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The connections between neurons determine the computations
performed by both artificial and biological neural networks. Recently,
we have proposed SYNSeq, a method for converting the connectivity
of a biological network into a form that can exploit the tremendous
efficiencies of high-throughput DNA sequencing. In SYNSeq, each
neuron is tagged with a random sequence of DNA—a “barcode”—
and synapses are represented as barcode pairs. SYNSeq addresses
the analysis problem, reducing a network into a suspension of
barcode pairs. Here, we formulate a complementary synthesis prob-
lem: How can the suspension of barcode pairs be used to “clone” or
copy the network back into an uninitialized tabula rasa network?
Although this synthesis problem might be expected to be computa-
tionally intractable, we find that, surprisingly, this problem can be
solved efficiently, using only neuron-local information. We present
the “one-barcode–one-cell” (OBOC) algorithm, which forces all barc-
odes of a given sequence to coalesce into the same neuron, and
show that it converges in a number of steps that is a power law
of the network size. Rapid and reliable network cloning with single-
synapse precision is thus theoretically possible.
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The connections between neurons determine the computa-
tions performed by a neural network. In both biological and

artificial neural networks, connections are established and tuned
by experience and learning. Connections can thus be considered a
“summary” of the statistical structure of the experience—data—
on which the network was trained. This summary may be con-
siderably more compact and efficient than the original data. For
example, deep neural networks for object recognition contain tens
of millions of connections derived from training sets consisting of
hundreds of billions pixels, which results in more than 1,000-fold
compression (1, 2). It would therefore be more efficient to copy
these connections onto a new network than to retrain a new
network from scratch.
Most current implementations of artificial neural networks ex-

ploit digital computers and graphics processing units (2). On these
architectures, connections are stored explicitly and are therefore
straightforward to extract and copy into a new network. In bi-
ological networks, by contrast, there is no central repository for
connections, so reading out the connections of a network and
copying them into a new network represents a difficult challenge.
During neural development, for example, a genomic DNA se-
quence representing prior evolutionary experience is converted
into the brain’s connectivity. Similar challenges may arise in future
artificial or hybrid biological/artificial architectures.
We have recently proposed SYNSeq, an approach for deter-

mining neuronal connectivity (3, 4). The key idea is to convert
the connections into a form that can be read out using high-
throughput DNA sequencing, thereby benefitting from the ad-
vances in sequencing technology. Sequencing is now extremely
fast and inexpensive—it is routine to decode billions of DNA
fragments per day, and sequencing cost has dropped at a rate
faster than Moore’s law. To convert neuronal connectivity into a
sequencing problem, we induce individual neurons to express
unique random nucleotide identifiers called “barcodes.” Pairs of
presynaptic and postsynaptic barcodes represent individual syn-
aptic connections. These barcode pairs can then be used to
represent the connectivity of a network (Fig. 1).

Here, we formulate a different problem: Given an ensemble of
connections represented by barcode pairs, can we copy them into a
new network? In other words, can the original network be cloned?
We explore a computational model that simulates the behavior of
barcodes introduced into a tabula rasa network with unstructured
connectivity and test its ability to recreate target connectivity in such
networks. We require the underlying mechanisms to be purely local,
that is, that the algorithm uses only information available to a given
neuron and its synapses. Below, we present an algorithm that allows
robust copying of connectivity based only on local interactions.
In our approach, connectivity is specified by unique molecular

labels (DNA barcodes) with single-synapse precision. It is com-
monly assumed that implementing connectivity via individual
synaptic tags is not feasible due to the absence of guidance
mechanism that would direct the cells to form the right synapses
(5). One might expect that establishing desired connectivity using
individual synaptic labels would require a number of steps that is
exponential in network size. The inadequacy of unique molecular
tags in instructing connectivity had motivated Roger Sperry (6) to
introduce the idea of molecular gradients. Here, we propose a
form of molecular dynamics and find, surprisingly, that it yields
convergence to the target connectivity in a number of steps that is
polynomial in network size, even though the connectivity is spec-
ified by unique molecular labels for each synapse. This finding
implies that copying connectivity with single-neuron precision
using our strategy is theoretically possible.

Results
Our algorithm attempts to recreate the target connectivity be-
tween neurons (Fig. 1A). The connectivity can be represented as
a connection matrix Ŵ (Fig. 1B). We assume that every network
node (neuron) is identified by a unique barcode, that is, by a
sequence of nucleotides long enough to label uniquely every
neuron in the network (Fig. 1A). Network connectivity is thus
encoded by barcode pairs, where each barcode pair consists of a
presynaptic barcode, a postsynaptic barcode, and a spacer be-
tween them indicating the connection’s direction (Fig. 1C). This
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network description is similar to the netlist representation (7).
As seen in Fig. 1C, every barcode, representing an individual
neuron, can be encountered multiple times, equal to the number
of synapses made by this neuron. We therefore define a barcode
type as the set of barcodes with the same sequence that repre-
sents the same neuron. Each barcode pair, on the other hand, is
present in only one copy, because it represents an individual
synaptic connection. The total number of barcode pairs is equal
to the number of nonzero entries in the connection matrix, or to
the total number of connections in the network. To simplify
notation, we will represent each barcode by a single letter of the
alphabet rather than as a string of nucleotides (Fig. 1D).
The barcode pairs are introduced into synapses of a tabula rasa

network that is, initially, fully connected (Fig. 2B). Since connectivity
in our model is directional, we assume that, between every two cells,
synapses are formed initially in both directions. The full connectivity
assumption is made here to simplify the description of network
dynamics, and is reminiscent of the overproduction of synaptic
connections that occurs during development (8, 9) and the full po-
tential cortical connectivity (10). The number of neurons in the
tabula rasa network is assumed to be equal to the number of nodes
in the desired network, that is, equal to the number of barcodes.
The barcodes are initially introduced into synapses of tabula

rasa network randomly. One possible solution for recreating the
target network is to mark each neuron of the tabula rasa network
with individual barcode tags and to distribute the barcode pairs
into synapses according to these tags. The unoccupied synapses

of the tabula rasa network would subsequently be eliminated.
Implementing this mechanism practically would require a global
supervising mechanism that keeps track of unique label assignments
and appropriate barcode placements. Such mechanism is therefore
not biologically plausible. Instead, here we formulate a fully local
procedure for recreating the target network in the tabula rasa net-
work in which processes in each cell rely only on the information
available to each cell. Thus, the target network emerges as a result of
self-organization of barcodes in the tabula rasa. The barcodes are
rearranged in the network via three types of local moves. First, each
barcode can be reinserted in the synapse between the same pair of
cells in different orientation (“flips”; Fig. 2C). Second, the barcodes
can jump from one synapse to another synapse of the same cell
(“jumps”; Fig. 2D). Finally, two barcodes located in the same neuron
can trade places (“swaps”; Fig. 2E). To practically implement these
three moves, we select two synapses of the same neuron at random,
ensure that at least one of them contains a barcode pair, and swap
the pairs, even if source and destination are the same or one of them
is empty. In implementing these moves, we keep track of the di-
rection of barcode pairs and synapses, that is, barcode pairs are in-
troduced into synapses of the correct orientation. We ensure that the
described moves are local in that the barcode pairs are only relo-
cated between synapses of the same neuron.
Using this set of moves, we rearrange barcode pairs in the

network attempting to implement the “one-barcode–one-cell”
(OBOC) solution. In the OBOC solution, all barcodes in the
synapses of the same cell, facing this cell, are the same (Fig. 2G).
Thus, in Fig. 2G, all barcodes in the rightmost cell are described
by letter Y (V, X, Y, Z is a short-hand notation for much longer
nucleotide sequences). Similarly, all barcodes in the leftmost cell
are labeled by letter Z. We reasoned that if the logic of the in-
teraction of cells and barcodes favors OBOC solution, cells will
discover their identity as encoded by barcodes. Because every cell in
the tabula rasa network has a potential to become any cell as defined
by the barcodes, a specific arrangement of barcode pairs respecting
OBOC rule is associated with a symmetry breaking, whereby the
network selects one possible assignment of barcodes into cells out of
N! combinations (N is the number of neurons in the network, and is
equal to the number of barcodes). We also reasoned that if we then
eliminate all synapses that are not occupied by a barcode pair, the
remaining synapses will implement the target connectivity.
To practically implement OBOC solution, we defined a cost

function, H, that is minimized by the barcode dynamics. The cost
function depends on the synapse–barcode connection index
(SBCI), xij,νμ, which determines which barcode pair is present in
what synapse. This variable is equal to 1 or 0 if a barcode pair
connecting two barcodes μ→ ν is present or absent in a synapse
from cell j to i (μ, ν, i, and j are unique indexes enumerating
barcodes and cells). The constraint on SBCI is that after sum-
ming it over all synapses, we should obtain the original barcode
connectivity matrix such as the one shown in Fig. 1B:P

ijxij,vμ =Wvμ. Index cnβ defines the number of barcodes (not
pairs) of type β in cell n. To find this number, for a given cell n
and barcode type β, we have to sum SBCI over all other cells in
the network and all other barcode types represented by indexes
m and α, respectively, that is, cnβ =

P
mμxnm,βμ +

P
mμxmn,μβ. This

equation includes two contributions, because, in our case, syn-
apses are directional and contributions from both n→m and
m→ n have to be counted. Although many choices are possible
for the cost function, we use this particular form:

H =−ð1+ «Þ
XN
n=1

XB
β= 1

�
cnβ
�γ + «

XN
n=1

 XB
β= 1

cnβ

!γ

. [1]

Here, sums are assumed over the neuronal index n ranging from
1 to N, the total number of neurons, and the barcode index β,

Fig. 1. Representation of a network by an ensemble of barcode pairs
(SYNSeq). (A) An example of small network. In SYNSeq, each neuron is
represented by a short unique nucleotide sequence called a barcode. (B) The
connectivity matrix corresponding to the network in A. (C) Network con-
nections are encoded by pairs of barcodes with a spacer (black arrow) rep-
resenting the connections’ direction. (D) We represent barcodes by unique
letters of an alphabet for brevity.
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ranging from 1 to B, the total number of barcodes. γ and « are the
parameters of the cost function. To implement the OBOC rule,
the parameter γ must exceed unity. In the present work, we used
γ = 2, in which case the first term of the cost function can be
viewed as the measure of the sparseness of barcode distribution
cnβ (11–15). Minimization of this term leads to a sparser distri-
bution cnβ, that is, the distribution that has more zeros values. As
a consequence, the first term in the cost function achieves its
minimum when barcodes of the same type reside in the same
neuron, that is, when OBOC solution is reached. For example, if
two copies of the barcode of the same type are present and if
they are located in the same cell, the first term of the cost func-
tion is equal to −ð1+ «Þ22 =−4ð1+ «Þ for γ = 2. If these two barc-
odes are distributed between two different cells, the first term in
the cost function is −ð1+ «Þð12 + 12Þ=−2ð1+ «Þ. Thus, minimiz-
ing the first term favors the convergence of the barcodes of the
same type in the same cell. This alone, however, does not prevent
barcodes of different types from congregating in the same cell.
To prevent this from happening, we introduced the second term
into the cost function. Minimizing second term leads to the sep-
aration of the barcodes of different types into different cells.
Assume that two types of barcodes are present in the system,
with two copies each. The values of the second term when
these two barcodes types are placed into the same or different
cells are 42« and ð22 + 22Þ«, respectively, leading to the desired
effect. Parameter «, which we set to «= 10, determines the
balance between two terms of the cost function. For γ = 2,
the cost function can be written as H =

PN
n=1~c

T
n Û~cn, where ~cn

is the vector of barcode abundances in neuron number n, and
Û =−ð1+ «ÞÎ + «Ŷ. Here, Ŷ is the matrix of all ones. Because
the diagonal part of matrix Û ð∼ ÎÞ is negative, it favors solu-
tions in which there is a single barcode type per cell, while the
off-diagonal part ð∼ Ŷ Þ penalizes multiple barcode types in a
cell. It therefore represents the repulsion of different barcodes
present in the same cell. Both of these components help
achieve OBOC solution.
Importantly, the cost function [1] has a property of locality,

that is, the contribution for each neuron depends on the vari-
ables available to this neuron cnβ, that is, the number of barcodes
of type β. The decision whether the barcode move lowers the cost

function, and as consequence, whether such a move should be
implemented, depends on the information available to the cell
and its synapses only. Minimizing the cost function [1] does not
require a global supervisor, which would render the mechanism
biologically implausible.
The approach based on minimizing a cost function is one of

the ways to quantitatively describe biological processes and has
been used successfully to describe establishing connectivity, es-
pecially when competition or interdependence between cells is
important (16, 17). To minimize the cost function, we use the
Metropolis Monte Carlo (MMC) procedure that has been shown
to closely approximate the dynamics of synaptic connections
during neural development (8, 16–18). Our MMC procedure
relied on three types of barcode moves as described above. After
the cost function is minimized, at the end of the MMC pro-
cedure, we remove synapses that carry no barcodes. Within our
model, we can prove the following theorems with regard to
reproducing the target connectivity. The detailed proofs are
provided in Appendix.

Theorem 1. Let ŴB be the target connectivity defined by the barcode
pairs. Let ŴN be a cell connectivity corresponding to an OBOC
solution for the same set of the barcode pairs arising after barcode-
free synapses are eliminated. Then, a one-to-one mapping M̂ exists
between the set of barcodes and the neurons, which makes
ŴB = M̂ŴNM̂T.
Theorem 1 shows that reaching OBOC state is equivalent to

cloning the target connectivity. Although this statement is quite
obvious, we prove it in Appendix for completeness. In Appendix,
we show that connectivity can be cloned up to a permutation with
M̂ being a permutation matrix. The problem of network copying
therefore has N! equivalent (isomorphic) OBOC solutions.

Theorem 2. For γ = 2 and «≥ 1, in a non-OBOC state, there is al-
ways a barcode jump decreasing the cost function.
Theorem 2 shows that the cost function [1] does not have any

non-OBOC minima, meaning that the barcode dynamics would
not lead to a metastable, yet wrong, connectivity. Therefore, we
prove the following corollary.

Fig. 2. The “one-barcode–one-cell” (OBOC) rule
yields target connectivity. (A) The set of barcode
pairs representing the original network from Fig. 1.
Individual barcode sequences are shown as letters
for brevity. Barcode pairs represent individual syn-
apses. (B) An all-to-all connected tabula rasa net-
work that receives the ensemble of barcode pairs.
We show connections as undirected synapses for
simplicity. (C) The barcode pairs are initially
arranged randomly. (D–F) Barcode pairs can move
through the network by jumping from synapse to
synapse using three moves as illustrated: flips (i),
jumps (ii), and swaps (iii). The moves minimize the
cost function defined by Eq. 1. (F) Minimization of
the cost function forces all barcodes facing every
neuron to be the same. This arrangement is called
OBOC. Once OBOC solution is achieved, we elimi-
nate all synapses that contain no barcode pairs, such
as the synapse between cells “X” and “V.” (G) OBOC
solution yields the copying of the original connec-
tion matrix.
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Corollary. For γ = 2 and «≥ 1, all of the minima of the cost function
[1] correspond to OBOC solutions.
This corollary combined with the theorems above shows that

minimization of the cost function [1] will lead to an OBOC so-
lution, thus cloning the barcode defined connectivity in the
network. To estimate the number of steps until convergence to
the target connectivity, we proved the following theorem.

Theorem 3. For γ = 2 and «≥ 1, convergence to a minimum of the
cost function [1] takes a number of steps limited from above by a
number polynomial in the number of network nodes (cells). The-
orem 3 shows that the convergence of the network connectivity to
the target is not exponential.
To measure the number of steps needed to clone network

connections and to obtain a stronger estimate for the speed of
convergence to the target connectivity under various circum-
stances, we performed several computer simulations (Fig. 3). To
generate the examples of target connectivities, we used ran-
dom networks of various topologies, connectivity density f , and
size N. To quantify the speed of convergence, for each MMC
simulation, we computed the number of attempts, Nsteps, to move
the barcodes before a perfect OBOC solution was achieved (Fig.
4). We found that the number of steps is well approximated by a
power law:

Nsteps ∝ f 1.5N3.5. [2]

The power law [2] holds for both random Erd}os–Rényi (19)
networks (Fig. 4A) and scale-free (Barabási–Albert) (20) net-
works (Fig. 4B), suggesting that the dependence of the perfor-
mance on the network topology is negligible compared with the
dependence on the connectivity density and network size.
So far, we have assumed that target networks initially have an

all-to-all connectivity. Barcode-free synapses are eliminated at
the end of cost-function minimization, after the barcode pairs
have found an OBOC solution. This full initial connectivity as-
sumption is clearly a simplification intended to mimic the over-
production of synapses during neural development (8, 9). In
reality, the formation of connectivity is accomplished via the
process of trial and error during which synapses are both created
and eliminated (8, 9). To test our conclusions in the model in
which synapses can be formed and pruned while the barcode

pairs are relocated in the network, we performed simulations
with the same cost function in the conditions when synaptic
connectivity is both sparse and dynamic. Initially, tabula rasa
network was sparse, with the sparseness parameter exceeding the
sparseness of the barcode matrix. The number of excess synaptic
connections was given by the formula 0.3ð1− f ÞN2 (see Methods
for more detail). Thus, for f ≈ 0 and f = 1, the numbers of excess
synapses were 0.3N2 and 0, respectively, while changing linearly
between these values. One hundred times during each simula-
tion, the synapses lacking any barcode pairs were relocated
randomly to pairs of cells that were not at the moment con-
nected. At the end of the simulation, empty synapses were
eliminated as in the case of static network. We found that a
similar power law for the convergence [2] holds in the case of
dynamic synapses (Fig. 4C), meaning that the network should
not be necessarily fully connected to obtain an accurate copy of
the connectivity in a polynomial number of steps.

Discussion
Here, we have addressed the question whether connectivity can
be copied from one neural network to another, using only a local
rule. It should be noted that the connectivity in the original
network can be obtained using any paradigm that results in
connection matrix with the single-synapse precision, such as us-
ing volume electron microscopy methods (21, 22) or SYNSeq
approach (3, 4). Original connectivity can also result from an
application of a learning algorithm in an artificial neural network
(1, 2). Independently on their origin, the connections can be
represented by an ensemble of DNA barcode pairs (3, 4). We
analyzed the dynamics of barcode pairs introduced into a clean-
slate tabula rasa network. The particular form of dynamics that
we considered is described by OBOC, which favors positioning of
a single type of barcodes in a single neuron. We showed that
OBOC dynamics leads to fast and reliable recreation of desired
connectivity in the new network. The formation of new con-
nectivity is achieved in a number of steps given by a power law of
the network size [2]. We have proved a convergence theorem
(Theorem 2) showing that movements of barcodes toward OBOC
solution are not obstructed by local minima. Thus, we have
demonstrated that copying connectivity from one neural network
to another using DNA barcodes is theoretically possible.
The number of steps to convergence, defined by Eq. 2, may

seem impractical, as the number of steps grows rapidly with the
network size. Using only local information in cost function [1],
however, allows moving the barcode pairs in parallel, thus reducing
the number of the steps to the convergence. Since the number of
barcode pairs is B= fN2, the number of attempts to move by each
barcode pair is given by nsteps =Nsteps=B or the following:

nsteps ∝ f 0.5N1.5. [3]

The power law [3] suggests that the time to copy connectivity
does grow with the network size; however, the growth is de-
scribed by a power law with the relatively small exponent of
1.5. Thus, cloning a network with 10 times more neurons is
expected to take about 30 times more time.
In our study, we derived several results on theoretical plausi-

bility of copying the structure of biological neuronal networks.
We were motivated by the conventional assumption that neu-
ronal network connectivity carries an imprint of long-term
memory and, as such, is an essential substrate of network func-
tion (23). Copying (cloning) connectivity might facilitate the
transfer of these imprints from one biological network to another.
To model network formation, we used a formalism based on the
cost function, which is found useful in explaining formation of
networks during neural development (8, 16–18). Since our focus
was on theoretical plausibility, we did not explore the biological

Fig. 3. The OBOC rule allows copying desired network connectivity matrix.
Results of a single MMC run for 20 × 20 (A–C) and 100 × 100 (D–F) networks.
Red/green channels show target/actual connection matrices. Yellow matrices
at the end of the simulation run (C and F) indicate a perfect copy.
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mechanism that could implement the cost function used in this
study. Such biological mechanism has to be fairly intricate, as, to
form OBOC solutions, barcodes have to agglomerate into the
same cell based on their identity defined by their sequence.
Precedents to OBOC solution can be found in systems imple-
menting gene expression, for example. Thus, in the olfactory
system, each olfactory sensory neuron chooses to express a single
olfactory gene out of thousands of possibilities (24). It seems,
therefore, that implementations of OBOC solution might involve
a system based on gene expression. Further studies are needed to
explore these potential mechanisms both experimentally and
theoretically.
Our approach can be extended in several directions. For

example, in our model, connections were binary and each bi-
nary synapse was encoded by a single pair of barcodes. Multiple
levels of synaptic strengths can be introduced into our approach
by using more than one barcode pair per synaptic connection. A
connection encoded by several barcode pairs might be stronger
due to the formation of multiple disconnected synaptic active

zones between a pair of cells or an increased synaptic area
within a single active zone. Although our model cannot dis-
tinguish between these two mechanisms, both of them lead to
an overall increase in the synaptic conductance between two
cells, and, consequently, their effects are similar. In the model
explored here, the total number of neurons matched the
number of barcode types. This assumption was made to simplify
our analysis. It is almost certain to fail in realistic cases. Finally,
it is tempting to expand our approach by including multiple sets
of barcodes that implement a hierarchy of connection rules.
One set of barcodes pairs might encode connectivity between
brain regions, while different barcode sets may enforce the
rules on mesoscopic and microscopic scales. Including multiple
levels of connectivity rules could accelerate wiring large-scale
networks. These extensions of our approach could be further
investigated.

Methods
Wegenerated random directed target networks of various topologies, sizes
N, and connectivity densities f, as described below. We used 10 different
network sizes from N= 10 to 10,000 cells, spaced exponentially. In the case
of Erd}os–Rényi (19) networks, for each network size, we used 10 different
connectivity densities from f = 0.05 to f = 0.80, spaced exponentially, 15
samples each. In the case of scale-free (Barabási–Albert) (20) networks,
connectivity densities from f = 10−3 to f = 0.5 were defined by the network
structure. These networks were defined by the set of barcode pairs. In the
group of simulations with fixed synapses, we introduced these barcode
pairs into the fully connected tabula rasa network. We then relocated the
barcode pairs using the MMC process, which stochastically minimizes the
cost function [1]. At the end of simulation, we removed synapses carrying
no barcode pairs. In the group of simulations with dynamic synapses,
synapses were created and eliminated at the same time as the barcodes
were moved between them. In this case, tabula rasa network was random
and sparse, with the sparseness parameter fTR = f + 0.3 · ð1− fÞ. Here, f is
barcode connectivity sparseness, as before. This network had random
Erd}os–Rényi structure. Initially, we populated tabula rasa network with
barcode pairs randomly. Synaptic network had therefore an excess of
0.3 · ð1− fÞN2 synapses over what is needed to form an OBOC state. These
empty (barcodeless) synapses can therefore be used as relocation targets
for the barcode pairs. Empty synapses were pruned and reassigned ran-
domly every Na attempts to move a barcode. Na was adjusted in such a way
that all empty synapses are reassigned on average 100 times during a
simulation. This parameter was intended to approximate synaptic turn-
over during neural development (8, 9). A simulation was terminated when
OBOC solution was achieved. All of our simulations converged to the
OBOC solution within the number of steps equal to 100 times the average.
At the end of the simulation, empty synapses ½0.3 · ð1− fÞN2� are elimi-
nated, similarly to the case of fixed synapses.

For both the cases of fixed and dynamic synapses, barcodes were relo-
cated between synapses via jumps, swaps and flips as described, according
to MMC statistical rules. The probabilities of attempting these three op-
erations were 1− f, f − 1=N, and 1=N, respectively. During each of the op-
erations, barcodes were inserted in a random orientation. Multiple
barcodes were allowed to reside in a single synapse at a time. Our theory
(Theorem 2) indicates that jumps alone are sufficient for recreation of the
target connectivity; however, we included two other types of the move-
ments for the sake of generality. We assigned the probabilities of
attempting a jump, a swap, or a flip so that it can be viewed as swap be-
tween two random synapses, with at least one of them occupied by a
barcode pair. Thus, the probability of attempting a jump is 1− f, that is, the
probability of another synapse to be empty. The probability of a flip is 1=N,
that is, equal to the likelihood of selecting the same synapse twice. Because
swaps and flips are very computationally inefficient, for the simulations of
networks with N=104, we did not attempt any swaps or flips. We observed
similar rates of convergence, in this case suggesting that swaps are not that
important for convergence, as hinted by Theorem 2.

We used γ = 2 and «= 10 in our simulations. To minimize the cost function
[1], we used MMC procedure (8, 16–18). The value of temperature was
chosen to be sufficiently low ðT = 10−4Þ to yield convergence of the algo-
rithm to the correct solution. Each simulation only terminated when an
OBOC solution was achieved. Due to Theorem 2, connectivity copying can be
accomplished via a greedy algorithm. We used MMC procedure because it
is quantitatively close to the processes guiding the formation of synaptic

Fig. 4. OBOC rule yields target connectivity in a number of steps given by a
power law of network size. Number of steps required for convergence as a
function of the combination of network parameters f1.5N3.5 (N, the size of
the network, and f, the fraction of nonzero connections). Network size
varied between N= 10 and 104. Each point represents an individual simula-
tion. Individual network parameters are identified by color for each simu-
lation. Dashed lines represent the number of steps given by the identity
Nsteps = f1.5N3.5. (A) Random (Erd}os–Rényi) target connectivity. (B) Scale-free
(Barabási–Albert) target connectivity. (C) Synaptic dynamics: Every fixed
number of steps, we relocated all of the empty synapses (∼100 times during
the entire simulation, on average).
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connectivity (8, 16–18). To compare connectivity on each step to the target
connectivity, we used a greedy procedure that finds dominant barcodes for
each cell. To quantify the speed of the convergence, for each MMC simu-
lation, we computed the number of attempts to move the barcodes before a
perfect OBOC solution was achieved (Fig. 4). We used linear regression in
log–log space to approximate the number of steps to convergence.

Appendix
Theorem 1. Let ŴB be the target connectivity defined by the barcode
pairs. Let ŴN be a cell connectivity corresponding to an OBOC
solution for the same set of the barcode pairs arising after barcode-
free synapses are eliminated. Then, a one-to-one mapping M̂ exists
between the set of barcodes and the neurons, which makes
ŴB = M̂ŴNM̂T.

Proof: Although this theorem is somewhat trivial, we prove it
here for completeness. Because, in our approach, the number of
barcodes is equal to the number of cells, in OBOC solution,
every cell has a unique barcode. One can thus use barcodes to
identify cells. We then define a permutation matrix P̂ that de-
termines the assignment of barcodes into cells in the OBOC
solution. An entry Pαn in this matrix is equal to 1 if barcode α is
present in cell n and zero otherwise. By the property of permutation
matrix P̂P̂T = P̂P̂−1 = Î. Clearly, ŴB = P̂ŴNP̂T, and ŴN = P̂TŴBP̂,
which proves the theorem, if M̂ ≡ P̂.

Theorem 2. For γ = 2 and «≥ 1, in a non-OBOC state, there is al-
ways a barcode jump decreasing the cost function.

Proof: According to Eq. 1 of the main text, if barcode of the
type β is relocated from the cell number m to the cell number n,
the change in the cost function ΔH is given by the following:

ΔHm→n = cmβ − cnβ − 1+ «
X
α≠ β

ðcnα − cmαÞ. [4]

Case 1 (each barcode is contained in one cell only): Assume that the
barcodes are in a non-OBOC state. The simplest case is when
each barcode type is located in a single neuron. In this case,
several barcode types can share the same neuron, leading to the
non-OBOC state. Since the number of barcodes is equal to the
number of cells, this implies that the network contains a cell with
no barcodes. We denote a cell hosting multiple barcode types by
index m and an empty one by index n. The barcode type with the
minimal abundance inm is called β. Because cnα = 0 for any α, the

change in cost function for relocating the barcode β to the empty
cell n is as follows:

ΔHm→n = cmβ − 1− «
X
α≠β

cmα. [5]

Because «≥ 1, we have ΔHm→n ≤ − 1< 0.
Case 2 (at least one barcode is shared between two cells): In this case,

we can pick a pair of cells m and n, both hosting at least one copy
of the barcode of the same type, henceforth referred to as β.
Using Eq. 4, we can compute the sum of changes in the cost
function for opposite movements of the barcode, that is, from m
to n and from n to m:

ΔHm→n +ΔHn→m =−2< 0. [6]

It means that at least one of those two cost-function changes is
negative. Thus, we have shown, that in all possible non-OBOC
states, given γ = 2 and «≥ 1, there is at least one possible move-
ment that decreases the cost function.

Corollary. For γ = 2 and «≥ 1, all of the minima of the cost function
[1] correspond to OBOC solutions.

Proof: Assume we are in a cost-function minimum, which is non-
OBOC. According to Theorem 2, there is a barcode pair movement,
decreasing the cost function. Therefore, it is not a minimum.

Theorem 3. For γ = 2 and «≥ 1, convergence to a minimum of the
cost function [1] takes a number of steps limited from above by a
number polynomial in the number of network nodes (cells).

Proof: The cost-function spectrum is discrete and limited. For ex-
ample, if « is a natural number, then the cost function is an integer
number. The lower boundary of the cost-function spectrum corre-
sponds to an OBOC solution (Corollary), and equals to −f 2N3. As we
start with a random distribution of the barcodes, the higher boundary
approximately equals to «f 2N3. Therefore, the number of successful
steps to the convergence cannot exceed ð1+ «Þf 2N3. In every non-
OBOC state, there is at least one in fN4 barcode jumps, decreasing
the cost function (Theorem 2). Thus, the overall number of the steps
to convergence does not exceed ð1+ «Þf 3N7, which is polynomial.
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