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SUMMARY

Understanding neural circuits requires deciphering
interactions among myriad cell types defined by
spatial organization, connectivity, gene expression,
and other properties. Resolving these cell types
requires both single-neuron resolution and high
throughput, a challenging combination with conven-
tional methods. Here, we introduce barcoded anat-
omy resolved by sequencing (BARseq), a multiplexed
method based onRNAbarcoding formapping projec-
tions of thousands of spatially resolved neurons in a
single brain and relating those projections to other
properties such as gene or Cre expression. Mapping
the projections to 11 areas of 3,579 neurons in mouse
auditory cortex using BARseq confirmed the laminar
organization of the three top classes (intratelence-
phalic [IT], pyramidal tract-like [PT-like], and cortico-
thalamic [CT]) of projection neurons. In depth analysis
uncovered a projection type restricted almost exclu-
sively to transcriptionally defined subtypes of IT neu-
rons. By bridging anatomical and transcriptomic ap-
proaches at cellular resolution with high throughput,
BARseq can potentially uncover the organizing princi-
ples underlying the structure and formation of neural
circuits.

INTRODUCTION

The nervous system consists of networks of neurons, organized

into areas, nuclei, lattices, laminae, and other structures. Within

these structures are uncounted different neuronal types, each

characterized by its own pattern of connections, gene expres-

sion and physiological properties. Understanding how diverse

neurons are organized thus requires methods that can map

various neuronal characteristics at cellular resolution, with

high-throughput, in single brains.

A particular challenge is to map the long-range axonal projec-

tion patterns that form the physical basis for neuronal circuits

across brain areas. Traditional neuroanatomical methods based

on microscopy can be used to visualize neuronal morphology,

including long-range projections, but the throughput of these
772 Cell 179, 772–786, October 17, 2019 ª 2019 Elsevier Inc.
methods remains low despite recent advances in methodology

(up to �50 neurons per single cortical area) (Economo et al.,

2016; Gong et al., 2016; Guo et al., 2017; Lin et al., 2018; Zheng

et al., 2013). Furthermore, these methods usually rely on dedi-

cated imaging platforms specifically designed for neuronal

tracing, which are not widely accessible to many laboratories.

To allow high-throughput projection mapping, we previously

developed multiplexed analysis of projections by sequencing

(MAPseq) (Han et al., 2018; Kebschull et al., 2016a) (Figure 1A,

left), a sequencing-based method capable of mapping projec-

tions of thousands of single neurons in a single brain. MAPseq

achieves multiplexing by uniquely labeling individual neurons

with random RNA sequences, or ‘‘barcodes.’’ However, like

most other sequencing methods, the original MAPseq protocol

relies on tissue homogenization, so the precise location of

each soma is lost. Thus, with MAPseq, it is difficult to combine

information about projections with other types of information,

such as gene expression and neuronal activity.

Here, we describe BARseq (barcoded anatomy resolved by

sequencing) (Figure 1A, right), a method that combines MAPseq

with in situ sequencing (Chen et al., 2018; Ke et al., 2013; Lee

et al., 2014) of cellular barcodes. BARseq preserves the spatial

organization of neurons during projection mapping and further

allows co-registration of neuronal projections with mRNA

expression in a single specimen. We show that BARseq is able

to recapitulate the known spatial organization of major classes

of neocortical excitatory neurons—corticothalamic (CT), pyrami-

dal tract-like (PT-l) (we call these neurons pyramidal tract-like

because, unlike pyramidal tract neurons in the motor cortex,

these neurons in the auditory cortex do not project to the spinal

cord), and intratelencephalic (IT) neurons (Harris and Shepherd,

2015; Shepherd, 2013)—in the mouse auditory cortex and can

additionally uncover previously unknown organization beyond

these major classes. BARseq thereby complements traditional

neuro-anatomical approaches by providing a high-throughput

method for linking axonal projections, spatial organization,

gene expression, and potentially other neuronal properties that

define neuronal cell types and circuits.

RESULTS

In what follows, we first demonstrate robust in situ sequencing of

cellular barcodes in neuronal culture.We then combine in situbar-

code sequencing in cortical slices with mapping of projections
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Figure 1. Multiplexed Projection Mapping Using In Situ Sequencing
(A) Workflow of MAPseq (left) and BARseq (right).

(B) NGS versus in situ sequencing.

(C) Comparison of in situ sequencing and hybridization techniques. These techniques may use multiple rounds of hybridization to probe and read out multiple

mRNAs (a and b), use sequencing to multiplex read out of hybridization signals (c and d), or copy target sequences from the mRNA into the rolonies to allow true

sequencing (e and f).

(D) Representative images of barcode rolonies generated in primary hippocampal neuronal culture coexpressing GFP. All GFP positive neurons were filled with

barcode amplicons, indicating efficient barcode amplification in neuronal somata. Scale bars, 50 mm.

(E) Images of the first four sequencing cycles of the same neurons shown in (D). The bases corresponding to the four colors and the sequences of the three

neurons circled are indicated to the right. In all images, scale bars, 50 mm.
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(MAPseq).We next combine BARseqwith fluorescence in situ hy-

bridization (FISH) and subpopulation-targeted Cre labeling to

correlate neuronal projections with gene expression and fluores-

cent labeling. Finally, we apply BARseq to understand the organi-

zation of projection neurons in the auditory cortex and identify a

structured organization of projections beyond previously defined

classes of projection neurons.

In Situ Barcode Sequencing in Neuronal Culture
We set out to develop a method capable of reading out highly

diverse ensembles of sequences in situ, with cellular and even

subcellular spatial resolution. Although several highly sensitive

multiplexed in situ hybridization methods have been described

(e.g., multiplexed error-robust fluorescence in situ hybridization

[merFISH] [Chen et al., 2015)], sequential fluorescence in situ

hybridization [seqFISH] [Eng et al., 2019; Shah et al., 2016],

STARmap [Wang et al., 2018], in situ sequencing [Ke et al.,

2013], and cyclic single molecule fluorescent in situ hybridization

[osmFISH] [Codeluppi et al., 2018]), these methods lack single-

nucleotide specificity, and can distinguish only up to 102–104

different transcript sequences, each with a length of 102–103

nt. By contrast, cellular barcodes used for projection mapping

are much shorter (30-nt), more diverse (�106 to 107) and may

differ from each other by just a few nucleotides. Cellular barco-

des thus cannot be distinguished using currently available multi-

plexed FISH approaches. Spatial transcriptomics (Rodriques

et al., 2019; Ståhl et al., 2016) can read out diverse short barco-

des, but at present, the spatial resolution is insufficient to resolve

single neurons. Laser micro-dissection combined with RNA

sequencing (RNA-seq) can provide cellular resolution, but the

throughput is too low for high-throughput projection mapping.

We therefore focused on an in situ sequencing approach (Chen

et al., 2018; Ke et al., 2013) to achieve both the spatial resolution

and the throughput needed for barcode identification in situ.

In situ sequencing is conceptually similar to conventional

in vitro Illumina DNA sequencing (Figure 1B), both of which

consist of two basic steps: amplification and sequencing. In

the amplification step, the RNA is converted to cDNA by reverse

transcription, and the cDNA is amplified using rolling circle

amplification, resulting in the formation of a small (< 1 mm) nano-

ball of DNA called a ‘‘rolony.’’ In the sequencing step, the rolo-

nies are sequenced in parallel using four fluorescently labeled

nucleotides. The nucleotide sequences are thus transformed

into color sequences and are read out using multi-channel fluo-

rescence microscopy.

To capture short diverse barcode sequences, we needed an

approach in which the actual target barcode sequence is

captured and amplified (Figures 1Ca–1Cf). Although some

FISH methods use sequencing to read out gene-specific

tags to allow multiplexed detection of RNAs (Ke et al., 2013;

Wang et al., 2018), they cannot directly sequence the RNAs

of interest and are unsuitable for barcode sequencing

(Figures 1Cc and 1Cd). Circligase-based fluorescent in situ

RNA sequencing (FISSEQ) (Figure 1Ce) can readout mRNA

sequences but is not sufficiently sensitive for barcode

sequencing. We therefore used a targeted approach,

BaristaSeq (Chen et al., 2018), in which reverse transcription

was used to convert the barcode sequence into cDNA, after
774 Cell 179, 772–786, October 17, 2019
which padlock probe hybridization followed by gap-filling

and ligation was used to form a circular template for rolling cir-

cle amplification (Figure 1Cf). The gap-filling padlock approach

allowed for efficient amplification of barcodes in neurons co-

expressing barcodes and GFP (Figure 1D). We also adapted

Illumina sequencing by synthesis (SBS) chemistry for in situ re-

actions. In combination, these strategies formed the basis for

a protocol that allowed efficient and robust sequencing of bar-

coded cultured neurons (Figure 1E).

In Situ Barcode Sequencing in Brain Slices
In situ sequencing in brain slices presents additional chal-

lenges compared to sequencing in cultured neurons. We

developed a chamber system that enabled convenient

handling and was compatible with the amplification reactions

(Figure S1A; STAR Methods). Because barcoded neurons ex-

press high levels of GFP (that interferes with imaging during

sequencing), we developed a protocol for tissue digestion to

reduce the GFP signal from barcoded cells (Figure S1B;

STAR Methods) and to increase RNA accessibility. Together

these optimizations resulted in highly efficient amplification

of barcodes (Figure S1C) compared to other methods (Ke

et al., 2013; Lee et al., 2014). We also optimized Illumina

sequencing chemistry for brain slices, resulting in a �10-fold

improvement in signal-to-noise ratio (SNR) compared to

sequencing by ligation approaches (Ke et al., 2013; Lee

et al., 2014) (Figures S1D and S1E; STAR Methods). These

modifications resulted in highly efficient and specific barcode

amplification (Figure 2A) and sequencing (Figure 2B) in bar-

coded neuronal somata in brain slices.

To evaluate barcode sequencing in brain slices, we

sequenced 25 bases in a sample infected with a diverse (>106

unique sequences) pool of barcoded Sindbis virus (Kebschull

et al., 2016a, 2016b) injected in the auditory cortex (Figure 2C).

Basecall quality (Figures 2D and S1F; STARMethods) and signal

intensity (Figure S1G) remained high through all 25 cycles. We

observed no bias toward any particular base (Figure S1H).

Read accuracy was high: barcodes in 50/51 (98%) randomly

selected cells matched perfectly to known barcodes in the

library, and the remaining cell had only a single base mismatch

to the closest barcode in the library (Figures 2E and 2F). The

per-base error rate of 1/(25 3 51) = 0.0078 corresponds to a

Phred score of 31. Because the barcodes in this library represent

a small fraction (�10�9) of all possible 25-mer barcodes (>1015),

random 25-nt sequences on average had seven mismatches to

the closest known barcode, indicating that our barcode reads

were unlikely to be false-positive matches by chance. These re-

sults indicate that in situ sequencing of RNA barcodes in brain

slices is both accurate and efficient.

Projection Mapping Using BARseq
We next combined in situ barcode sequencing with MAPseq. In

MAPseq (Figure 1A, left), neurons are barcoded using a Sindbis

virus library. Both the source area containing neuronal somata

and target projection areas are micro-dissected into ‘‘cubelets’’

and sequenced. Barcodes from the target areas are then

matched to those at the source area to reveal projection pat-

terns. The spatial resolution of MAPseq is thus determined
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Figure 2. Validation of BARseq

(A) Representative low-magnification images of

GFP (left) co-expressed with barcodes and rolo-

nies (right) in a brain slice. GFP intensity does not

correlate perfectly with rolony intensity due to

differences in protein and RNA expression. Insets:

Negative control images of GFP and rolonies of a

non-barcoded brain slice taken with the same

exposure settings. No GFP or rolonies are visible

in these images. Scale bars, 50 mm.

(B) Representative high-resolution sequencing

image of a barcoded brain slice. Scale bar, 50 mm.

(C) Low-resolution images of the indicated cycles

of barcode sequencing in a brain slice. The

sequences of the three cells are indicated below.

Scale bars, 100 mm.

(D) The quality of the base calls on the barcoded

brain slice.

(E) Histogram of the number of mismatches be-

tween the in situ reads and their closest matches

from in vitro reads (in situ) and the number of mis-

matches between random sequences and their

closest matches from in vitro reads (Random).

(F) An example barcode read in situ and its closest

match in vitro, and a random sequence and its

closest match in vitro. Red indicates mismatches.

(G) A brain was injected with CTB in the contralat-

eral auditory cortex and barcoded in the ipsilateral

auditory cortex. BARseq results of the barcoded

neuronswere then compared to retrograde labeling

by CTB.

(H) A representative image of a brain slice double

labeled with barcodes (cyan) and CTB (magenta)

from the contralateral auditory cortex. Dashed lines

indicate the top and the bottom of the cortex. Scale

bar, 100 mm. A magnified view of the squared area

is shown in the inset. The arrow in the inset in-

dicates a GFP+ CTB+ double-labeled neuron.

(I) Venn diagram showing the number of GFP ex-

pressing neurons labeled with (magenta) or without

(white) CTB and/or neurons found to project con-

tralaterally using BARseq (cyan).

See also Figure S1 and Table S1.
by the size of the cubelets. In BARseq, we perform in situ

sequencing of barcoded somata at the source; the target projec-

tion areas are still micro-dissected and sequenced as cubelets

(Figure 1A, right). BARseq thus inherits the throughput and cube-

let resolution of projections of MAPseq but allows the precise

somatic origin of each axonal projection to be determined with

cellular resolution.

The high sensitivity and accuracy of MAPseq is well estab-

lished (Han et al., 2018; Kebschull et al., 2016a; Klingler et al.,

2018). In particular, the sensitivity of MAPseq is indistinguishable

from that of conventional GFP-based single neuron reconstruc-

tion (Han et al., 2018). To confirm that BARseqmaintains the high

sensitivity and accuracy of MAPseq, we compared it to conven-

tional retrograde cholera toxin subunit B (CTB) tracing of contra-

lateral projections. We injected a highly diverse (�107 barcodes)

viral library into the auditory cortex and CTB in the contralateral

auditory cortex (Figures 2G and 2H). We used BARseq to identify

contralaterally projecting neurons and the precise locations of

their somata. We then identified barcoded somata that were

also labeled with CTB. The majority (12/13, 92%) of CTB-labeled
neurons were detected by BARseq, whereas only 28% (12/43) of

contralaterally projecting neurons identified by BARseq were

labeled with CTB (Figure 2I; Table S1). The strength of the

contralateral projections was well above the noise threshold

(defined by barcode counts in the olfactory bulb, an area to

which the auditory cortex does not project; Figure S1I), indi-

cating that the higher apparent sensitivity of BARseq was not

due to false positives resulting from contaminating barcodes.

These results indicate that BARseq retains the previously re-

ported (Kebschull et al., 2016a) high specificity and sensitivity

of MAPseq (91% ± 6%) and may exceed the sensitivity of

conventional CTB tracing.

Relating Projection Patterns to Gene Expression Using
BARseq
The in situ nature of BARseq allows us to relate axonal projection

patterns with other single neuron characteristics measured

in situ in the same sample. In particular, BARseq can relate pro-

jections to past or current gene expression by combining with

marker-based Cre driver lines or FISH.
Cell 179, 772–786, October 17, 2019 775
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Figure 3. Correlating Gene Expression and

Projections Using BARseq

(A) Barcode sequencing in Cre-labeled animals.

Top: images of Fezf2+ tdTomato expressing cells

(left), GFP expressing barcoded cells (middle), and

merged image of the two (right). Scale bar,

100 mm. Bottom: sequencing images of the boxed

area in the merged image. Arrows indicate

tdTomato-expressing barcoded neurons.

(B) Projection patterns of all neurons (left) and

Fezf2+ neurons (right). Rows indicate neurons and

columns indicate projection areas.

(C) The cortical depth distribution of barcoded

Fezf2+ somata color-coded by projections.

(D) Representative images of FISH (left) and

sequencing images (right) of the same sample.

Scale bars, 50 mm.

(E) The expression profile ofSlc17a7 andGad2 and

barcode sequences of the neurons boxed in (D).

(F) The number of neurons with or without pro-

jections (Proj) in cells that did or did not express

Slc17a7 (S) and/or Gad2 (G).

(G) Mean log normalized expression of each gene

averaged over all barcoded (x axis) and non-

barcoded (y axis) neurons. The gene expression is

regressed with a Poisson model to remove the

effect of both the percentage of mitochondrial

genes and endogenous UMI counts.

See also Figure S2 and Table S2.
To demonstrate BARseq in Cre-labeled neuronal subpopula-

tions, we performed BARseq in the auditory cortex in a Fezf2-

2A-CreER::Rosa-CAG-LSL-tdTomato (Ai14) mouse induced at

age 6 and 7 postnatal weeks (Figure 3A). Fezf2 is predominantly

expressed in layer 5 PT-l, but is also expressed at lower levels in

some layer 5 IT neurons and layer 6 CT neurons (Tasic et al.,

2018). We sequenced 1,291 projection neurons with good

sequencing quality in situ, including 72 neurons co-labeled by

tdTomato, and assayed their projection patterns to 11 target

areas (STAR Methods). The Fezf2+ population included 53

(74%) PT-l neurons projecting to the tectum and the thalamus,

eight (11%) CT neurons projecting to the thalamus only, nine

(13%) IT neurons in layer 5 projecting to the contralateral cortex,

and two (3%) neurons in layer 5 projecting to the striatum (Fig-

ures 3B and 3C). The lack of corticotectal projection in the

callosal projecting neurons is unlikely an artifact caused by

limited detection sensitivity of corticotectal projections, because

these neurons also project to other telencephalic areas that PT-l

neurons do not. Neurons labeled with Fezf2-2A-CreER thus con-

sisted mainly of PT-l neurons, along with a small fraction of

callosally projecting neurons in layer 5 and CT neurons in layer

6. These results demonstrate the combination of BARseq with

Cre-dependent labeling of neuronal subpopulations and further

validate the results of BARseq.

To correlate projections with the expression of multiple genes,

BARseq can be combined with in situ detection of genes in the

same sample. To demonstrate the feasibility of resolving both

barcodes (for projection mapping) and endogenous gene

expression in situ, we combined BARseq with FISH against

Slc17a7 (a marker of excitatory neurons) (Tasic et al., 2016)

and Gad2 (a marker of inhibitory neurons) in the same cells (Fig-

ures 3D and 3E). Consistent with the fact that most projection
776 Cell 179, 772–786, October 17, 2019
neurons in the cortex are excitatory, we identified 54 neurons

with long-range projections, all of which expressed Slc17a7,

but not Gad2 (Figure 3F; Table S2; see STAR Methods for de-

tails). The projection neurons identified by BARseq were thus

consistent with their transcriptional cell types. These experi-

ments demonstrate that projection mapping with BARseq is

compatible with in situ interrogation of gene expression.

We next assessed whether barcoding disrupted the transcrip-

tomic landscape of single neurons. We performed single-cell

RNA-seq in 398 barcoded and 1,088 non-barcoded cells

dissociated from the mouse auditory cortex. Although fewer

endogenous mRNA molecules were recovered from barcoded

compared to non-barcoded neurons, the relative levels of

endogenous gene expression remained largely unchanged in

barcoded cells (Figures 3G and S2A; see STAR Methods for de-

tails). The fact that relative levels were preserved is compatible

with a model in which infection with the barcoded viral vector

affects the expression of most endogenous genes about equally.

Importantly, top principal components of genes identified in the

non-barcoded neurons were equally effective in describing gene

expression in barcoded neurons (Figure S2B). These principal

components contained many known neuronal subtype markers

(Figure S2C). These results indicate that the expression pattern

of genes, especially those that contribute to cell typing, remain

largely intact in barcoded cells.

Projection Diversity in the Mouse Auditory Cortex
Having established the sensitivity and specificity of BARseq, we

applied it to study the organization of long-range projections

from the mouse auditory cortex. We performed BARseq on

two brains (XC9 and XC28) and MAPseq on an additional brain

(XC14). We allowed one mismatch when matching in situ



A B

DC

E F G

Figure 4. Mapping Projections of the Audi-

tory Cortex Using BARseq

(A) Histogram of the minimal pairwise hamming

distance of the first 15 bases of barcodes recov-

ered from brain XC9.

(B) Single-cell projection patterns sorted by

clusters.

(C) Conventional bulk GFP tracing intensities

(x axis) were plotted against the bulk projection

strength obtained from BARseq (y axis). Error bars

indicate SEM. N = 5 for GFP tracing and N = 3 for

BARseq. Pearson correlation coefficient r = 0.94,

p < 0.0001.

(D) The distribution of projection intensity in each

projection area. The y axis indicates the logarithms

of raw barcode counts in each area, and the x axis

indicates the number of cells.

(E) The numbers of binarized projection patterns

(y axis) after filtering for primary projection

strength (x axis, blue line) or after random sub-

sampling to the same sample size (red line). Black

lines and error bars indicate 95% confidence

interval for subsampling.

(F) Histogram of the number of projections per

neuron.

(G) The fractions of multi-projection neurons

(y axis) are plotted against the ratio between the

secondary and primary projections (x axis). Blue

line indicates actual distribution and red line in-

dicates fitting with a log normal distribution.

See also Figure S3 and Table S3.
barcodes to the projection barcodes (Figures 4A and S3A; STAR

Methods),and found 1,806 (55%) of 3,237 cells sequenced in situ

projected to at least one target area (Table S3). We further

excluded cells obtained from tissue deformed during processing

and from labeled cells outside of the cortex. This resulted in

1,309 neurons sequenced in situ and 5,082 neurons sequenced

in vitro using conventional MAPseq (Figure 4B; Table S3).

Because only neurons at the center of the injection sites were

sequenced in each BARseq brain, the MAPseq experiment pro-

duced more neurons per brain than BARseq, but might include

neurons from nearby cortical areas.

We focused on 11 auditory cortex projection target areas,

including four ipsilateral cortical areas (orbitofrontal, motor, so-

matosensory, and visual), two contralateral cortical areas (visual

and auditory), three subcortical telencephalic areas (amygdala,

rostral striatum, and caudal striatum), the thalamus, and the

tectum (see STARMethods for details of dissected areas). These

included most major brain areas to which the auditory cortex

projects, as determined by conventional bulk GFP tracing exper-

iments (Oh et al., 2014). We also collected tissue from the olfac-

tory bulb, an area to which the auditory cortex does not project,

as a negative control.

Only five out of 6,391 neurons had non-zero barcode counts in

the olfactory bulb (four neurons with a count of one molecule,

and one neuron with a count of four molecules), indicating that

the technical false-positive rate for a single target area is

extremely low at 5/6,391 = 0.08%. Using the false-positive rate

and the number of barcodes with zero counts in each area, we

estimated that a total of 40 out of 18,851 projections detected
in our dataset might be false positives, corresponding to a false

discovery rate of 0.2% (i.e., for every 1,000 detected projections,

two were likely false positives). BARseq thus has a very low false

discovery rate.

MAPseq has now been validated using several different

methods, including single neuron reconstruction, in multiple

brain circuits (Han et al., 2018; Kebschull et al., 2016a). The

contribution of potential artifacts, including those due to non-

uniform barcode transport and variable barcode expression

strength, have been carefully quantified in previous work (Han

et al., 2018; Kebschull et al., 2016a). Although one potential chal-

lenge of MAPseq arises from fibers of passage, in practice these

have not represented a major source of artifact (Han et al., 2018;

Kebschull et al., 2016a). One reason is that the total amount of

axonal material due to fibers of passage is typically small

compared with the rich innervation of a fiber at its target. A sec-

ond reason is that the barcode carrier protein is designed to be

enriched at synapses (Kebschull et al., 2016a), which further

minimizes the contribution of passing fibers to barcode counts.

To determine the extent of contamination from fibers of passage,

we examined the striatal projections of putative CT neurons (i.e.,

neurons that project to the thalamus, but not to any cortical area

or the tectum) and putative PT-l neurons (i.e., neurons that proj-

ect to the tectum, the thalamus, but not to any cortical area) from

the two BARseq brains (the MAPseq brain was excluded

because it may include PT-l neurons from neighboring areas

that did not project to the tectum, and may be misidentified as

CT neurons). Both types of neurons send descending fibers

through the internal capsule adjacent to the caudal striatum,
Cell 179, 772–786, October 17, 2019 777



and thus can be used to evaluate fibers of passage contamina-

tion in the striatum. Consistent with the fact that PT-l but not

CT neurons project to the striatum, only 8/250 (3.2%) putative

CT neurons sequenced in situ projected to the caudal striatum,

whereas 59/245 (24%) putative PT-l neurons sequenced in situ

projected to the caudal striatum. The fact that �97% of putative

CT neurons did not show projection to the caudal striatum rein-

force previous observations that fibers of passage have minimal

impact on projections mapped in these experiments.

At themesoscopic level, the projection patterns of the auditory

cortex revealed by BARseq were consistent with anterograde

tracing in the Allen Mouse Connectivity Atlas (Oh et al., 2014).

In MAPseq and BARseq, the strength of the projection of a

neuron to a target is given by the number of individual barcode

molecules from that neuron recovered at the target. This is anal-

ogous to a conventional fluorophore mapping experiment, in

which projection strength is assumed to be proportional to

GFP intensity. Consistent with conventional bulk GFP tracing

(Oh et al., 2014) (Figure 4C; Pearson correlation coefficient

r = 0.94, p < 0.0001; STAR Methods), projections from the audi-

tory cortex to the thalamus, the tectum, the contralateral auditory

cortex, and the caudal striatum were particularly strong (Fig-

ure 4D). BARseq thus provides quantitative measurements of

long-range projections in the auditory cortex consistent with

those obtained by conventional bulk labeling techniques.

The projection patterns of individual neurons were remarkably

diverse. To quantify this diversity, we binarized projection pat-

terns, using a conservative threshold for projection detection

(four molecules per barcode per area, given by the OB negative

control). We observed 264 distinct patterns or 13% of the 211 =

2,048 possible patterns. This high diversity was unlikely an arti-

fact of projections missed by BARseq due to false negatives:

237 to 247 unique projection patterns remain even when a false

negative rate of 10%–15% was assumed (STAR Methods). This

high diversity was also unlikely to be caused by limited sensitivity

of MAPseq for neurons with fewer barcodes overall: a significant

fraction of these projection patterns (112/264 = 42%) can be ac-

counted for solely by strong projections (STAR Methods), and

eliminating neurons with weaker primary projections resulted in

only a moderate reduction in the diversity of projection patterns

(Figure 4E, blue line). Furthermore, this reduction was largely due

to the reduction in sample size (Figure 4E, red line). Because of

the conservative thresholding we used and the fact that the audi-

tory cortex may project to areas we did not sample, the actual

number of distinct projection patterns may be higher.

The majority (85%) of cortical projection neurons projected to

two or more target areas (Figure 4F) after binarization. The ratio

of the projection strengths of the two strongest projections

follow a log normal distribution (Figure 4G), and approximately

half of all neurons have a secondary projection that is at least

20% as strong as their primary projections. These estimates

were based on neurons whose primary projections were strong

enough to observe a secondary projection, and therefore were

not limited by the sensitivity of Mapseq/BARseq or by the vari-

ability in the expression level of barcodes. This high projection

diversity and multiple projections per neuron are consistent

with previous observations in the auditory cortex using conven-

tional tracing (Asokan et al., 2018; Williamson and Polley, 2019)
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and high-throughput mapping in the visual cortex (Han et al.,

2018), and may be a general feature of cortical projections.

BARseq Recovers Structured Projections across Major
Classes of Projection Neurons
Simple hierarchical clustering on the non-binarized projections

(STAR Methods) partitioned neurons into established (Harris

and Shepherd, 2015) cortical classes: CT, PT-l, and IT (Fig-

ure 5A). CT neurons project to the thalamus; PT-l neurons project

to both the thalamus and the tectum; and IT neurons project to

the cortex but not subcortically to the thalamus or tectum. IT

neurons were further subdivided into those that project to both

the ipsilateral and contralateral cortex (the ITc class), and those

that project ipsilaterally only (the ITi class). These patterns corre-

spond to the classically defined top-level subdivisions of cortical

projection patterns.

The classification of cortical excitatory projection patterns into

PT-l, IT, and CT classes was supported by the corresponding

segregation of these neurons into distinct laminae. As expected,

the major classes segregated strongly with laminar position: su-

perficial layers contained predominantly IT neurons, whereas

deep layers contained predominantly PT-l and CT neurons

(Harris and Shepherd, 2015) (Figure 5B; see STAR Methods

and Figures S3B–S3E for the estimation of layers using layer-

specificmarker genes). Thus,major classes of cortical projection

neurons defined by BARseq had distinct laminar distributions,

consistent with previous observations using conventional

methods (Harris and Shepherd, 2015).

Our data revealed two interesting features of the PT-l neurons

in the auditory cortex. First, although IT neurons projected to

both the caudal striatum—an area implicated in auditory deci-

sion making (Znamenskiy and Zador, 2013)—and the rostral

striatum, PT-l neurons projected only to the caudal striatum.

We confirmed this finding by triple retrograde tracing (Fig-

ure S4A): a significant fraction of neurons (66/296) projecting to

the rostral striatum also projected to the caudal striatum, but

none (0/296) projected to the tectum (Figures S4B and S4C).

Second, we identified a minor population of PT-l neurons in layer

6 of the auditory cortex in addition to the more common layer 5

PT-l neurons (Figure 5B). This population of layer 6 PT-l neurons

has previously been reported to differ from the layer 5 PT-l neu-

rons based on physiological and other properties (Slater et al.,

2013). Similar to the differences observed between the layer 5

and layer 6 PT-l neurons, the corticotectal projections were

slightly stronger in layer 5 than those in layer 6, but with consider-

able overlap (Figure S4D [PT-Tect]; 11.7 ± 2.2 [mean ± SD],

n = 80 for layer 6 neurons and 13.8 ± 1.6, n = 185 for layer 5 neu-

rons, p < 0.0001 using bootstrap Kolmogorov-Smirnov [K-S]

test). The strengths of other major projections were indistin-

guishable between the two groups (Figure S4D [PT], p = 0.5 for

both corticothalamic projections and corticostriatal projections

using bootstrap K-S test). The results of BARseq were thus

consistent with, but went beyond, classical taxonomy.

Projection Subclusters Do Not Segregate by Laminae
Even within the major classes, projections from the auditory cor-

tex to individual targets were often correlated (Figure S5A). For

example, an ITi neuron with a strong projection to the
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Figure 5. The Laminar Organization of Projection Neurons in the Auditory Cortex

(A) The mean projection patterns of clusters corresponding to the indicated major classes of neurons. Line thickness indicates projection strength normalized to

the strongest projection for that class. Blue arrows indicate projections to contralateral brain areas and black arrows indicate projections to ipsilateral brain areas.

(B) The sequenced projection neurons from a brain (XC9) are color-coded by class identities and plotted at their locations in the cortex. The top and bottom of the

cortex are indicated by the red and blue dashed lines, respectively. The laminae and their boundaries are marked. Scale bar, 100 mm. Inset: histograms of the

laminar depths of each class of projection neurons in the pooled BARseq dataset.

(C) Hierarchical clustering of single-cell projection data. Top: dendrogram of the hierarchical structure of the clusters. Middle: the mean projection patterns of the

corresponding leaf clusters. Bottom: The laminar distribution of the corresponding leaf clusters. Individual neurons are superimposed on top of the distribution

plots (light gray). Neurons whose cluster identity were less confident were marked in gray. The number of cells that belong to each leaf cluster is indicated below.

Neurons of subcluster 25 were likely misidentified PT-l neurons (STAR Methods).

(D) T-distributed stochastic neighbor embedding (t-SNE) plot of the projection neurons. The neurons are color-coded by their first level subcluster identities

post hoc.

(E) The normalized entropy of nodes/leaves (y axis) in the indicated clustering hierarchy (x axis). Grey bars indicate mean ± SD of all nodes/leaves of a specific

hierarchy.

See also Figures S4, S5, and S6.
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Figure 6. Subtypes of IT Neurons Defined

by Gene Expression in the Auditory Cortex

(A) Histograms of the log normalized expression of

the indicated marker genes in the indicated clus-

ters obtained from single-cell RNA-seq in the

auditory cortex. The dendrograms showdistances

of mean gene expression among transcriptomic

clusters (left) and distances of mean projection

pattern (right) obtained throughBARseq and FISH.

(B) t-SNE plot of the gene expression of neurons

color-coded by cluster identity as in (A).

(C)MetaNeighbor comparison of neuronal clusters

obtained in the auditory cortex to those in the

visual cortex from Tasic et al. (2018).

(D) Projections (left) and the expression of genes

(right) of neurons obtained using combination of

BARseq and FISH are shown on a log scale.

Projection areas are the same as in Figure 4B,

except that each cortical area is divided into upper

(u) and lower (l) layers.

(E) Distributions of laminar positions of neurons.

Individual neurons (red) are superimposed on the

smoothed distribution (black).

See also Figure S7.
somatosensory cortex was also likely to have a strong projection

to the visual cortex, but a weak striatal projection (Figure S5Ab).

Such correlations suggest that the remarkable diversity of pro-

jections did not arise purely by chance (e.g., by a process in

which each neuron selected targets at random).We therefore ex-

ploited the large sample size available from BARseq to look for

statistical signatures of the organization of projections from

auditory cortex.

To explore the statistical structure underlying these projection

patterns, we performed hierarchical clustering on the projection

patterns. For this analysis, we did not binarize the projection pat-

terns; we considered not only whether a neuron projected to an

area, but also the strength of that projection. This clustering

uncovered structure well beyond the previously established

top-level classes (Figures 5C and 5D; see Figures S5B–S5E

and STAR Methods for details of clustering methods). Depend-

ing on the precise clustering algorithm and statistical criteria

used (Figure S5F), as many as 25 subclusters were revealed.

Most of these subclusters were robust: 5,682/6,391 (89%) of

neurons were unambiguously assigned into one of the 25 sub-

clusters using a probabilistic approach (Figures S5G and S5H;

STAR Methods). All top-level subclusters were observed in all

three brains (Figure S6A; see STAR Methods for likely misclassi-

fication of some striatal-projecting PT-l neurons as CT neurons

due to choice of projection targets sampled). BARseq thus un-

covered organization in projections well beyond the previously

described major divisions.

As noted above, the threemajor cortical classes—PT-l, IT, and

CT—are spatially segregated into laminae. By contrast, most

subclusters defined by projection pattern, especially those

within the IT class, spanned many layers (Figures 5C and 5E;

p = 0.95 for cluster hierarchy 2–7, Kruskal-Wallis test; STAR

Methods). For example, a subcluster consisting of IT neurons

that project only to contralateral cortical areas, but not the ipsi-

lateral cortex or the striatum (leaf 1, Figure 5C), can be found

across all laminae. This mixed laminar distribution of projection
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patterns was consistent across brains (Figures S6B and S6C;

STAR Methods). Therefore, laminar position could not fully

explain projection patterns or diversity.

BARseq Associates Projections with Transcriptionally
Defined IT Subtypes
Although projection subclusters did not segregate cleanly into

laminae, we hypothesized that the conjunction of laminar posi-

tion and gene expression might predict projection patterns.

Although gene expression patterns of single neurons have

been studied in other cortical areas, including visual, somato-

sensory, and motor cortices (Tasic et al., 2018; Zeisel et al.,

2015), gene expression patterns of auditory cortical neurons

have mostly been explored in a targeted manner (Chang and

Kawai, 2018; Guo et al., 2016; Hackett, 2018; Hackett et al.,

2011, 2016) or in bulk (Hackett et al., 2015). We therefore per-

formed single-cell RNA-seq for 735 neurons in the auditory

cortex using 10x Genomics Chromium. As expected from work

in other cortical regions, the top-level partition among neurons

was between excitatory and inhibitory classes (Figure 6A). Within

the excitatory neuron class, gene expression further segregated

into CT and IT subtypes. As in other studies using the 10x plat-

form (Zeisel et al., 2018), few PT-l neurons were recovered,

possibly due to biases in cell survival (STAR Methods). The tran-

scriptional taxonomy of neurons in the auditory cortex were thus

consistent with other sensory cortices.

To further explore whether transcriptionally defined subtypes

corresponded to subclusters defined by projection pattern, we

focused on subdivisions within the IT class. IT neurons were

the most diverse class based on projection mapping, with as

many as 19 distinct subclusters (Figure 5C). Clustering of gene

expression revealed four top-level IT subtypes, which we denote

IT1, IT2, IT3, and IT4 (Figures 6A and 6B). These four subtypes

corresponded well to the four major subtypes of IT neurons pre-

viously identified in visual cortex (Tasic et al., 2018) (Figure 6C;

STAR Methods). We thus sought to determine how the 19



projection subclusters were partitioned among the 4 transcrip-

tionally defined subtypes.

To assess the relationship between projection pattern and

gene expression among IT neurons at the single neuron level,

we combined BARseq with FISH against Cdh13, Slc30a3, and

Slc17a7 (Figure 6D). The combination of laminar position and

expression of these markers allowed us to assign neurons to

subtypes: IT1 neurons consisted of all IT neurons in layer 2/3;

IT2 neurons consisted of Cdh13-negative IT neurons in layer 5;

IT3 neurons consisted of both Cdh13-expressing neurons in

layer 5 and Slc30a3-expressing neurons in L6; and IT4 neurons

consist of Slc30a3-negative IT neurons in layer 6 cortex (Tasic

et al., 2018) (Figures 6D and 6E; STAR Methods). We collected

the same projection areas as in the previous BARseq experi-

ments, but achieved higher spatial resolution of the projection

targets by collecting upper and lower cortical layers separately.

We obtained good sequencing and FISH in 979 projection neu-

rons from two brains (Figures 6D and S7A), of which 735 were

IT neurons defined by projection (note that this set of 735 IT neu-

rons was independent of the 735 neurons studied using single-

cell RNA-seq; the same number of neurons is coincidental).

These IT neurons were assigned to one of the four genetically

defined subtypes based on laminae and gene expression and

to one of the projection subclusters based on projection patterns

(Figure S7B). Interestingly, subtypes that were further apart

based on mean gene expression were also further apart based

on clustering of projections (Figure 6A), suggesting a relationship

between gene expression and projection pattern within IT

subtypes.

The Organization of Projections across
Transcriptionally Defined IT Subtypes
Although the relationship between the IT1–IT4 subtypes defined

by gene expression and the 19 subclusters defined by projection

patterns was complex— projection patterns were largely mixed

across the four IT subtypes—the large sample size enabled us to

discern several relationships. We identified both qualitative and

quantitative relationships between gene expression and projec-

tion pattern, including projection patterns specific to transcrip-

tionally defined subtypes. These findings are detailed below.

Perhaps themost striking observation was the identification of

a specific projection subcluster, which we denote ITi-Ctx, found

almost exclusively in the two deep-layer subtypes IT3 and IT4,

but absent in IT1 or IT2 (Figure 7A). ITi-Ctx neurons are a subset

(leaves 14 and 15 in Figure 5C) of ITi neurons that project exclu-

sively to the ipsilateral cortex, but not to the contralateral cortex

or the striatum.Whereas ITi-Ctx neurons accounted for 13% (20/

155) of IT3 neurons and 34% (45/123) of IT4 neurons, it ac-

counted for only 2% (6/303) of IT1 neurons and fewer than 1%

(1/145) of IT2 neurons (Figure 7A; p < 10�4 comparing IT3 to

either IT1 or IT2, and p < 5 3 10�15 comparing IT4 to either IT1

or IT2, all using Fisher’s exact test with Bonferroni correction).

These ITi-Ctx neurons would have been difficult to detect using

conventional retrograde tracing because they are defined by a

combinatorial projection pattern (i.e., projection to ipsilateral

but not contralateral cortex).

Second, we also found that when IT3 and IT4 neurons had

contralateral projections, the projections specifically targeted
the deep layers of the contralateral cortex (Figure 7B; p < 5 3

10�8 comparing IT3 to IT1 or IT2, and p < 5 3 10�7 comparing

IT4 to IT1 or IT2, all using Fisher’s exact test with Bonferroni

correction). By contrast, the contralateral projections of IT1

and IT2 neurons terminate throughout all cortical layers. This

result is consistent with, and expands upon, previous observa-

tions using classical anterograde tracing (Tasic et al., 2018)

showing that a subset of IT3 neurons labeled by Penk-Cre proj-

ect preferentially to deep layers.

Third, we found that if an IT3 or IT4 neuron had an ipsilateral

projection, then it was unlikely to also have a contralateral pro-

jection. By contrast, neurons in IT1 and IT2 often projected

both ipsi- and contralaterally (Figure 7C; p < 53 10�4 comparing

IT3 to either IT1 or IT2, and p < 53 10�16 comparing IT4 to either

IT1 or IT2 using Fisher’s exact test with Bonferroni correction;

see STAR Methods). Because the presence of a contralateral

projection is the characteristic that distinguishes the ITc from

the ITi projection subcluster, most (84%; 377/448) IT1 or IT2 neu-

rons were ITc, whereas fewer than half (43%; 123/287) of IT3 or

IT4 neurons were ITc (Figure 7D). These features of projections

specific to IT3 and IT4 subtypes reinforce the observation that

the rules governing the projections of IT3 and IT4 neurons are

distinct from those governing IT1 and IT2 neurons.

Finally, we discovered finer quantitative differences across in-

dividual subtypes defined by gene expression. Although we

identified two projection patterns (contralateral projections to

deep layers and ITi-Ctx projections) shared by both IT3 and

IT4, these two projection patterns were differentially enriched

between the two subtypes. ITi-Ctx projections were both stron-

ger (Figure S7C, p = 0.012 comparing IT3 and IT4 using rank-

sum test) and more frequent in IT4 subtype compared to those

in IT3 (Figure 7D; 13% in IT3 compared to 34% in IT4 neurons,

p = 33 10�5 using Fisher’s exact test). In contrast, contralateral

projections were twice as frequent in IT3 neurons compared to

IT4 (Figure 7D; 89/155 IT3 neurons compared to 34/132 IT4 neu-

rons, p = 6 3 10�8 using Fisher’s exact test). Within a subtype

defined by gene expression, projections further correlate with

gene expression: the probability of projecting contralaterally

was higher among IT3 neurons with high Cdh13 expression

(p = 0.001, Fisher’s exact test, Figure 7E), an observation further

confirmed using CTB retrograde tracing (Figure S7D, p < 0.0001

using rank-sum test).

Although the analyses above support the idea that gene

expression and laminar position are correlated with projection

pattern, the relationship between IT subtypes defined by gene

expression and subclusters defined by projection patterns was

in general complex (Figure 7D). Thus, although some projection

patterns were enriched in some subtypes (e.g., ITi-Ctx neurons

[leaves 14 and 15] and ITc neurons of leaves 4 and 5; Figure 7D),

no projection subcluster was specific to a single subtype.

Indeed, in many cases, the same projection subcluster could

be found in all four IT subtypes; two examples of projection sub-

clusters found in all four transcriptomic subtypes are shown in

Figure 7F. Such shared projection patterns across subtypes

were common: 54% of IT neurons (400/735) were more similar

in projections to a neuron of a different IT subtype than to any

neuron of its own subtype (Figures 7G andS7E–S7G). Thismixed

projection pattern is in contrast to the clear separation of
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Figure 7. Projections across IT Subtypes

Defined by Gene Expression

(A) The fraction of ITi-Ctx neurons in each indi-

cated IT subtype defined by gene expression. The

numbers of ITi-Ctx neurons and the total numbers

of each subtype are indicated. Inset: the mean

projection pattern of ITi-Ctx neurons.

(B) Histograms of the layer bias of contralateral

projections of neurons in each IT subtype. The

histograms are normalized so that the maximum

value for a bin is 1 for each subtype.

(C) The log normalized barcode count of pro-

jections to the contralateral auditory cortex (x axis)

is plotted against that of projections to the ipsi-

lateral visual and somatosensory cortex (y axis) for

each neuron.

(D) The fractions of neurons of IT subtypes defined

by gene expression that belong to each indicated

IT projection leaf subcluster. All bars belonging to

a transcriptionally defined subtype sum to 1

across the whole plot.

(E) The number of neurons with (AudC+) or without

(AudC�) projections to the contralateral auditory

cortex in each IT subtype defined by gene

expression. Neurons in each IT subtype are further

divided into those expressing Cdh13 and those

that do not. *p < 0.005 using Fisher’s exact test

after Bonferroni correction.

(F) Two example projection leaf subclusters that

were shared across all four IT subtypes defined by

gene expression. Projection diagrams indicate

example neurons. The numbers of neurons of a

transcriptionally defined subtype and of those

belonging to a projection subcluster are indicated

below.

(G) Theminimum distance in projections from a neuron to any neuronwithin the same subtype defined by gene expression (x axis) or in a different subtype (y axis).

See also Figure S7.
projection patterns across the three higher-level classes of neu-

rons (IT/PT-l/CT). Thus, whereas at the top levels of the hierar-

chies, the classical partitioning into IT/PT-l/CT neurons captures

the correlational structure of multiple cellular properties,

including gene expression, laminar position, and projection

pattern, our results suggest that further subclustering based on

one experimental property (such as gene expression) leads to

categories that do not map neatly onto clustering based on

another property (such as projections).

DISCUSSION

Here, we have described BARseq, a barcoding-based neuroan-

atomical method that can relate high-throughput projection

mapping with other neuronal properties at cellular resolution

through in situ sequencing. As a proof of principle, we applied

BARseq to the projections in the auditory cortex. BARseq of

3,579 neurons recapitulated the organization of cortical projec-

tions into the classic IT/PT-l/CT subtypes. Within these classic

subtypes, BARseq also revealed the impressive diversity of pro-

jection patterns: we observed 264 distinct projection patterns,

falling into as many as 25 distinct clusters. We then combined

BARseq with single cell analysis of gene expression of an addi-

tional 735 IT neurons. We identified projection patterns exclusive

to, or enriched in, specific transcriptionally defined subtypes.
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BARseq thus revealed rich and complex relationships between

gene expression and projection patterns that would have been

difficult to uncover using conventional transcriptomic and/or

anatomical techniques.

Multiplexed Projection Mapping Using Cellular
Barcodes
BARseq achieves multiplexed projection mapping by matching

barcode sequences found at the soma with sequences

recovered at projection targets. This strategy, which differs

fundamentally from that used by traditional single-neuron tracing

experiments based on one or a few distinct tracers, confers both

unique advantages and limitations upon BARseq.

BARseq fundamentally differs from conventional optical

approaches in that projections are determined by matching

barcodes, not tracing. Barcode matching, unlike optical tracing,

does not accumulate error over distance. In conventional optical

approaches to mapping projections, axons are reconstructed by

observing continuity between successive optical or physical

sections. Any lost or distorted section may result in an error,

and in general, the probability of error increases exponentially

with the length of the axonal projection and the number of neu-

rites multiplexed. For example, even with a low error rate of

1% per 50 mm, more than half of axons traced would be in error

within 5 mm. By contrast, because BARseq relies on matching



sequences to reconstruct projections, errors do not accumulate

for long axons: A distant subcortical projection is just as reliably

matched to its source as a projection to a nearby cortical area.

Furthermore, the high diversity of barcodes (tens of millions in

our experiments) can uniquely label tens of thousands of neu-

rons in a single experiment. Therefore BARseq can determine

projection patterns for orders of magnitude higher densities of

neurons (hundreds to thousands of neurons per cortical area,

and tens of thousands neurons per brain) than even the most

advanced state-of-the-art multiplexed optical tracing methods

(�50 neurons per cortical area) (Guo et al., 2017; Lin et al.,

2018), without the need of specialized high-speed microscope

that is often required for advanced anatomical techniques.

In BARseq, the spatial resolution at which projections are

resolved is determined by the size of the cubelets dissected. In

this study, we chose to dissect brains relatively coarsely—only

sufficient to distinguish among brain areas and between superfi-

cial and deep cortical layers—but this resolution was sufficient to

resolve the organization of projections across neuronal sub-

types. For questions requiring higher spatial resolution, BARseq

can be further improved with laser capture microdissection

(Huang et al., 2018) or direct in situ sequencing of projection

barcodes, thus potentially resolving axonal projections and den-

dritic morphology at subcellular resolution. Such an approach

would yield an ‘‘infinite color Brainbow,’’ allowing reconstruction

of densely labeled neurons.

The Organization of Projections across Neuronal
Subtypes
The partitioning of neurons into types and subtypes is useful to

the extent that these classes can infer multiple neuronal proper-

ties. The utility of these classes and subclasses arises from the

fact that these properties co-vary. For example, knowing

whether a cortical neuron is excitatory or inhibitory, or the excit-

atory subtype (IT/PT-l/CT) to which it belongs (Harris and Shep-

herd, 2015), allows us to infer a great deal about the neuron’s

pattern of gene expression, morphology, connectivity, and

projection pattern. The partitioning of cortical neurons into excit-

atory versus inhibitory, and of excitatory neurons into IT/PT-l/CT

subtypes, is well supported by many lines of data.

Within these major subtypes of excitatory neuron, the predic-

tive value of further subdivisions has been less clear. It has been

reported that some PT-l subtypes defined by gene expression

correspond to specific projection patterns (Economo et al.,

2018), and some CT subtypes show subtype-dependent biases

in their projections (Chevée et al., 2018). However, a systematic

approach to determining the co-variance of two or more proper-

ties would require high-throughput measurements of multiple

properties simultaneously, a feat that would be challenging using

previous approaches. Indeed, it has only recently been possible

to obtain such data on even a single property such as gene

expression or projection pattern (Kebschull et al., 2016a).

The combination of BARseq with in situ transcriptional map-

ping has the potential to systematically determine the co-varia-

tion of multiple properties. As a proof-of-principle, we combined

BARseq and FISH to explore the projections of transcriptionally

defined IT subtypes. Using this approach, we identified a

projection pattern (ITi-Ctx) restricted almost entirely to two tran-
scriptionally defined IT subtypes (IT3 and IT4). We also identified

several other ways in which patterns of gene expression covar-

ied with projection patterns (Figure 7). However, in marked

contrast to the one-to-one relationship between top-level sub-

types (IT/CT/PT-l) defined by gene expression and projection

pattern, we did not observe a simple mapping of these proper-

ties within IT neurons.

The mixed projection patterns observed across IT subtypes

defined by gene expression are unlikely to have resulted from

errors in classifying neurons to subtypes, because we were

able to identify both specific and promiscuous projection pat-

terns in the same IT subtypes. This question can be further tested

by correlating projections with more marker genes to better

define IT subtypes by gene expression. To achieve this, BARseq

can potentially be combined with highly multiplexed FISH (Chen

et al., 2015; Codeluppi et al., 2018; Eng et al., 2019; Shah et al.,

2016) or in situ sequencing methods (Ke et al., 2013; Lee et al.,

2014; Wang et al., 2018) to correlate the expression of dozens

to hundreds of genes to projections. Such an approach could

further dissect the relationship between projections and gene

expression beyond IT subtypes and has the potential to generate

a comprehensive understanding of long-range projections and

gene expression at cellular resolution.

Rosetta Brain
Neuronal types differ by a combination of multiple properties

(Cadwell et al., 2016; Economo et al., 2018; Paul et al., 2017),

including anatomical characteristics such as morphology and

connectivity (Economo et al., 2016; Gerfen et al., 2018), molec-

ular characteristics such as gene (Luo et al., 2017; Tasic et al.,

2016, 2018; Zeisel et al., 2015) or protein expression, and func-

tional characteristics such as behaviorally evoked activity (Cad-

well et al., 2016). Defining the biological functions of neuronal

classes thus requires a multi-faceted approach that combines

measurements of several neuronal properties together at

cellular resolution (Huang and Paul, 2019; Zeng and Sanes,

2017). The ability to relate diverse characteristics of many sin-

gle neurons simultaneously, in a co-registered fashion, within

single brains, is an important challenge in neuroscience (Mar-

blestone et al., 2014). Even simultaneous co-registration of

two characteristics can be challenging, but the few successes

in this arena have led to insights about the functional organiza-

tion of neural circuits (Bock et al., 2011; Raj et al., 2018; Soren-

sen et al., 2015).

Co-registering multiple cellular properties at single-cell resolu-

tion is crucial for understanding biological systems with hetero-

geneous cell types, such as the nervous system. By sequencing

barcodes in situ, BARseq offers a solution to incorporate high-

throughput measurements based on cellular barcoding, such

as lineage tracing (Raj et al., 2018), high-throughput screening

(Feldman et al., 2018), and projection mapping (Kebschull

et al., 2016a) into such integrated approaches. In this study,

we focused on combining projections with adult gene expres-

sion and the laminar location of neuronal somata. Adapting

BARseq for other barcoding techniques and adapting additional

in situmethods, such as in vivo two-photon imaging, to combine

with BARseqwould yield a ‘‘Rosetta Brain’’—an integrative data-

set that could constrain theoretical efforts to bridge across levels
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of structure and function in the nervous system (Marblestone

et al., 2014).
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Zeisel, A., Muñoz-Manchado, A.B., Codeluppi, S., Lönnerberg, P., La Manno,
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EXPERIMENTAL MODEL AND SUBJECT DETAILS

Animals
All animal procedures were carried out in accordance with Institutional Animal Care and Use Committee protocol 16-13-10-07-

03-00-4 at Cold Spring Harbor Laboratory. For BARseq in Cre-labeled neurons, a Fezf2-2A-CreER::Rosa-CAG-loxP-STOP-loxP-

tdTomato (Ai14) female animal was induced at 6 and 7 postnatal weeks and barcoded at three postnatal months. This animal was

generated in the Huang lab. For all other BARseq and MAPseq experiments, 8 to 10 week-old male C57BL/6J animals acquired

from Jackson Laboratory were used.

METHOD DETAILS

Viruses, constructs, and oligos
The plasmid encoding the Sindbis barcode library (JK100L2, https://benchling.com/s/EKtQttOe) is available fromAddgene (#79785).

The RT primer (XC1215), the padlock probe / sequencing primer (XC1164), and the fluorescent probe for visualization (XC92) were

described previously (Chen et al., 2018).

For validation of barcode sequencing in brain slices, we used a barcode library previously described by Kebschull et al. (2016a).

The library contained 1.5million known 30-nt random barcode sequences, which represented�97%of all barcodes in the library. For

BARseq experiments, we used a separate diverse barcode library with �107 diversity (Han et al., 2018). This library was not fully

sequenced in vitro.

Animals and tissue processing
All animal procedures were carried out in accordance with Institutional Animal Care and Use Committee protocol 16-13-10-07-

03-00-4 at Cold Spring Harbor Laboratory. Eight to nine week old male C57BL/6 mice were injected in the left auditory cortex at

�4.3 mm ML, �2.6 mm AP from bregma, with 140nL 1:3 diluted Sindbis virus at each of the following depths (200 mm, 400 mm,
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600 mm, and 800 mm) at 30� angle. For samples prepared for BaristaSeq only, we transcardially perfused the animal with 10%

formalin, then postfixed the tissue for 24 hr. We then cryo-protected the brain in PBS with 10% sucrose for 12 hr, 20% sucrose

PBS for 12 hr, and 30% sucrose PBS for 12 hr. We then embedded the brain in OCT (Electron Microscopy Sciences) and cryo-

sectioned to 14 mm slices onto SuperFrost Plus slides (VWR).

For BARseq samples, we trans-cardially perfused the animal with PBS 43-45 hr post-injection. We cut out the left auditory cortex

from the brain and post-fixed it in 10% formalin at 4�C for 8 hr, and snap-froze the rest of the brain on a razor blade on dry ice. The

snap-frozen brain (without the injection site) was then processed for conventional MAPseq as described (Kebschull et al., 2016a). The

post-fixed auditory cortex was cryo-protected, embedded, and cryo-sectioned as described above.

For combined BARseq/FISH experiments in Figures 3D–3F, we injected 8-week old C57BL/6 male mouse at�4mmML,�2.6 mm

AP from bregma, with 140 nL 1:3 diluted Sindbis virus at depths 200 mm, 400 mm, 600 mm, and 800 mm straight down. After 24 hours,

the animal was processed as described above for BARseq experiments. For the experiment in Figures 6D, 6E, and 7, 8-week old

C57BL/6 male mice were injected at �4.3 mm ML, �2.6 mm AP from bregma with 140nL 1:3 diluted Sindbis virus at depths

300 mm, 600 mm, and 900 mm at 30� angle. After 24 hours, the animal was processed as described above for BARseq experiments,

except that the injection site was flash frozen in OCT using isopentane and liquid nitrogen immediately after dissection from the brain.

These brains were cryo-sectioned to 14 mm sections using a home-made tape-transfer system (Pinskiy et al., 2015) and glued to

slides using NOA 81 (Norland) to reduce tissue distortion.

To compare BARseq to retrograde tracing, we injected 140 nL Alexa 647 labeled cholera toxin subunit B (CTB) into the right audi-

tory cortex at 4.3mmML,�2.6mmAP atmultiple depths (200 mm, 400 mm, 600 mm, and 800 mm) at 30� angle. After 48 hr, we injected

140 nL 1:3 diluted JK100L2 virus into the left auditory cortex at �4.3 mm ML, �2.6 mm AP, with 140nL Sindbis virus at each depth

(200 mm, 400 mm, 600 mm, and 800 mm) at 30� angle. After another 44 hr, the animals were then processed as for conventional BARseq

samples.

For single-cell RNaseq comparing barcoded cells to non-barcoded cells, 8-week old C57BL/6malemicewere injected at�4.3mm

ML, �2.6 mm AP from bregma with 140 nL 1:3 diluted Sindbis virus at depths 300 mm, 600 mm, and 900 mm at 30� angle. After

24 hours, the animal was processed for single-cell dissociation as described below.

BaristaSeq
BaristaSeq on cultured neurons was performed as described (Chen et al., 2018). Briefly, the neurons were fixed in 10% formalin,

washed in PBST (PBS with 0.5% tween-20), and dehydrated in 70%, 85%, and 100% ethanol for an hour. After rehydration in

PBST, we incubated the samples in 0.1 M HCl for 5 mins, followed by three PBST washes. We then reverse transcribed the samples

[1 U/ml RiboLock RNase inhibitor (Thermo Fisher Scientific), 0.2 mg/ml BSA, 500 mMdNTPs (Thermo Fisher Scientific), 1 mMRT primer,

and 20 U/ml RevertAid H Minus M-MuLV reverse transcriptase (Thermo Fisher Scientific) in 1 3 RT buffer] at 37�C overnight. After

reverse transcription, we crosslinked the cDNAs in 50 mM BS(PEG)9 for 1 hr and neutralized with 1M Tris-HCl for 30 mins. We

then gap-filled and ligated padlock probes [100 nM padlock probe, 50 mM dNTPs, 1 U/ml RiboLock RNase inhibitor, 20% formamide

(Thermo Fisher Scientific), 0.5 U/ml Ampligase (Epicenter), 0.4 U/ml RNase H (Enzymatics), and 0.2 U/ml Phusion DNA polymerase

(Thermo Fisher Scientific) in 1 3 ampligase buffer supplemented with additional 50 mM KCl] for 30 mins at 37�C and 45 mins at

45�C. Following PBST washes, we performed rolling circle amplification (RCA) [20 mM aadUTP, 0.2 mg/ml BSA, 250 mM dNTPs,

and 1 U/ml f29 DNA polymerase in 1 3 f29 DNA polymerase buffer supplemented with 5% additional glycerol] overnight at room

temperature. After crosslinking the rolonies using BS(PEG)9 and neutralizing with Tris-HCl, we hybridized 2.5 mMsequencing primers

or 0.5 mM fluorescent probes in 23 SSCwith 10% formamide, washed three times in the same buffer, and proceeded to sequencing

or imaging.

For BaristaSeq on brain tissues, we tested three commercially available reaction chambers that were physically compatible with

our samples (Figures S1Aa–S1Ac), and found that the HybriWell-FL sealing system was the only system that did not inhibit rolony

formation (Figure S1Ab). The ImmEdge hydrophobic barrier pen also produced good amplification (Figure S1Ad), but the Hybri-

Well-FL system offered better control of liquid evaporation during heating steps and easier handling. All slides with brain slices

were thus first sealed in HybriWell-FL chambers (22 mm 3 22 mm 3 0.25 mm; Grace Bio-labs) for reactions. The brain slices

were washed three times in PBS supplemented with 0.5% Tween-20 (PBST), followed by a pepsin digestion step. This step was

necessary to increase accessibility of fixed RNAs (Figure S1B) and to reduce the GFP signal from the cells (cyan in Figure S1B), which

may interfere with sequencing signals. We found that 3 mins of 0.2% pepsin digestion in 0.1 M HCl at room temperature greatly

increased rolony formation (Figure S1Bb) compared to no pepsin treatment (Figure S1Ba), whereas 5 mins of pepsin digestion

caused excessive tissue loss (Figure S1Bc). We therefore used 3 mins of pepsin digestion for BaristaSeq in most brain slices, but

the optimal timing could vary with different fixation conditions. We then proceeded with ethanol dehydration, followed by reverse

transcription, padlock gap-filling and ligation, and RCA as described above for cultured neurons.

To sequence the barcodes using Illumina sequencing chemistry, we based our sequencing protocol on the HiSeq recipe files

(Chen et al., 2018) and reduced the CRM incubation time to two minutes each due to efficient heat transfer of the reaction chambers.

We also increased the PBSTwashes to four to eight times after the IRM reactions to counteract the increased background staining in

tissue slices. For slices sectioned using the tape-transfer system (including XC54, XC75, XC91, and XC92), we further incubated the

samples in 0.4% MMTS (Pierce) in PBST at 60�C for 3 mins after CRM and SB3 wash. This optimized Illumina sequencing protocol
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resulted in an average signal-to-noise ratio 39 ± 4 in the first six sequencing cycles (Figures S1D and S1E),�10-fold higher than that

of sequencing by ligation (SOLiD; 4 ± 1) used by other sequencing methods (Ke et al., 2013; Lee et al., 2014).

Imaging
All imaging except for the experiments in Figures 2C–2F and 3A–3C was performed on an UltraView VoX spinning disk confocal

microscope (Perkin Elmer) with Volocity 6.3 software as previously described (Chen et al., 2018). The sequencing channels were:

Channel G, 514 nm laser excitation, 405/440/514/640 quad dichroic, 550/49 emission filter, exposure time 500 ms; Channel Y,

561 nm laser excitation, 405/488/561/640 dichroic, 445/60 and 615/70 dual band emission filter, exposure time 120 ms;

Channel A, 640 nm laser excitation, 405/488/561/640 dichroic, 676/29 emission filter, exposure time 250ms; Channel C, 640 nm laser

excitation, 405/488/561/640 dichroic, 775/140 emission filter, exposure time 500 ms. The experiments in Figures 2C–2F were pro-

duced on a Zeiss LSM 710 laser scanning confocal microscope with Zeiss Zen software as previously described (Chen et al., 2018).

The experiment in Figures 3A–3C was imaged on a Nikon TE2000 with Crest X-light spinning disk, Photometrics Prime 95B camera,

and an 89North 7-line LDI laser. The scope was controlled by micro-manager (Edelstein et al., 2014). The four sequencing channels

were imaged using the following settings: Channel G, excitation 520 nm laser, ZT443-518rpc-UF2 dual-band dichroic (Chroma),

FF01-565/24-25 emission filter (Semrock), exposure time 600 ms; Channel T, excitation 555 nm laser, zt402/468/555/640rpc-uf2

quad-band dichroic (Chroma), FF01-585/11-25 emission filter (Semrock), exposure time 200ms; Channel A, excitation 640 nm laser,

zt402/468/555/640rpc-uf2 quad-band dichroic (Chroma), FF01-676/29-25 emission filter (Semrock), exposure time 300 ms;

Channel C, excitation 640 nm laser, zt402/468/555/640rpc-uf2 quad-band dichroic (Chroma), FF01-725/40-25 emission filter (Sem-

rock), exposure time 500 ms. The channels were calibrated as described previously (Chen et al., 2018).

For XC9 and XC28, a 33 1 stitched image at 103was acquired for each slice, with each tile position including 11 z-positions with

10 mm step size. For XC75 and XC91, a 33 3 stitched image at 103was acquired for each slice. Imaging time was about one minute

per slice for XC9 and XC28, and three minutes per slice for XC75 and XC91. During each sequencing run, 24-36 slices on three slides

were imaged together, resulting in a per-cycle imaging time of 0.5-1 hour. For XC75 and XC91, an additional 53 5 tiles of 203 image

was acquired for the first sequencing cycle, with each tile position including 17 z-positions with 3 mm step size. This high-resolution

imaging typically took 15 minutes per slice.

All images in figures were maximum projections of z stacks shown after rolling ball background subtraction except for images in

Figure S1D, which were shown with only the camera blackpoint subtracted from the images.

Base-calling
Max projection images were first processed through amedian filter and a rolling ball background subtraction. The processed images

were then corrected for channel bleed through. The barcodes were then base-called by picking the channel with the strongest signal.

The sequencing quality score is defined as the intensity of the called channel divided by the root sum square of all four channels.

A quality score of 1 (best) indicates sequencing signal in only one channel, and a score of 0.5 (worst) indicate same intensity across

all four channels.

Comparison to other in situ sequencing methods
The original padlock probe-based barcode amplification was performed similar to BaristaSeq amplification as described above,

except that the Stoffel fragment (DNA Gdansk) was used in place of Phusion DNA polymerase and the cDNA crosslink was done

using 4% paraformaldehyde in PBST for 10 mins (Ke et al., 2013).

To perform targeted FISSEQ in brain slices, we processed the sample in the same way as in BaristaSeq in brain slices to the cDNA

crosslink step. After cDNA crosslinking, we digested the RNAs [10 ml RiboShredder (Epicenter) and 5 ml RNase H in 1 3 RNase H

buffer] for 1 hour at 37�C. After washing the samples twice in water, we circularized the cDNAs [0.5 mM DTT, 1 M Betaine,

2.5mMMnCl2, and 1U/ml Circligase II in 13Circligase buffer] for 1 hour at 60�C. After washing the sampleswith PBST, we hybridized

1.5 mMRCA primers in 23 SSCwith 10% formamide for 1 hour. We then washed the samples three times with the same buffer, twice

more with PBST, and proceeded to RCA as in BaristaSeq.

To compare Illumina sequencing chemistry to SOLiD sequencing chemistry for in situ sequencing in tissues, we performed SOLiD

sequencing as described previously (Chen et al., 2018; Lee et al., 2014). To calculate the signal to noise ratio, we first converted the

four-channel images into one single channel, taking the maximum value of the four channels for each pixel. We selected areas

containing barcoded cells or areas containing tissues but no barcoded cells by thresholding as the signal and background areas.

We then subtracted the black point of the camera from both the signals and the backgrounds and calculated the SNR. The SNR

was calculated using the same selected areas in all six cycles.

BARseq
Animals were injected and processed as described above. Cryo-sectioned brain slices were first imaged to generate DIC and GFP

images, before they were processed for BaristaSeq. The GFP images from neighboring slices were aligned to each other manually to

reduce deformation during sectioning using ECC image alignment (Evangelidis and Psarakis, 2008). The sequencing images were

then registered back to the GFP images to locate the positions of the neurons within the slice. Each basecall ROI was thus registered

back to the aligned GFP images.
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We dissected 12 projection sites from the frozen brains for sequencing. These 12 sites included the olfactory bulb (OB), orbitofron-

tal cortex (OFC), motor cortex (Motor), rostral striatum (Rstr), somatosensory cortex (SSctx), caudal striatum (Cstr), amygdala (Amyg),

ipsilateral visual cortex (VisIp), contralateral visual cortex (VisC), contralateral auditory cortex (AudC), thalamus (Thal), and tectum

(Tect). The auditory cortex dissections also included the neighboring temporal association area, and the visual cortex collected

included the posterior parietal cortex. Slice images, dissected areas, and their correspondence to the Allen Reference Atlas are avail-

able at Mendeley (see Data and Code Availability). The projection sites were sequenced as described for MAPseq (Kebschull

et al., 2016a).

For experiments using combination of BARseq and FISH (XC75 and XC91), each of the cortical projection sites was separated into

upper and lower layers and collected separately, resulting in 18 projection sites.

Comparison of BARseq to retrograde tracer
The animals were injected and processed as described above. We collected four target sites, including the olfactory bulb (negative

control), the contralateral auditory cortex (i.e., the center of the CTB injection), the remaining areas where CTB was visible to the

naked eye, and the surrounding areas where CTB was visible under a fluorescent microscope. The last three samples thus formed

concentric rings around theCTB injection site. All three samples gave consistent results regarding contralateral projections (Table S1)

Before library preparation for BaristaSeq, we also imaged the Alexa 647 channel to locate retrograde-labeled neurons. These im-

ages were aligned to the sequencing images. We then only counted neurons clearly expressing GFP, which was essential to properly

judge colocalization with CTB. To find the fraction of CTB labeled neurons that were also labeled by BARseq, we identified neurons

labeled by both CTB and barcodes with a minimum sequencing quality of 0.75, and counted the number of neurons with barcodes in

the contralateral auditory cortex above the noise floor. The noise floor was set to be the maximum count of individual barcodes

recovered in the olfactory bulb.

BARseq in Cre-labeled animals
Fezf2-2A-CreER::Rosa-CAG-loxP-STOP-loxP-tdTomato (Ai14) animals were generated and Cre recombination was induced at 6

and 7 postnatal weeks by intraperitoneal injection of Tamoxifen (Sigma-Aldrich T-5648) (100 mg/kg for each dose). A Fezf2-2A-

CreER::Ai14 animal was injected at three postnatal months with barcodes in the auditory cortex as described above for BARseq.

After 24 hours, the animal was anesthetized with isoflurane and decapitated. The injection site was punched out using a 2 mm diam-

eter biopsy punch, and the rest of the brain was flash frozen for dissection of projection areas. The injection site punchwas then post-

fixed in 4%PFA for 24 hours, cryo-protected in 10%, 20%, and 30% sucrose in PBS for 12 hours each, mounted in OCT, and frozen.

The punch was then cryo-sectioned to 14 um slices using the tape-transfer system and imaged for GFP, RFP, and DIC channels on a

Nikon TE2000 microscope with a Crest X-light spinning disk confocal. The slices were then processed for BARseq as described

above. Sequencing was done as described above for 14 cycles, except that the imaging was done on a Nikon TE2000 microscope

with a Crest X-light spinning disk confocal. In addition, a set of sequencing images was taken after each cleavage step. This

background image records the residual tdTomato signals in the sequencing images. After registering and subtracting the back-

ground image from sequencing images, we thenmedian filtered the images, performed background subtraction, corrected for chan-

nel bleed-through, and registered sequencing images as described above.We also registered the ‘‘T’’ channel of the first sequencing

cycle to the tdTomato images taken before library preparation. We then picked cell bodies from the sequencing images using the

‘‘Find Maxima’’ function in ImageJ (Schindelin et al., 2012), base-called for barcode sequences, and read out the intensity from

the tdTomato images. We filtered out cells with sequencing quality lower than 0.7. We considered cells with tdTomato signal over

20000 as Fezf2+ neurons. These cells were visually inspected to make sure that they had good morphology and were labeled by

tdTomato. These cells were then used for analyses.

Validation using retrograde tracing
To validate the striatal projections of PT-l and IT neurons, we injected red RetroBeads (LumaFluor) diluted 1:1 in PBS in the superior

colliculus at�4.8mmAP,�0.7mmML frombregma at depths 500 mm, 700 mm, 900 mm, 1100 mm, and 1300 mm (70 ml per depth) from

the surface of the brain, Alexa 488 labeled CTB in the caudal striatum at�1.6mmAP,�3.2mmML at depths 2.5mm and 3mm (50 ml

per depth) from the surface of the brain, and Alexa 647 labeled CTB in the rostral striatum at 0.6 mmAP,�2mmML at depths 2.5mm

and 3 mm (50 ml per depth) from the surface of the brain. After 96 hr, we perfused the animal and sliced the auditory cortex coronally

into 70 mm slices. We then imaged the slices on an UltraView VoX spinning disk confocal microscope (Perkin Elmer).

Validation of combination of BARseq and FISH
To correlate projections to the expression of Slc17a7 and Gad2, we collected the olfactory bulb, ipsilateral cortical areas (mainly the

visual cortex), contralateral cortical areas (the auditory and visual cortex), the striatum, the thalamus, and the tectum. These areas

were processed for MAPseq as described above and sequenced on an Illumina MiSeq. The injection site was cut out from the brain,

post-fixed and cryo-protected for cryo-sectioning.

We cryo-sectioned the injection site to 14 mm slices using the tape transfer system. The brain slices were then processed for

BARseq to the first cross-link step after reverse transcription. After neutralization of additional crosslinkers with Tris, we proceeded

with ViewRNA ISH (Thermo Fisher Scientific) using a class 1 probeset for Slc17a7 and a class 6 probeset for Gad2 according to the
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manufacturer’s protocol. We then imaged each area around the injection site (identified by the presence of GFP) using a 203 0.75NA

objective on a spinning disk confocal for both FISH channels (RFP and Cy5), the GFP channel, and the DIC channel. We then stripped

away the FISH probes using 80% formamide for 5 mins twice, followed by three washes in 10% formamide in 2 3 SSC, and two

washes with PBST. We then proceeded to the padlock ligation step in BARseq and produced rolonies as described above.

The sequencing of rolonies was done as described above except that the first sequencing cycle was imaged first using a

20 3 0.75NA objective without binning for all four sequencing channels and the DIC channel. This was followed by imaging using

a 10 3 0.45NA objective with 2 3 binning. All subsequent sequencing cycles were imaged at the lower resolution to increase

throughput. See QUANTIFICATION AND STATISTICAL ANALYSIS for data processing.

Estimation of laminar boundaries using FISH
To estimate the boundaries of cortical layers, we performed FISH against two known layer-specific marker genes, Cux2 (Greig et al.,

2013) (Figure S3B), and Fezf2 (Figure S3C). Cux2 was strongly expressed in L2/3 and only sporadically in other layers; Fezf2 was

strongly expressed in L5 and weakly in L6. Because L4 is poorly defined in the auditory cortex (Linden and Schreiner, 2003), we

omitted L4 and defined only the remaining two borders. We defined the L2/3 and L5 border as below the Cux2 band and above

the strong Fezf2 band, and defined the L5 and L6 border as between the strong and weak bands of Fezf2. To account for variation

in cortex thickness and sample preparation, we examined three slices spanning 800 mm in the auditory cortex, normalized all cortical

thickness to 1200 mm (i.e., the same cortical thickness as the BARseq brains), and calculated the mean positions of layer boundaries

(Figure S3D), The L2/3 and L5 border defined by Fezf2 agreed with that defined byCux2. Based on these measurements, we defined

the L2/3 and L5 border to be at 590 mm and the L5 and L6 border to be at 830 mm. These borders were used for the BARseq analyses

when layer identities were involved.

We saw few projection neurons in superficial L2/3 in our dataset. This is partially due to smaller number of neurons labeled near

the cortical surface, and partially due to an enrichment of neurons without detectable projections in superficial L2/3 (Figure S3E).

Neurons in superficial L2/3 of the auditory cortex were known to project locally and not contralaterally (Oviedo et al., 2010). Because

we did not sample neighboring cortical areas, these locally projecting ITi neurons would have shown as non-projecting neurons in

BARseq.

Single-cell dissociation for RNaseq
To dissociate neurons for single-cell RNaseq, the animal was anesthetized with isofluorane and decapitated. We then dissected out

the brain and used a 2 mm biopsy punch to remove the auditory cortex. The auditory cortex was immediately dissected in ice cold

HABGmedium [40mLHibernate A (Brainbits), 0.8mLB27 (Thermo Fisher Scientific), and 0.1mLGlutamax (Thermo Fisher Scientific)]

into small pieces and placed in 3 mL papain solution [3mL Hibernate A-Ca (Brainbits), 6 mg papain (Brainbits), and 7.5 mL Glutamax]

pre-warmed to 30�C in a 15 mL tube. The tube was closed and gently rocked at 30�C for 40 mins. The digested tissues were then

transferred to a tube containing 2 mL HABG pre-warmed to 30�C and triturated 10 times using a salinized pipette with 500 mm open-

ing. The undissociated tissues were then transferred to a new tube with 2 mL HABG and triturated 10 times using a salinized pipette

with 500 mm opening. The remaining undissociated tissues were again transferred to a new tube with 2mL HABG and triturated

5 times. The three tubes of 2 mL HABG each were then combined, and carefully laid on top of a density gradient of 17.3%,

12.4%, 9.9%, and 7.4% (v/v) Optiprep in HABG. This tube was centrifuged at 750 g for 15 mins. The top two fractions were then

removed. The next two fractions and half of the bottom fraction, which contained neurons, were collected. The remaining 0.5 mL

of the last fraction and the pellet were discarded. The collected neuronal fraction (about 2.5 mL), was diluted in 5 mL HABG and

centrifuged at 300 g for 5 mins. The pellet was washed in 5 mL HABG, pelleted again, and resuspended in 100 mL HABG. The cell

suspension was then kept on ice and processed for library preparation using 103 Genomics Chromium according to the manufac-

turer’s protocol. The prepared libraries were sequenced using Illumina NextSeq.

Single-cell RNaseq
For non-barcoded cells in the auditory cortex, the library was prepared using Chromium single cell 30 reagent kit v3 (103 Genomics)

and sequenced using one lane of Illumina NextSeq. The raw data was processed using Cell Ranger v3 (103 Genomics) followed by

Seurat v3 (Stuart et al., 2019). See QUANTIFICATION AND STATISTICAL ANALYSIS for data processing and analysis.

To compare barcoded and non-barcoded cells in the auditory cortex, we injected the brain in the auditory cortex as described

above. After 24 hours, we dissociated neurons from the auditory cortex as described above, and prepared library using Chromium

single cell 30 reagent kit v2 (103 Genomics). The sequencing library was then sequenced using one lane of Illumina NextSeq.

See QUANTIFICATION AND STATISTICAL ANALYSIS for data processing and analysis.

Projections of IT subtypes defined by genes
The four IT subtypes defined by gene expression are largely segregated by laminae (Tasic et al., 2018): IT1 neurons are in layer 2/3; IT

2 neurons are in layer 5; IT3 neurons are in layer 5 and 6; and IT4 neurons are in layer 6. However, because layer 5 contains both IT2

and IT3 neurons, and layer 6 contains both IT3 and IT4 neurons, laminar position alonewas not sufficient to distinguish between them.

We thus utilized the differential expression of twomarker genes, Cdh13 and Slc30a3, to further distinguish these IT subtypes. Cdh13

is highly expressed in IT3, but not IT2 neurons, whereas Slc30a3 is expressed in IT3, but not IT4 neurons.
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Based on the gene expression (Figure 6A) and the laminar distribution of the four IT subtypes, we could distinguish the four IT sub-

types using the laminar position of neurons and the expression of Cdh13 and Slc30a3: IT1 neurons are IT neurons in layer 2/3;

IT2 neurons are layer 5 IT neurons without Cdh13; IT3 neurons are layer 5 IT neurons with Cdh13, and layer 6 IT neurons with

Slc30a3; IT4 neurons are layer 6 IT neurons without Slc30a3. We further included Slc17a7, a highly expressed excitatory neuron

marker in the cortex, as a control for both cell morphology and FISH quality.

We collected the same 12 projection targets as in the BARseq-only experiments, but each cortical site was further dissected into

superficial and deep layers. This resulted in a total of 18 projection sites. The projection sites were processed as in the BARseq-only

experiments and sequenced on a Illumina MiSeq.

The injection site (auditory cortex) was cryo-sectioned to 14 mm slices using the home-made tape transfer system. The slides were

then fixed and permeated according to RNAscope (ACD Bio) pretreatment procedures for fresh-frozen tissues (cold 4%PFA fixation

for 15mins, followed by dehydration in ethanol and 30mins of Protease IV treatment at room temperature). We then washed the slide

three times in PBST, deactivated residual protease by incubating twice in 40% formamide, 23 SSC, 0.01% Triton X-100 for 10 mins

at 60�C, then washed an additional three times in PBST. We then performed reverse transcription, crosslinking, and neutralization of

crosslinkers as in BARseq, except that the reverse transcription was performed for only two hours at 37�C. We then followed pro-

cedures for RNAscope according to the manufacturer’s protocol.

The FISH signals produced by RNAscope were then imaged on a spinning disk confocal using a 203 0.75 NA Plan-Apo objective

with 23 binning. After imaging, the FISH probes were stripped twice in 40% formamide, 23 SSC, 0.01% Triton X-100 for 10 mins at

60�C. We then continued with BARseq from padlock ligation as described above. Sequencing of barcodes was performed as in

BARseq-only experiments, except that the first sequencing cycle was imaged with a 10 3 0.45 NA Plan-Apo objective and a

20 3 0.75NA Plan-Apo objective, both with 2 3 binning.

The FISH images were then registered to the first cycle high-resolution sequencing images using the DIC channel using intensity-

based registration in MATLAB. The high-resolution first-cycle sequencing images were registered to the low-resolution first-cycle

sequencing images using intensity-based registration. We then extracted cell-body locations using the ‘‘Find Maxima’’ function in

ImageJ, and base-called the barcoded somata from the low-res images.We then filtered out cells with low sequencing quality (below

0.8). We thenmanually counted FISH reads for excitatory neurons with high FISH quality. Excitatory neurons with high FISH quality is

defined by: (1) The neuronal somata were clearly delineated by barcodes; (2) theSlc17a7 reads clearly defined the same soma shape;

(3) the neuron did not overlap significantly with neighboring neurons. Cells with fewer than 10 copies of Slc17a7 per cell were further

excluded (these might have been cells with low FISH quality, partial cells that were cut during cryo-sectioning, and non-excitatory or

non-neuronal cells). The remaining cells, including 781 excitatory neurons from XC75 and 737 excitatory neurons from XC91, were

mapped to barcodes at projection sites for further analyses.

Considerations for Sindbis toxicity in BARseq
Long-term Sindbis infection disrupts gene expression, and eventually kills cells. As a result, the timing of infection is critical when

using BARseq to correlate gene expression to projections, and additional quality controls are necessary to validate gene expression.

In the adult auditory cortex, we have found that both gene expression and projections can be read out at 24 hours. Furthermore, we

used the expression of Slc17a7, a gene ubiquitously expressed in excitatory neurons, as a quality control to further filter out cells

whose gene expression was too low. To use BARseq in other brain areas and at different developmental stages, the best infection

time may require additional optimization and a suitable quality-control marker ubiquitously expressed in the cell types of interest is

needed.

Validation of Cdh13 correlation to projections
12-week old C57BL/6 animals were injected in the somatosensory cortex with 150 nL CTB-Alexa 488 at 0.6 mm AP, �2.2 mm ML

frombegma, at 300 and 600 umdepths, and in the contralateral auditory cortexwith 150 nLCTB-Alexa 647 at 2.3mmAP, 4.2mmML,

at 500 and 700 um depths. After 96 hours, the animal was perfused with fresh 4% PFA, post-fixed for 24 hours, and cut to 70 mm

coronal sections using a vibratome. Four slices containing the ipsilateral auditory cortexweremounted and imaged for both the green

and far red channel on an Ultraview spinning-disk confocal (Perkin Elmer). We then probed forCdh13 in these slices using RNAscope

Fluorescent Multiplex Assay following the manufacturer’s instructions. The Cdh13 probe was visualized with the red Amp4 in the

RNAscope kit. We then imaged the green channel, far red channel, and the Cdh13 channel (red), and registered the images to the

green/far red channel images taken before RNAscope using those two channels. We then manually counted the Cdh13 expression

in ipsilateral projecting or contralateral projecting neurons in layer 6 (defined by a normalized cortical depth of over 830 mm). Rank

sum test was used to calculate statistical significance between the distribution of Cdh13 in ipsilaterally projecting neurons and

contralaterally projecting neurons.

QUANTIFICATION AND STATISTICAL ANALYSIS

BARseq data processing
We first filtered theMAPseq generated barcodes so that all barcodes had at least 10molecules but nomore than 10000molecules at

the strongest projection site. We recovered 26840 barcodes using these criteria from the three brains (Table S3). We then matched
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these barcode sequences at the projection sites to those at the injection site, allowing three mismatches for conventional MAPseq or

one mismatch for BaristaSeq. In the conventional MAPseq brain (XC14), 5082 out of 8418 barcodes were confirmed to be from the

auditory cortex with more than 20 molecules per barcode at the injection site and were used for the subsequent analyses.

In BARseq experiments, the injection sites were sequenced in situ to 15 bases. The 15 bases read length in situ was sufficient to

distinguish unambiguously all infected barcodes allowing one mismatch. For the XC9 brain, barcodes recovered through MAPseq

had a mean hamming distance of 4.5 ± 0.7 (mean ± stdev; Figure 5A). Only one pair (0.04%) out of 4841 barcodes had a hamming

distance of 1 and 10 pairs (0.4%) out of 4841 had a hamming distance of 2. Because the sequencing experiment in Figure 2 showed

only a single error for 51 barcodes, each sequenced 25 bases, our sequencing error rate was approximately 1=ð51 3 25Þ = 0:08%.

Therefore, assuming that sequencing errors have no bias toward a particular base, the probability of matching an in situ barcode to

the wrong MAPseq barcode, while allowing one mismatch, is ð2 =4841Þ3 0:08%O3 = 1e� 7. The probability of an in situ barcode

matching to two MAPseq barcodes is ð20 =4841Þ3 0:08%3 2O3 + ð2 =4841Þ = 4e� 4. Although we cannot detect false positive

matches, an ambiguous match could be detected. In the XC9 data, however, no ambiguous match between the in situ barcodes and

the MAPseq barcodes has occurred.

In addition, XC9 had three pairs of barcodeswhose first 15 baseswere the same. These appeared to have arisen from amplification

errors in homopolymer stretches of the same barcode rather than different barcodes, because each pair had a single in-del and had

almost identical projection patterns. These three pairs were not recovered in situ and thus did not affect the analyses.

Similarly, out of 13581 total sequences, XC28 had 5 pairs of barcodes within one mismatch and 106 pairs of barcodes within

two mismatches for the first 15 bases. No XC28 barcodes had identical sequences in the first 15 bases. The probability of a wrong

match in XC28 is 10=135813 0:08%O3 = 2e� 7, and the probability of an ambiguous match in XC28 is ð212 =13581Þ3 0:08%3

2O3 + ð10 =13581Þ = 7e� 4. No actual ambiguous match was seen in XC28. Therefore, allowing one mismatch for a 15-base

sequence was sufficient to match barcodes in the somata to those at the projection sites unambiguously for both brains.

In the two BARseq brains (XC9 and XC28), we sequenced 3237 cells in situ. Of all sequenced cells, 1806 (56%) cells had corre-

sponding sequences at any projection site. The remaining cells had either low read qualities (possibly from having more than one

barcode in the cell) or did not project to the examined areas (e.g., local interneurons, excitatory neurons that project to secondary

auditory areas, and non-neuronal cells). We further filtered out barcodes with fewer than 10 molecules in the maximum projection

area, removed neurons below the bottom of the cortex (these are likely persistent subplate neurons in the callosal commissure)

and neurons in highly distorted slices (as judged by an abnormal cortical thickness). After filtering, 1309 neurons were used in the

analyses.

Comparison of bulk projection patterns
For bulk projection comparison to GFP tracing data, we used the bulk GFP tracing data from five brains in the Allen connectivity data-

base (Oh et al., 2014) (experiment 116903230, 100149109, 120491896, 112881858, and 146858006;ª 2011 Allen Institute for Brain

Science. Allen Mouse Brain Connectivity Atlas. Available from: http://connectivity.brain-map.org/). All five brains had cells labeled in

the primary auditory cortex and no labeling in non-auditory area. Several areas we collected only corresponded to part of the areas of

the same name in the Allen database, including the somatosensory cortex (restricted to the upper-limb, lower-limb, and the trunk

areas), the two visual cortices (restricted to mostly area pm and am in the Allen Mouse Brain Connectivity Atlas; these area labels

were different from labels in the Allen Reference Atlas), and the striatum (the rostral striatum and the caudal striatum samples

were separated by two brain slices, or 600 mm). The auditory cortex area we collected also included the temporal association

area. For both BARseq/MAPseq bulk projections and GFP bulk tracing data, we normalized the strengths of projection to individual

areas to total projection strengths in all examined areas for that brain first, and then averaged across brains (five brains for GFP

tracing and three brains for BARseq/MAPseq). We then calculated the Pearson correlation coefficient and the associated p value

between the GFP tracing and BARseq/MAPseq bulk projection strengths of the corresponding brain areas.

Population analysis of projections
All population level analyses were carried out in MATLAB

We calculated the false positive rate FPR = NOB=Ntotal, where NOB is the number of neurons with barcodes detected in the OB, and

Ntotal is the total number of neurons. We then calculated the false discovery rate FDR = ðFPR 3 n0Þ=np, where np indicates the total

number of projections detected, and n0 indicates the total number of possible projections that were not detected.

To estimate the number of projection patterns, we binarized the projections using a threshold set by the maximum number of

molecules recovered in the olfactory bulb negative control, and counted unique patterns. Because only one neuron out of

6391 had four molecules in the OB, and four out of 6391 had a single molecule each in the OB, this thresholding likely resulted in

a conservative estimate of the unique projection patterns. To estimate the contribution of strong projections, we defined a strong

secondary projection as one whose normalized count for a particular barcode was at least 10% of the strongest projection for

that barcode.

We then estimated whether each projection pattern could have resulted frommissing projections due to false negatives. For each

‘‘target’’ projection pattern, we identified all ‘‘parent’’ projection patterns with one more projection. Neurons with the parent projec-

tion patterns might have been misidentified as the target projection pattern of interest if a projection was missed. If the ratio of neu-

rons with the target projection pattern to the ratio of neurons with parent projection patterns was smaller than the false negative rate,
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then we eliminated the target projection pattern. We repeated this process for all projection patterns, and counted the remaining pro-

jection patterns. Using a 10 – 15% false negative rate, 237 – 247 of the original 264 patterns remained.

To test if the estimated number of projection patternswas affected by the sensitivity of BARseq/MAPseq, we filtered neuronswith a

varying threshold for the primary projections (i.e., the strongest projections; Figure 4E), which resulted in a reduction in projection

patterns. To test if such reduction was caused by smaller sample sizes due to filtering, we randomly subsampled the neurons to

the same sample size as that caused by thresholding the primary projection. This subsampling was repeated 100 times to estimate

the 95% confidence interval.

To estimate the distribution of the strengths of secondary projections in multi-projection neurons (i.e., neurons with two or more

projections), we filtered out neurons whose primary projections were too weak to allowmore than one barcode molecules in the sec-

ondary projections. For example, when calculating the fraction of neurons with secondary to primary projection ratio of 0.1, we only

included neurons whose primary projection was at least 20 barcodes. This would allow at least 2 barcodes to be observed in the

secondary projection. We then separated the neurons into 100 bins according to their ratio of strengths between secondary and

primary projections, and calculated the probability density function from the cumulative density function. We then fitted with a log

normal distribution using gradient descent.

Hierarchical clustering
All clustering analyses (Figure S5B) were done using the logarithm of the spike-in-normalized projection strength. We first filtered the

projection data using non-negative matrix factorization (NMF) (Lee and Seung, 1999) in MATLAB. We approximated the projection

pattern X ofm neurons to n areas as the product of Y, anm by k matrix containing the loadings of the k projection modules for each

neuron, and A, a k by n matrix containing the projection pattern of each projection module. Each of the k projection modules repre-

sents a set of projections that correlate with each other. The projection patterns of individual neurons can thus be approximated by a

weighted sum of the projection modules (Figure S5C). We chose a k value that captured most of the variance in the data (Figure S5D)

and resulted in similar classification of neurons in the first two hierarchies (Figure S5E). This resulted in k = 6. We then reconstructed

the filtered projection data X0 = Y � A. The filtered projection data X’ was used for clustering.

During each step of the hierarchical clustering (Figure S5B), we split each node into two groups using k-means clustering on the

squared Euclidean distance of the projection patterns. We then evaluated whether the split was significant using a MATLAB imple-

mentation of SigClust (available from https://marronwebfiles.sites.oasis.unc.edu/Matlab7Software/BatchAdjust/). We kept the new

clusters if the split was significant after Bonferroni correction and the sizes of the resulting clusters were larger than 1% of all data

points. This procedure was repeated for each new node until no new clusters were found.

This clustering did not separate all different binary projection patterns into their own clusters, suggesting that it was conservative.

However, it captured high-level differences in projections that were likely reproducible, and were sufficient for our downstream

analyses. Additional levels of clustering would not likely affect downstream analyses since most of our findings did not rely on the

leaf clusters.

We also compared our clustering to graph-based clustering using Louvain community detection (Blondel et al., 2008) and spectral

clustering (Ng et al., 2002) (Figure S5F). Louvain community detection identified 2-4 clusters at each hierarchy, and therefore did not

fully correspond to the clusters obtained by bifurcation only at any hierarchical level. However, the resulting clusters from both

methods, especially high-level nodes, were similar to those obtained using k-means. We chose to base all further analyses on clus-

tering using k-means, because the major classes were better separated than using spectral clustering and the imposed bifurcation

was easier to interpret than the clusters produced by Louvain community detection.

We then used a probabilistic approach (Tasic et al., 2016) to assign neurons to these clusters. For each pair of clusters, we trained a

random forest classifier on 80% of the data. We then used the classifier to classify the remaining 20% of the data. We repeated this

process five times, each time using amutually exclusive group of 20% of data, so that all data were classified once. We repeated this

whole process 10 times for each pair of clusters, so that all data were classified between each pair of clusters 10 times. For each

barcode, we then removed all cluster memberships that were scored 0 out of 10 in any one of the pairs involving that cluster. The

remaining clusters (i.e., ones that have scored at least 1 out of 10 comparisons in any pairwise comparison) were assigned to the

barcode, with the main identity as the cluster with the highest sum of scores across all pairwise comparisons involving that cluster.

The majority of neurons (5968/6391, or 93% of all neurons) were uniquely assigned to a single cluster with high probability (> 98%

probability), but a small set of neurons (421/6391, or 7%of all neurons) were assigned to two clusters at around 50%probability each

(Figure S5G).

Although BARseq has a low false-negative rate (�10%), such a false-negative rate may accumulate for subclusters with multiple

projections, leading to higher rate in misclassification. To examine the extent of such misclassification, we classified neurons prob-

abilistically using 10 out of the 11 projections, thus simulating the effect of a projection being uninformative (Figure S5H). This analysis

revealed similar distribution of neurons with the majority being well-classified and a smaller fraction being ambiguously assigned to

two or more clusters. We then considered a neuron ambiguously classified if it was assigned to two or more clusters using all 11

projections, or assigned to the wrong cluster using any of the 10 projections if the resulting cluster was consistent with a dropped

projection rather than a false-positive projection. This resulted in 5682/6391 (89%) well-classified neurons and 709/6391 (11%)

ambiguous neurons. These estimates represent an upper bound on the number of ambiguous neurons, because it did not take
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into consideration the actual low false-negative rate of BARseq. Therefore themajority of neurons were unambiguously assigned to a

single cluster even when potentially missed projections were taken into consideration.

For Louvain community detection, we used a similarity matrix S, in which each element Sij was the difference between the

Euclidean distance of projections between two neurons and the maximum Euclidean distance of projections between any two neu-

rons in the dataset. Louvain community detection was performed using a MATLAB implementation of the algorithm (https://perso.

uclouvain.be/vincent.blondel/research/Community_BGLL_Matlab.zip).

For normalized spectral clustering (Ng et al., 2002), we used the same similarity matrix S as described above. Spectral clustering

was performed using a MATLAB implementation of the algorithm (https://www.mathworks.com/matlabcentral/fileexchange/

34412-fast-and-efficient-spectral-clustering).

t-SNE (van der Maaten and Hinton, 2008) was performed using a MATLAB implementation of the standard t-SNE (https://

lvdmaaten.github.io/tsne/) using the log projection data as inputs.

All high-level subclusters were found in significant numbers across all three brains (Figure S6A), with the exception for the striatal

projecting neurons in the CT branch (Leaf 25 in Figure 5C). Layer 6 CT neurons, however, usually do not project to the striatum (Shep-

herd, 2013). The apparent striatal projections could be caused by contamination by fibers passing through the striatum. Alternatively,

these neurons could be PT-l neurons in layer 5 and deep layer 6 whose subcerebral projections were missed due to either weak pro-

jections in the tectum or projections to other targets rather than the tectum. This is especially likely since we did not sample many

potential target areas for PT-l neurons, such as the brain stem. Our analyses of projection neurons in situ support the latter hypoth-

esis. We observed a total of 590 corticothalamic neurons that did not project to the tectum or the striatum, and 505 that did project to

the striatum. However, only 10 of the latter group was obtained in the in situ sequenced brains, compared to 229 of the former group

(Figure S6A). Therefore, most of the striatum and thalamus projecting neurons were from the conventional MAPseq brain (XC14).

Because we only sequenced neurons at the center of each injection site in situ (XC9 and XC28), but collected a much larger injection

site that may have included neighboring cortical areas in the conventional MAPseq brain (XC14), these neurons were rare in the audi-

tory cortex, and were more likely in neighboring cortical areas, where PT-l neurons could project to other targets. Furthermore, the

10 neurons that projected to the striatum had a laminar profile similar to that of PT-l neurons, but different from those of the layer 6 CT

neurons (Figure 5C). These results suggest that most of the striatum projecting ‘‘corticothalamic’’ neurons were likely PT-l neurons in

layer 5 and deep layer 6 in neighboring cortical areas. The lack of such neurons in XC9 and XC28 thus likely reflect differences in the

locations of neurons sampled due to the differences between MAPseq and BARseq.

Laminar distribution of neurons
We examined whether clustering resulted in subclusters that were more restrictive in laminar locations. One natural measure of

spatial compactness is the standard deviation of the spatial distribution of neurons within a class, but such a measure yields spuri-

ously high values for multimodal distributions. We therefore examined the entropy (normalized to fall between 0 and 1) of the laminar

distribution of all nodes and leaves in the clustering, a measure which is insensitive to the shape of the distribution.

To calculate the entropy of the laminar distribution of a group of neurons, we discretized the laminar location of the neurons into 13

bins, each covering 100 mm. We then calculated the entropy of the discrete distribution of laminar locations E = � P13

i =1

Pi log10Pi,

where Pi is the probability of neurons falling into the ith bin. We then normalized E to the maximum possible E for 13 bins to obtain

the normalized entropy E
0
= � E=log10ð1 =13Þ. The normalized entropy thus equals 0 when all neurons fall into one bin, and 1 when

the neurons randomly distribute across all 13 bins.

We did not see significant difference in the entropy of laminar distribution of subclusters across brains (Figure S6B; p > 0.05 for all

subclusters after Bonferroni correction). Furthermore, the distribution of neurons was also consistent across brains: the average

laminar locations of neurons from each brain were similar for all but one subcluster (Figure S6C; p > 0.05 after Bonferroni correction,

Mann-Whitney U test). The one exception was CT neurons, which were on average 50 mm deeper in XC28 than in XC9 (Figure S6C;

p < 0.0005 after Bonferroni correction), probably because more deep L6 neurons were labeled in XC28 than in XC9 (XC9 and XC28

had 165 and 132 L6 labeled neurons with laminar depths < 1000 mm, respectively, compared to 56 and 129 L6 neurons with laminar

depths > 1000 mm; p < 1e-7 using Fisher’s exact test). Therefore, this observed lack of laminar specificity of subclusters was consis-

tent across samples.

Clustering of single-cell RNaseq
We analyzed 4471 cells with more than 3000 UMI, more than 800 unique RNAs, and less than 15% mitochondria RNA counts. We

then linearly regressed out the effect of the percentage of mitochondria RNA counts, and clustered using the top 40 principal com-

ponents using a resolution of 1 in Seurat. This produced seven clusters (735 cells) that appeared to be neurons with high Snap25

expression. We then pooled these neuronal clusters together and performed a second round of clustering using the top 40 principal

components of this subset of data using a resolution of 0.3. This produced the seven neuronal clusters shown in Figures 6A and 6B.

We then compared the clusters obtained to those obtained in the visual cortex (Tasic et al., 2018) using MetaNeighbor (Crow et al.,

2018). MetaNeighbor was performed on a set of 540 highly variable genes. In this comparison, L4 IT and L5 IT clusters from Tasic

et al. (2018) has been merged into a single label ‘‘L4/L5 IT.’’ This analysis revealed that the ‘‘CT’’ cluster in the auditory cortex
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contained CT neurons, L6b neurons, and seven NP neurons. Furthermore, four PT-l neurons were also co-clustered with IT3 neurons;

the small number of PT-l neurons were likely caused by bias during single-cell dissociation and droplet formation. Because our goal

was to identify genes differentially expressed across subtypes of IT neurons, we did not attempt to further segregate these neuronal

types by clustering, nor did we attempt to enrich for PT-l neurons.

Gene expression in barcoded neurons
The raw sequencing data of barcoded and non-barcoded cells were processed using Cell Ranger v2 (103Genomics) to generate the

expression matrix. We then further processed the data using Seurat v2. We first filtered out cells with less than 200 unique genes per

cell and more than 10%mitochondria RNA per cell) and log normalized the data. We then regressed out either the effect of the per-

centage of mitochondria genes linearly (Figure S2A) or both the effect of the percentage of mitochondria genes and endogenous UMI

counts (i.e., excluding barcode reads) using a poisson model (Figure 3G). We then identified barcoded neurons and non-barcoded

neurons by thresholding the level of Snap25 expression and barcode counts. We observed a general reduction in gene expression

acrossmost genes, but the relative level of expression among these genes were preserved in barcoded cells (Figure S2A). Although a

minor fraction of genes were overexpressed in barcoded cells, we could further correct for both the under-expression among most

genes and overexpression in this subset of genes in the barcoded neurons by simply regressing out the effect of endogenous read

counts per cell (Figure 3G), thus restoring the relative gene expression level to the level of the non-barcoded cells. These results indi-

cate that the relative gene expression level is preserved in barcoded neurons.

To further confirm that the relationship among expression of genes were preserved in individual cells, we examined the amount of

variance explained by principal components in neurons (Figure S2B). We reasoned that if Sindbis infection perturbs major structures

in gene expression, then principal components of gene expression in non-barcoded neurons should fail to capture the variance of

gene expression in barcoded neurons. We identified genes with variable expression and exported the expression of these genes

for both barcoded and non-barcoded cells to MATLAB. We then scaled and centered the data in MATLAB and calculated the ex-

plained variance of top principal components. Our results (Figure S2B) showed that the same top principal components explained

similar amount of variance in both barcoded and non-barcoded neurons, thus further indicating that the structures in gene expression

is preserved in barcoded neurons. Heatmaps of top genes of principal components (Figure S2C) were generated in Seurat.

Data processing for BARseq/FISH validation
We registered the high-resolution FISH images to the high-resolution first cycle sequencing images using the DIC channel. To match

the high-resolution first cycle sequencing images to the low-resolution sequencing images, we down-sampled the first-cycle

sequencing images by four folds and applied aGaussian filter tomimic the lower optical resolution. The two imageswere then roughly

aligned manually. We then extracted cell-body locations using the ‘‘Find Maxima’’ function in ImageJ, and further aligned the cell-

body locations using Iterative Closest Points (Besl and McKay, 1992) in MATLAB (https://www.mathworks.com/matlabcentral/

fileexchange/27804-iterative-closest-point). The barcodes were called from the low-res images using the cell-body locations ex-

tracted in the previous step, and the expression of Slc17a7 and Gad2 were determined manually by examining the overlap between

FISH signals and barcode rolonies. We then filtered out cells with a minimum sequencing quality score of less than 0.8, and further

removed debris based on morphology and homopolymer barcode sequences. The remaining 99 cells were analyzed for projection

pattern and gene expression.

Of the 99 barcoded cells with high sequencing quality and good morphology (Figure 3F; Table S2), 80 were excitatory neurons

(Slc17a7+ and Gad2-), 3 were inhibitory neurons (Slc17a7- and Gad2+), and 16 were non-neuronal cells (Slc17a7- and Gad2-).

The ratio between inhibitory and excitatory neurons was not significantly different from previous estimates [�11.5% (Meyer et al.,

2011), p = 0.13 using Fisher’s exact test]. Out of these 99 cells, 54% (54/99) projected to at least one of the sampled areas with

strengths above the noise floor defined by the olfactory bulb (Table S2). Consistent with the fact that most projection neurons in

the cortex are excitatory, all 54 projection neurons identified by BARseq expressed Slc17a7. The non-projecting excitatory neurons

likely projected locally or to nearby cortical areas we did not sample. Given the small number of inhibitory neurons recovered in this

experiment, our data cannot either support or refute recent findings of inhibitory projection neurons in the cortex (Rock et al., 2016;

Zurita et al., 2018).

Projections of IT subtypes defined by genes
The projection barcode counts were normalized by spike-ins in the sameway as the BARseq-only dataset. The gene expression data

were normalized by the mRNA counts of Slc17a7 in each cell.

To assign neurons to clusters defined by the BARseq-only dataset, we first combined barcode counts for the superficial layer and

deep layer of each cortical area. We then scaled the barcode count in each area so that the mean projection barcode count in each

area is the same in the BARseq/FISH dataset compared to the BARseq-only dataset. We then used a random forest classifier trained

on the BARseq-only projection data to predict clusters of neurons in the BARseq/FISH dataset.

To quantify the laminar bias of projections to cortical areas, we defined laminar bias as BCsuperficial=ðBCsuperficial + BCdeepÞ, where

BCsuperficial and BCdeep indicates barcode counts in the superficial and deep layers of a cortical area. A bias of 1 thus indicates pro-

jections specifically to the superficial layers, and a bias of 0 indicate projections to the deep layers only.
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To quantify whether ipsilateral and contralateral projections were more likely to co-occur or were mutually exclusive, we

compared the fraction of co-projecting neurons to the fraction of either ipsilateral-only or contralateral-only projection neurons

between pairs of IT subtypes defined by gene expression. Among ipsilateral projecting neurons, IT3 neurons were less likely to

co-project contralaterally than both IT1 (p = 4e-6) and IT2 neurons (p = 4e-5); IT4 neurons were also less likely to co-project contral-

aterally than both IT1 (p = 8e-23) and IT2 neurons (p = 4e-17). Among contralaterally projecting neurons, IT3 was more likely to

exclude ipsilateral projections than IT1 neurons (p = 0.02). No other significant bias was found among the contralaterally projecting

neurons (p = 0.3 comparing IT1 to IT4; p = 1 comparing IT2 to either IT3 or IT4). All statistical significance was obtained using Fisher’s

exact test after Bonferroni correction. Therefore, IT3 and IT4 neurons that project ipsilaterally were more likely to exclude

contralateral projections than those in IT1 and IT2.

Euclidean distance was used when comparing distances between the projections of IT neurons within or across subtypes defined

by gene expression (Figure 7G). As a control the same analysis was done on IT neurons within or across high-level projection sub-

clusters (Figure S7E). As expected, most neurons were more similar to neurons within the same projection subcluster compared to

neurons in different projection subclusters.

Statistical analyses
All p values were produced using the statistical tests as noted in the text. All statistical tests were two-sided. Bonferroni correction

was applied to cases involving multiple comparisons, and the corrected p values were reported as indicated in the main text.

DATA AND CODE AVAILABILITY

The accession numbers for all in vitro high throughput sequencing datasets reported in this paper (including two BARseq brains, XC9

and XC28, one MAPseq brain, XC14, one brain for the comparison between BARseq and retrograde tracing, XC54, three brains for

the combination of BARseq with FISH, XC66, XC75, and XC91, and one brain for BARseq in Cre-labeled neurons, XC92) are SRA:

PRJNA557267 and SRA: PRJNA448728. In situ sequencing data, images for the MAPseq dissections, and a list of Allen Reference

Atlas slices corresponding to the dissection slices are available from Mendeley Data (doi: 10.17632/mk82s9x82t.1, 10.17632/

g7kdxznt6w.1, 10.17632/86wf7xfz5x.1, 10.17632/2w649fccnt.1). Analysis code and data needed to reproduce all analyses are avail-

able fromMendeley Data (doi: 10.17632/mk82s9x82t.1, 10.17632/g7kdxznt6w.1, 10.17632/86wf7xfz5x.1, 10.17632/2w649fccnt.1).
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Figure S1. Optimization of In Situ Barcode Sequencing for Brain Slices, Related to Figure 2 and STAR Methods
(A) Amplification of barcodes in brain slices in the indicated reaction chambers. Scale bars = 100 mm. (B) Merged images of rolonies (yellow) generated in

barcoded brain slices and the residual GFP signals (cyan) with the indicated time of pepsin treatment. Scale bars = 100 mm. (C) Comparison of barcode amplicons

generated using BaristaSeq (a), the original padlock method (b), and FISSEQ (c). Scale bars = 50 mm. (D) Sequencing images of cycles 2, 4 and 6 of barcoded

brain slices sequenced using SOLiD sequencing chemistry (top) and using Illumina sequencing chemistry (bottom). Imaging conditions were kept constant

throughout each sequencing run. Scale bars = 100 mm. (E) Average signal-to-noise ratio of Illumina (red) and SOLiD (blue) sequencing in situ over cycles. Error

bars indicate the standard errors for the SNR for pixels. (F-H) Sequencing quality and signal intensity of individual base calls (F), mean signal intensity over cycles

(G), and the fraction of the bases over cycles (H) are plotted. (I) The distribution of barcode counts in contralateral auditory cortex compared to those in the

olfactory bulb (negative control). Dashed line indicates threshold above which a projection is considered real.
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Figure S2. Comparison of Gene Expression in Barcoded Neurons to that in Non-barcoded Neurons, Related to Figure 3

(A) Mean log normalized expression of each gene averaged over all barcoded (x axis) and non-barcoded (y axis) neurons. The gene expression is regressed

linearly using the percentage of mitochondrial genes. The diagonal line indicates equal expression in barcoded versus non-barcoded cells. (B) Fraction of

variance explained by the same top principal components (x axis) in non-barcoded neurons (blue), barcoded neurons (red), and randomized non-barcoded

neurons (yellow). Vertical bars along the non-barcoded line indicate 95% confidence interval. (C) Heatmaps of the expression of top genes in the first six principal

components from non-barcoded neuros.
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Figure S3. Locations of Neurons in the Auditory Cortex Mapped by BARseq, Related to Figure 4 and STAR Methods

(A) Representative low-resolution image of a brain slice showing barcoded GFP+ cells (cyan) and DAPI staining in a typical injection site in the auditory cortex for

BARseq andMAPseq experiments. This image was not acquired in any BARseq or MAPseq brains because the workflow of these experiments does not preserve

whole brain slices. Scale bar = 500 mm. (B)(C) Representative images of FISH against Cux2 (B) and Fezf2 (C) in two adjacent slices. Scale bars = 50 mm. (D)

Normalized layer boundaries determined in three pairs of slices across the auditory cortex. In each slice, the thickness of the cortex was normalized to that in the

BARseq brains, and the boundary positions were scaled accordingly. (E) Violin plots of the laminar distribution of all BARseq neurons in XC9 and XC28 (All) and

those with (Proj) or without (Non-proj) detected projections. Individual neurons (red) are plotted on top of smoothed distribution plots.



Figure S4. Projections of the Auditory Cortex Revealed by BARseq, Related to Figure 5

(A) Triple retrograde tracing of neurons projecting to the rostral striatum (CTB-647), the caudal striatum (CTB-488), and the tectum (RetroBeads). (B) A repre-

sentative image of triple retrograde labeling in the auditory cortex showing neurons projecting to the rostral striatum (magenta), the caudal striatum (cyan), and the

tectum (yellow). Scale bar = 100 mm. (C) Venn diagram showing the number of neurons projecting to each of the three areas. (D) The strengths of the indicated

projection (y-axes) of individual neurons of the indicated classes are plotted against their laminar position (x-axes). The mean projection strengths are marked by

black lines. The layer boundaries are marked by dotted vertical lines.



Figure S5. Hierarchical Clustering of Projection Neurons in the Mouse Auditory Cortex, Related to Figure 5 and STAR Methods

(A) Positive (green) or negative (red) Spearman correlation coefficients among projections to the indicated areas in the indicated classes. Only correlations that

were statistically significant after Bonferroni correction were shown. (B) The workflow of the hierarchical clustering. (C) Comparison of the original projection

strengths (blue) and the filtered projection strengths (red) for two example neurons. (D) The fraction of variance explained (y axis) using non-negative matrix

factorization (NMF; blue), individual projections (red), and PCA (black). (E) The fractions of neurons that remain in the same class-level clusters (y axis) when

filtering the projection data with the indicated number of projectionmodules (x axis) compared to the clusters without filtering. (F) Comparison of clusters obtained

using k-means (upper row), spectral clustering (middle row), and Louvain community detection (lower row) at the indicated hierarchies. All clusters are color-

coded onto the same t-SNE plot. The colors are randomly assigned to individual clusters. (G) The distribution of the maximum cluster probability for individual

neurons when classified using all 11 projection areas (a) or 10 projection areas (b-l). For classification using 10 projection areas, the unused projection area is

labeled on top of each graph. (H) The fraction of well-classified neurons in projection leaf subclusters. The subcluster labels correspond to those in Figure 5C and

the major classes they belong to are labeled below.
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Figure S6. Consistent Projections and Laminar Distribution across Brains, Related to Figure 5
(A) The fractions of neurons from each brain that belong to each indicated high-level projection subcluster. All bars belonging to a brain sum to 1 across the whole

plot. (B) Differences in normalized entropy (x axis) of individual subclusters between the two brains are plotted against the negative logarithm of the p values

(y axis). The subclusters are color-coded according to their class-level divisions as indicated. The p values are shown without multiple testing correction. The red

vertical dashed line indicates no difference in entropy, and the black horizontal dashed line indicates significance level after Bonferroni correction. (C) Differences

in mean laminar locations (x axis) of individual subclusters between the two brains are plotted against the negative logarithm of the p values (y axis). The sub-

clusters are color-coded according to their class-level divisions as indicated. The p values are shown without multiple testing correction. The red vertical dashed

line indicates no difference in the mean laminar locations, and the black horizontal dashed line indicates significance level after Bonferroni correction.



Figure S7. Projections of IT Subtypes Defined by Gene Expression, Related to Figures 6 and 7

(A) t-SNE plots of projections color-coded by brain indices. (B) t-SNE plots of projections of neurons of the indicated IT subtypes defined by gene expression.

Neurons of the indicated IT subtypes are color-coded by high-level projection subclusters, and other neurons are grayed out. (C) Histograms of log normalized

barcode counts of projections to the ipsilateral visual cortex in IT3 and IT4 neurons. (D) Cumulative probability distribution of Cdh13 expression in contralateral

projection neurons and ipsilateral projection neurons as determined by FISH and CTB retrograde tracing. (E) The minimum distance from a neuron to any neuron

within the same projection subcluster (x axis) or in a different projection subcluster (y axis). Neurons are color-coded by high-level projection subclusters. Dashed

line indicate same minimum distance within and across subtypes. (F) For each neuron belonging to an indicated IT subtype defined by gene expression, the

number of IT subtypes containing neuronswith the same binary projection pattern was counted (possible values range from 1 to 4 subtypes). The histogram of this

value was then plotted. (G) Histogram of the number of transcriptionally defined subtypes a binary projection pattern was found in.
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