Similarly, if AI aims to achieve animal-level common-sense sensorimotor
intelligence, researchers would be well-advised to learn from animals and the solutions they evolved to
behave in an unpredictable world.
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