
Long-Lasting Context Dependence Constrains Neural Encoding Models
in Rodent Auditory Cortex

Hiroki Asari and Anthony M. Zador
Cold Spring Harbor Laboratory, Watson School of Biological Sciences, Cold Spring Harbor, New York

Submitted 6 July 2009; accepted in final form 12 August 2009

Asari H, Zador AM. Long-lasting context dependence constrains neural
encoding models in rodent auditory cortex. J Neurophysiol 102: 2638–2656,
2009. First published August 12, 2009; doi:10.1152/jn.00577.2009. Acous-
tic processing requires integration over time. We have used in vivo
intracellular recording to measure neuronal integration times in anes-
thetized rats. Using natural sounds and other stimuli, we found that
synaptic inputs to auditory cortical neurons showed a rather long
context dependence, up to �4 s (� � 1 s), even though sound-evoked
excitatory and inhibitory conductances per se rarely lasted �100 ms.
Thalamic neurons showed only a much faster form of adaptation with
a decay constant � �100 ms, indicating that the long-lasting form
originated from presynaptic mechanisms in the cortex, such as syn-
aptic depression. Restricting knowledge of the stimulus history to only
a few hundred milliseconds reduced the predictable response compo-
nent to about half that of the optimal infinite-history model. Our
results demonstrate the importance of long-range temporal effects in
auditory cortex and suggest a potential neural substrate for auditory
processing that requires integration over timescales of seconds or
longer, such as stream segregation.

I N T R O D U C T I O N

One goal of systems neuroscience is to characterize the
relationship between input sensory stimuli and output neural
responses. Linear models have been widely used in the audi-
tory and visual systems due to their simplicity and interpret-
ability (Eggermont et al. 1983; Escabı́ and Schreiner 2002;
Klein et al. 2000; Theunissen et al. 2001; Wu et al. 2006).
Linear spectrotemporal receptive field (STRF) models have
been quite successful in describing the input–output function
of some stimulus ensembles in auditory cortex (Depireux et al.
2001; Kowalski et al. 1996), but have yielded only poor results
for other ensembles, including those consisting of natural
stimuli or other complex stimuli (Linden et al. 2003; Machens
et al. 2004).

Why has the classical STRF-based approach failed to pro-
vide a general model? The straightforward answer is that the
actual input–output function is nonlinear. For example, the
actual input–output function might include multiplicative in-
teractions between different frequency bands. However, the
space of nonlinear functions is large and it is not feasible to fit
general high-order models. For instance, if the input spectro-
gram is naı̈vely discretized with a (rather coarse) frequency
resolution of 0.25 octave over 5 octaves and a (rather coarse)
temporal resolution of 10 ms over 200 ms, then the number of
parameters for a linear model is: N � 5/0.25 � 200/10 � 400,

whereas it is �(N2) (about 160,000) for a second-order Wiener
model and, in general, �(Nn) for an nth-order Wiener model.
The success of general “black-box” nonlinear models is thus
quickly limited by the “curse of dimensionality,” i.e., the fact
that the amount of data required to fit a general model increases
exponentially with the order of the model; even general black-
box models that are guaranteed to succeed in principle are
often data-limited in practice. Although in some cases the
difficulties can be circumvented by the judicious choice of
nonlinearities (Ahrens et al. 2008; Chichilnisky 2001; Fishbach
et al. 2001, 2003; Rust et al. 2005; Schwartz and Simoncelli
2001; Sharpee et al. 2004), it is difficult to know a priori what
form the nonlinearities should take.

One way to reduce the number of model parameters is to
tailor the model to the observed properties of auditory cortex
neurons. The preceding parameter count illustrates that the
system’s “memory”—i.e., the dependence of the neuron’s
input–output behavior on stimulus history or context—is one
of the primary determinants of model complexity; doubling the
length of the memory (e.g., from 200 to 400 ms in the
above-cited example) doubles the number of input variables
(from N to 2N for fixed temporal resolution). Thus it would be
useful to characterize the length of the system’s memory.

Here we provide for the first time a quantification of long-
lasting stimulus context effects in determining the stimulus–
response properties of single neurons in the primary auditory
cortex. We used in vivo whole cell patch-clamp recordings in
anesthetized rats to examine subthreshold responses in a par-
adigm in which a given probe stimulus was preceded by
different conditioning stimuli. These conditioning stimuli pro-
vided a temporal context. Both probe and conditioning stimuli
were drawn from natural and synthetic sound ensembles with
rich temporal and spectral structure. We found that context
dependence could last for a rather long time—sometimes as
long as �4 s. The long-lasting effects described are elicited by
a much broader range of stimuli than those described in an
animal model of stimulus specific adaptation (Pienkowski and
Eggermont 2009; Ulanovsky et al. 2003, 2004), suggesting that
they represent a much more general phenomenon. Consistent
with previous results (Creutzfeldt et al. 1980; Miller et al.
2002; Ulanovsky et al. 2003, 2004; Wehr and Zador 2005), this
long-lasting context dependence originated in cortex at the
level of synaptic inputs and was not seen in thalamus. Extend-
ing the memory of linear models did not improve their perfor-
mance, indicating that these long-lasting effects of context
were nonlinear. The slow stimulus adaptation we report may
play a role in stream segregation and other forms of auditory
processing that require integration over seconds.

Address for reprint requests and other correspondence: A. M. Zador, Cold
Spring Harbor Laoratory, Watson School of Biological Sciences, One Bung-
town Road, Cold Spring Harbor, NY 11724 (E-mail: zador@cshl.edu).

J Neurophysiol 102: 2638–2656, 2009.
First published August 12, 2009; doi:10.1152/jn.00577.2009.

2638 0022-3077/09 $8.00 Copyright © 2009 The American Physiological Society www.jn.org

Downloaded from www.physiology.org/journal/jn at Cold Spring Harbor Laboratory (143.048.140.133) on August 26, 2019.



M E T H O D S

We performed all data analysis in MATLAB (The MathWorks,
Natick, MA).

Surgery

Long–Evans rats (20–28 days old) were anesthetized (30 mg/kg
ketamine and 0.24 mg/kg medetomidine) in strict accordance with the
National Institutes of Health guidelines as approved by the Cold
Spring Harbor Laboratory Animal Care and Use Committee. After the
animal was deeply anesthetized, it was placed in a custom nasoorbital
restraint, which left the ears free and clear. A cisternal drain was made
and a small craniotomy and durotomy were performed above the left
primary auditory cortex (area A1). The cortex was covered with
physiological buffer (in mM: NaCl, 127; Na2CO3, 25; NaH2PO4,
1.25; KCl, 2.5; MgCl2, 1; and glucose, 25) mixed with 1.5% agarose.
Temperature was monitored rectally and maintained at 37°C using a
feedback-controlled blanket. Depth of anesthesia was monitored
throughout the experiment and supplemental anesthesia was provided
when required.

Electrophysiology

Whole cell and cell-attached recordings were obtained in vivo using
standard blind patch-clamp recording techniques (see, e.g., Machens
et al. 2004; Wehr and Zador 2003, 2005). Electrodes were pulled from
filamented, thin-walled, borosilicate glass (outer diameter, 1.5 mm;
inner diameter, 1.17 mm; World Precision Instruments, Sarasota, FL)
on a vertical two-stage puller (Narishige, East Meadow, NY). Internal
solution for current-clamp recordings contained (in mM): KCl, 20;
K-gluconate, 100; HEPES, 10; MgCl2, 2; CaCl2, 0.05; Mg-ATP, 4;
Na2-GTP, 0.3; Na2-phosphocreatine, 10; and about 2.5 micro-emerald
(dextran-conjugated fluorescent dye; Invitrogen); pH 7.3; diluted to
275 mOsm. For voltage-clamp recordings, we used the following
internal solution (in mM) to pharmacologically block action poten-
tials: K-gluconate, 140; HEPES, 10; MgCl2, 2; CaCl2, 0.05; Mg-ATP,
4; Na2-GTP, 0.4; Na2-phosphocreatine, 10; BAPTA, 10; and QX-314,
5; pH 7.25; diluted to 290 mOsm, producing a calculated reversal
potential of �85 mV for both K� and Cl� conductances. Resistance
to bath was 3.5–5.0 M� before seal formation. We used a custom data
acquisition system written in MATLAB and sampled membrane

potential at 10 kHz using an amplifier Axopatch 200B (Molecular
Devices, Palo Alto, CA) in current- or voltage-clamp mode with no
on-line series resistance compensation. Mean series resistance was
30.0 � 12.3 M� (mean � SD; 16 cells) for cell-attached recordings
and 68.8 � 16.7 M� (mean � SD; 189 cells) for current-clamp
recordings. For voltage-clamp recordings, mean input and series
resistances were 142.8 � 68.7 and 74.8 � 24.3 M� (mean � SD; 42
cells), respectively. Holding potentials were stepped (using a 1-s
ramp) to a pseudorandom sequence of three values. At each potential,
after a 1-s equilibration period, ten 10-mV square pulses (30-ms
duration) were delivered at 12.5 Hz to monitor input and series
resistances, followed by acoustic stimuli.

Whole cell recordings were made from primary auditory cortex
(area A1) as determined by the tonotopic gradient and by the frequency–
amplitude tuning properties of cells and local field potentials. We
recorded from almost all subpial depths (range: 76–936 �m, as
determined from micromanipulator travel). Thirteen cells were recov-
ered histologically, which were verified to be pyramidal cells (e.g.,
Fig. 2C). All together, we recorded from 194 cells in 139 animals in
current-clamp mode, of which 123 cells met our criterion for the
analysis (see CONTEXT DEPENDENCE AT SUBTHRESHOLD VOLTAGE LEVEL).
Of these, 39 cells were examined with natural sound ensembles, 14
cells with ensembles of temporally orthogonal ripple combinations, 6
cells with ensembles of dynamic moving ripples, 39 cells with en-
sembles of modulated harmonic tones, and 27 cells with ensembles of
modulated colored noise ensembles (Table 1). In voltage-clamp mode
we recorded from 42 cells in 17 animals, of which we analyzed 14
cells that were probed with natural sound ensembles (see CONTEXT

DEPENDENCE AT SYNAPTIC INPUT LEVEL).
Cell-attached recordings in the thalamus (3.62–4.35 mm deep from

the surface of area A1) were obtained from the ventral division of the
medial geniculate body (MGB) as determined by short latency (8.7 �
3.1 ms; mean � SD) and the “V-shaped” frequency response areas. In
total we recorded 16 cells in five animals and examined all with
natural sound ensembles. Of these, 14 cells met our criterion for the
analysis (see CONTEXT DEPENDENCE AT SUPRATHRESHOLD LEVEL).

Stimulus design

During the recordings, we presented sequences of various stimulus
combinations in a randomly interleaved manner (see Stimuli for

TABLE 1. Summary of recording data

Probe

Sound Properties Varied Among Conditioning Stimuli

All Amplitude Frequency AM FM Higher-Order

A1
Natural sound (VC) 29 (14)
Natural sound (CC) 305 (39) 23 (23) 25 (25) 25 (25) 25 (25) 63 (27)

TORC 39 (9) 40 (9)
DMR 8 (2) 20 (5)
MHT 25 (20) 25 (21) 71 (27) 57 (25)
MCN 74 (27)

MGB
Natural sound 93 (14)

Shown is the number of probe stimuli tested in at least two different conditioning stimuli repeated over at least 2 or 4 trials in A1 for voltage- or current-clamp
recordings, respectively, and at least 10 trials in MGB. Each row represents the probe stimulus type, whereas each column indicates the stimulus properties varied
among the conditioning stimuli. The corresponding number of recorded cells in A1 or MGB is shown in parentheses. A given cell could be tested with more
than one probe stimulus, each of which could in turn be tested with more than one type of conditioning stimulus ensemble (see also Stimulus design in METHODS

and Fig. 1). Natural sounds would differ in all possible sound properties, allowing us to examine overall context-dependence effects (Figs. 2–6 and 9), whereas
synthetic sounds (TORC, DMR, MHT, and MCN) were used to examine the effects caused by the changes in each of the following sound properties among
conditioning stimuli (Fig. 8); amplitude over the maximum range of 60-dB attenuation, frequency each with the maximum shift of 4 octaves (e.g., Fig. 7), AM
and FM, with the maximum difference of 20 Hz (rate) and threefold (depth), and higher-order properties by comparing natural sounds and corresponding
modulated colored noise. VC, voltage-clamp; CC, current-clamp; TORC, temporally orthogonal ripple combination; DMR, dynamic moving ripple; MHT,
modulated harmonic tone; MCN, modulated colored noise; AM, amplitude-modulation; FM, frequency-modulation; A1, primary auditory cortex; MGB, medial
geniculate body.
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details of stimulus fragments). To maximize the yield in finite record-
ing length (typically �20 and �40 min for whole cell and cell-
attached recordings, respectively), we generated fixed N sequences
from N stimulus fragments (Si for i � 1, . . . , N) that allow for
examining the responses to all stimulus pairs (SiSj; conditioning
stimulus Si, probe stimulus Sj) and to each stimulus following a
“silent” period, i.e., an intersequence interval. Formally, stimulus
sequences we presented (given N stimulus fragments and a “silent”
period) follow a cyclic code over a finite field �N�1 of block length
two (van Lint 1992). For N � 4, for example, we would present
the following four stimulus sequences: S1S3S2S4S4, S3S4S1S1S2,
S4S2S3S3S1, and S2S2S1S4S3 (Fig. 1A). Interstimulus intervals and
intersequence intervals were 0 and about 6 s, respectively.

In this circular stimulus design, any stimulus fragment—including
“silence”—can thus be considered as both a probe stimulus (for the
previous context) and a conditioning stimulus (for the following
probe). Care should be taken, however, for the analysis (Fig. 1A).
First, even though a subset of cells showed significant context-
dependence effects soon after the onset of intersequence intervals
(Supplemental Fig. S1A),1 we did not include the analysis results on
such “silence probe” periods in Fig. 3 because the estimated response
power attributable to any “context stimulus” alone faded away within
�1 s after the stimulus termination (Supplemental Fig. S1B). Second,
although any stimulus can be considered as a conditioning stimulus
for analyzing overall context-dependence effects (Figs. 2–6 and 9),
only an appropriate set of synthetic stimulus fragments can be used as
conditioning stimuli for analyzing the contribution of individual

acoustic properties (Figs. 7 and 8). For example, to assess the
frequency change effects with three synthetic frequency variants (S1,
S2, and S3) and one natural sound fragment (S4), the cyclic stimulus
design in Fig. 1A for instance can be used for the recordings, but the
analysis should be conducted by using only those frequency variants
(Si for i � 1, . . . , 3) as conditioning stimuli for each probe fragment
(Si for i � 1, . . . , 4; see also Fig. 7 and Supplemental Fig. S9).

Stimuli

All stimuli were delivered at 97.656 or 200 kHz using a TDT
System 3 with an ED1 electrostatic speaker (Tucker-Davis Technol-
ogies, Alachua, FL) in free-field configuration (speaker located �8
cm lateral to, and facing, the contralateral ear) in a double-walled
sound booth (Industrial Acoustics, Bronx, NY). The speaker had a
maximum intensity (at 10-V command voltage) of 92-dB sound
pressure level (SPL) and its frequency response was flat from 1 to 22
kHz to within SD of 3.7 dB. Sound levels were measured with a type
7012 1/2-in. ACO Pacific microphone (ACO Pacific, Belmont, CA)
positioned where the contralateral ear would be (but with the absence
of animal).

NATURAL SOUNDS. Natural sound ensembles were used to assess
the overall context-dependent effects (Figs. 2–6 and 9). All natural
sound fragments were taken from commercially available audio com-
pact discs, originally sampled at 44.1 kHz and resampled at 97.656 or
200 kHz for stimulus presentation: The Diversity of Animal Sounds
and Sounds of Neotropical Rainforest Mammals (Cornell Laboratory
of Ornithology, Ithaca, NY). The majority of the sound sections lasted1 The online version of this article contains supplemental data.

FIG. 1. Experimental design and auditory stimuli. A: experimental design for analyzing context dependence. During the recording, we presented
well-designed N sequences of a given set of N sound fragments with no interstimulus interval in a randomly interleaved manner (shown is an example for N �
4; intersequence interval, �6 s). For the analysis, we aligned the recording data to examine the variability in the responses to a given sound fragment (probe;
S1 in this example) due to the presence of different preceding stimuli (context; “silence,” S1, S2, S3, and S4). The choice of conditioning stimuli depends on the
goal of the analysis (for details, see Stimulus design in METHODS). Here we assumed that the response power (broken line; �[rij(t)] from Eq. 11) to a probe stimulus
at time t from probe onset can be divided into noise power (�[�ij(t)]) and stimulus-related power (thin black; �[�(t) � �i(t)] in Eq. 17) that can be further
decomposed into a context-independent fraction (�[�(t)] in Eq. 18) and a context-dependent fraction (gray; �[�i(t)] in Eq. 19). For details, see Analysis in
METHODS. B: natural sounds and synthetic sounds. Natural sound fragments (SNS1 and SNS2; 4.11 s long; sound pressure waveforms, spectrograms, and temporal
and spectral marginal distributions) differ substantially in their spectrotemporal components, which causes a large and long context dependence in A1 when they
are used as conditioning stimuli (Figs. 2 and 3). On the other hand, the temporal and spectral patterns in the marginal distributions between modulated colored
noise SMCN1 and the corresponding natural sound SNS1 are nearly identical, resulting in a small and short context dependence (Fig. 8). Synthetic sounds such
as modulated harmonic tones (sound pressure waveform and corresponding spectrograms; 1 s long) can be used to assess the effects of the changes in sound
properties in more detail. Compared with SMHT, for example, S	AMP has 30 dB less power, S	FREQ has the frequency components up-shifted by 1.5 octaves, S	AM

has slower AM rates by 4 Hz on average, and S	FM has half the SD for the frequency-modulated (FM) depth. For details, see SYNTHETIC SOUNDS in METHODS.
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for 3.5–6.5 s, but some were shorter (2–3 s), to examine as many
stimulus combinations as possible (see Stimulus design and Fig. 1A).
The sound segments were chosen from original sound tracks to have
minimum “silent” periods (especially at the onset and termination)
and a 5-ms cosine-squared ramp was applied at the onset and termi-
nation to ensure a smooth connection between the segments, even
with no interstimulus interval. The peak amplitude of each segment
was normalized to the �10-V range of the speaker driver. The natural
sound stimuli consisted of 46 different sounds in total—covered
almost all frequencies from 0 to 22 kHz and ranged from narrow- to
broadband stimuli—although only a subset of stimuli was tested on
any particular cell. We typically presented combinations of N � 7
different stimuli on each cell for current-clamp and cell-attached
recordings (Figs. 2–4 and 7–9). For voltage-clamp recordings, we
typically examined a few probe stimuli on each cell, where each probe
stimulus was preceded by three to six different conditioning stimuli
(including “silence” stimulus; Figs. 5 and 6).

SYNTHETIC SOUNDS. Synthetic sound ensembles—with or without
one additional natural sound fragment for a probe—were used to
examine the effects of the changes in each of the following acoustic
properties (Figs. 7 and 8): intensity (amplitude), frequency, ampli-
tude-modulation (AM), frequency-modulation (FM), and higher-
order spectrotemporal acoustic features. We used temporally orthog-
onal ripple combinations (TORCs; for details, see, e.g., Klein et al.
2000) and dynamic moving ripples (DMRs; for details, see, e.g.,
Escabı́ and Schreiner 2002) to examine how changes in amplitudes
and frequencies in conditioning stimuli contribute to the context-
dependence effects (over the maximum range of 40 dB and 4 octaves,
respectively; Eqs. 1–3). Modulated harmonic tones—generated by
combining a time-varying envelope and a harmonic series of time-
varying frequencies (Fig. 1B; Eqs. 4 and 5)—were used to assess not
only the effects of AM and FM changes (with the maximum differ-
ence of 20 Hz and threefold in modulation rate and depth, respec-
tively) but also the changes in amplitudes and frequencies (over the
maximum range of 60 dB and 2 octaves, respectively). To test the
effects of the changes in higher-order sound properties such as com-
plex interactions between spectrotemporal constituents, we used mod-
ulated colored noise that has asymptotically the same temporal and
spectral patterns in the marginal distribution of the spectrogram as
those of a target stimulus (Eqs. 6–9). All synthetic sounds were
sampled at 97.656 or 200 kHz and lasted for 4.0–5.5 s (Fig. 1B and
Table 1).

In this study, no cell was tested with all the sound properties in
conditioning stimuli due to a limited recording length. Strictly speak-
ing, then, we cannot directly compare the context-dependence effects
caused by the changes in different acoustic properties. However, the
comparisons we made at the population level (Fig. 8) would be
reasonable because the acoustic properties were varied across almost
the entire range that A1 neurons can follow faithfully (e.g., sound
trains or temporal modulations up to tens of Hertz; Creutzfeldt et al.
1980; Joris et al. 2004).

Temporally orthogonal ripple combinations (TORCs). The follow-
ing equation was used to generate ripples and their combinations
(Klein et al. 2000)

y
t� � �
i

yE
t, xi� �yC
t, fi� (1)

where the envelope yE(t, xi) and carriers yC(t, fi) are respectively gi-
ven by

20 log10 �yE
t, xi� � a0 � �
j,k

ajk

2
cos �2	

j
t� � �k
t�xi� � �jk

(2)

yC
t, fi� � sin �2	fit � �i (3)

Note that ajk (�0) is a sinusoidal modulation depth around the mean
a0 in dB, �j(t) � �j/t in Hz and �k(t) in cycles/octave are temporal
and spectral ripple modulations, respectively, xi � log2 [ fi/f0] in
octaves is a logarithmic frequency axis relative to f0 in Hz and �jk and
�i are random initial phases.

For generating TORC-based stimuli, envelopes of seven “short”
TORCs were first generated, each consisting of six ripples with
temporal modulation: �j � 4j Hz (for j � 1, . . . , 6), and each having
a fixed (k � 1) spectral modulation: � � �1.5, �0.9, �0.3, 0, 0.6,
1.2, and 1.8 cycles/octave, respectively. All TORCs had rise and fall
times of 5 ms, modulation depth of �30 dB (with ajk � 30/6), and
lasted for 250 ms. Such short TORC envelopes were then randomly
adjoined to generate a “default envelope” that lasted for 4–5.5 s.

To examine the effects of the changes in sound intensities in
conditioning stimuli, we applied the default envelope to the carrier
frequencies over a bandwidth of 5 octaves (0.88 –28.16 kHz in
steps of 1/128 octaves), scaled the peak amplitude to the speaker
driver range, and then varied the amplitudes over the maximum
range of 40-dB attenuation. To examine the effects of frequency
changes, we generated a default envelope over the bandwidth of 2
or 4 octaves and chose carrier sinusoidals within the range of 6
octaves (0.625– 40 kHz in steps of 1/128 octaves, random phase at
time 0) so that the signals had the same envelope with shifted
bandwidth (e.g., 0.625–10 kHz, 2.5– 40 kHz, and so on). We then
normalized the peak amplitude of sound fragments with respect to
their total signal powers (� � y(t) �2dt) and uniformly scaled to fit
them all within the speaker driver range.

Dynamic moving ripples (DMRs). To generate the DMR envelopes
(Eq. 2; j � k � 1), spectral modulations �(t) were sampled at 6 Hz
from a uniform distribution in interval �1.5 cycles/octave and tem-
poral modulations �(t) were sampled at 3 Hz from a uniform distri-
bution ranging between �25 and �25 Hz, both of which were then
up-sampled to 97.656 or 200 kHz using a cubic interpolation proce-
dure (interp1 function with the “cubic” option in MATLAB; see also
Escabı́ and Schreiner 2002).

Carrier frequencies were chosen as in the TORC stimuli and
applied to the envelope as in Eqs. 1–3. All DMR signals had rise and
fall times of 5 ms and modulation depth of �30 dB. The peak
amplitude was scaled in the same way as the TORC fragments (see
previous subsection). Figure 7A and Supplemental Fig. S9 show
example spectrograms of DMR frequency variants.

Modulated harmonic tones (MHTs). We used the following equa-
tion to generate modulated harmonic tones

yMHT
t� � A
t� �
i�0

M�1

cos �2i/m�
t� � �i (4)

where A(t) is the envelope and �i and �(t) are the initial and
time-varying phases, respectively. In this study, M � 5 tones were
combined with the density: m � 0.5 or 1 tone/octave. The derivative
of the phase �(t) with respect to time gives the instantaneous fre-
quency f(t)

�
t�

t
� 2	f
t� (5)

Normal distributions sampled at 48 Hz were used to generate the
envelope A(t) and the instantaneous frequency f(t). The mean A(t)
ranged between 40 and 65 dB (SD; from 5 to 15 dB), whereas the
mean f(t) ranged over 3 octaves (from 0.375 to 3 kHz) with the SD
from 1 to 1/3 octaves. We then up-sampled A(t) and f(t) to 97.656 or
200 kHz using a cubic interpolation procedure and used Eqs. 4 and 5
to generate the signal yMHT(t) with random initial phase �i.

To examine the effects of amplitude changes, we generated a signal
for fixed A(t) and f(t), normalized its peak amplitude within the
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speaker driver range, and varied the amplitudes over the maximum
range of 60-dB attenuations (see, e.g., SMHT vs. S	AMP in Fig. 1B). To
examine the effects of frequency changes, we generated signals for
fixed A(t) but with shifted f(t) by up to �2 octaves, normalized their
total signal powers, and uniformly scaled the signals to fit them all
within the speaker driver range (see, e.g., SMHT versus S	FREQ in Fig.
1B). To examine the effects of the changes in AM or FM, we used
fixed mean A(t) and f(t). Before the up-sampling procedures, however,
either A(t) or f(t) was scaled to vary the modulation depth by up to
threefold and/or band-pass filtered (bandwidth: 4 Hz) to limit the
modulation rates from [0–4] to [20–24] Hz (see, e.g., SMHT vs. S	AM

and S	FM in Fig. 1B, respectively). The synthetic signals were nor-
malized with respect to their total power and uniformly scaled to fit
them all within the speaker driver range.

Modulated colored noise (MCN). Starting from white noise x0(t),
we used the following iterative procedures to produce modulated
colored noise yMCN(t) that has asymptotically the same temporal and
spectral modulation patterns as that of a target natural sound yNS(t).
First, we computed the analytic signal of yNS(t) by using the Hilbert
transform �[ � ] and decomposed it into the envelope ANS(t) and the
phase �NS(t)

yNS
t� � ��yNS
t� � ANS
t� exp� j�NS
t� (6)

where j2 � �1. Second, using the Fourier transform �[ � ], we filtered
the signal from the (i � 1)th iteration xi�1(t) to have the same power
spectrum as yNS(t)

z̃i
�k� � x̃i�1
�k� �
�ỹNS
�k��
�x̃i�1
�k��

(7)

where ỹ(�) � �[y(t)] denotes the signal y in the Fourier domain.
Third, we computed the analytic signal of zi(t) � ��1[z̃i(�)] as in
Eq. 6

zi
t� � ��zi
t� � Bi
t� exp� j
i
t� (8)

where Bi(t) and 
i(t) are the envelope and the phase, respectively.
Finally, we generated the signal for the ith update as

xi
t� � ANS
t� cos �
i
t� (9)

That is, xi(t) is a colored noise with the envelope of the target yNS(t).
In this study, we updated the synthetic signal 1,000 times to generate
modulated colored noise: yMCN(t) � x1,000(t). The signals yNS(t) and
yMCN(t) were normalized with respect to their total power and then
uniformly scaled to fit them all within the speaker driver range (see,
e.g., SNS1 and SMCN1 in Fig. 1B, respectively).

Analysis

All data analysis was done in the discrete time domain (of resolu-
tion: 	t � 0.1 ms � 1/sampling rate), but in the following text we
omit the indices for time bins for brevity.

For auditory cortical voltage responses, as a preprocessing we
applied a median filter (10-ms window) to clip spikes from the raw
data and centered the subthreshold responses to have zero mean
[i.e., r(t) � �r(t)�t, instead of subtracting the resting potential; � � �t

indicates the average over time t]. Note that this filter operation
preserves the subthreshold voltage fluctuations (e.g., compare Fig.
2 and Supplemental Fig. S2). No preprocessing was applied to
measured current responses (CONTEXT DEPENDENCE AT SYNAPTIC

INPUT LEVEL). Because of the low firing rates in A1 (spontaneous,
0.47 � 0.61 Hz; evoked, 0.57 � 0.77 Hz; mean � SD, 194 cells;
see, e.g., Supplemental Figs. S2 and S9), we did not perform any
further analysis at the spike level.

For auditory thalamic responses, spikes recorded in cell-attached
mode were extracted from raw voltage traces by applying a high-pass

filter and thresholding. Spike times were then assigned to the peaks of
suprathreshold segments. Sufficiently high firing rates in MGB al-
lowed us to analyze the context dependence at the spike level
(spontaneous, 0.78 � 1.25 Hz; evoked, 11.4 � 16.9 Hz; mean � SD,
16 cells; see, e.g., Supplemental Fig. S10).

CONTEXT DEPENDENCE AT SUBTHRESHOLD VOLTAGE LEVEL. For
those current-clamp recordings that we could present at least four
repeats of any probe stimulus tested with at least two conditioning
stimuli, temporal context dependence—i.e., the response variability to
a probe stimulus due to the presence of different conditioning,
preceding stimuli—was examined in two ways: 1) significance mea-
sure in the statistics sense and 2) fractional power measure in the
response dynamics. The relevant timescale was then measured by
fitting (a sum of) exponential processes to the population data (EXPO-
NENTIAL CURVE FIT).

Significance measure. For each sampled time point t (�0) on a
probe stimulus (with t � 0 indicating the transition from conditioning
to probe stimuli), we performed a one-way nonparametric ANOVA
(Kruskal–Wallis test; Kruskal and Wallis 1952) for equal medians
among the subthreshold cortical responses rij(t) over trials j � 1, . . . ,
m in all the conditioning stimuli i � 1, . . . , n (i.e., the stimulus
contexts we examined; see also Eq. 11). Briefly, we first ranked the
data rij(t) into integers rij(t) � 1, . . . , mn for each time point t on a
probe stimulus. The test statistic KW(t) is then given as

KW � 
mn � 1�
�i m
�rij�j � ��rij�j�i�

2

�i �j 
rij � ��rij�j�i�
2 �

3�
2�rij�j � mn � 1�2�i

mn � 1

(10)

where � � � indicates the average over trials with subscript j and over
contexts with subscript i and the probability distribution of KW can be
approximated as a chi-square distribution with n � 1 degrees of
freedom. The time index (t) is ignored here for brevity.

Our criterion for the significance level was P � 0.01 for �5 ms
(i.e., �50 consecutive time points to avoid false positives due to
multiple comparisons over time). In the population data analysis
(Figs. 3A and 8A), this significance measure was used to compute the
proportion—or probability—of observing significant context depen-
dence at a given moment after probe onset. The noise floor—or, the
level of false positive—was determined by resampling methods, in
which the trials were randomly shuffled to lose the information on the
contexts, followed by the same significance test described earlier. For
each probe, we repeated this procedure 1,000 times and took the
average over the population to identify the chance level of declaring
“significance” in this analysis.

In this study, we did not perform any post hoc analysis partly
because of data limitation and partly because our goal of this analysis
was to detect whether neurons showed context dependence, but not to
identify what causes the difference in the response patterns. Although
any stimulus prior to a probe stimulus—i.e., any conditioning stimu-
lus—could in principle provide contextual effects on the neural
responses to the probe stimulus (see Stimulus design), the mode of
context dependence was different from one cell to another and we
could not find any particular context–probe combinations that always
or never gave an effect. Stimulus space is huge in general and thus we
used well-controlled synthetic stimuli to delve into the effects of acoustic
properties on the context dependence (see SYNTHETIC SOUNDS).

Fractional power measure. A second measure was introduced to
examine the contribution of context dependence to response dynam-
ics; i.e., a quantity meaningful from a modeling—instead of just
statistical—perspective (see also RESPONSE PREDICTABILITY). In short,
we assumed an additive noise model (Eq. 11), in which stimulus-
related (predictable) component of the response power—or the sec-
ond-order statistics at each sampled time point after probe onset over
the population—can be decomposed into context-dependent and -in-
dependent fractions (Eqs. 17–19). Then the measure was defined as
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the context-dependent fractional power normalized by the predictable
response power (Eq. 20).

Formally, we assumed the following additive model for the re-
sponse to a probe stimulus over time t

rij
t� � �
t� � �i
t� � �ij
t� (11)

That is, the observed response rij(t) in the ith context for the jth trial
consists of independent and identically distributed (i.i.d.) Gaussian
noise: �ij(t) � �[0, �noise

2 ]—with zero mean and the variance of
�noise

2 —and stimulus-related (predictable) parts, which can be further
decomposed into context-dependent and -independent fractions: �i(t)
and �(t), respectively. Each component can be estimated as

�̂
t� � ��rij
t��j�i (12)

�̂i
t� � �rij
t��j � ��rij
t��j�i (13)

�̂ij
t� � rij
t� � �rij
t��j (14)

Then the measure was defined as the context-dependent fractional
power: �[�i(t)] � ���i

2(t)�i�, normalized by the predictable response
power: �[�(t) � �i(t)] (see Eqs. 20 and 43 in RESPONSE PREDICTABIL-
ITY). The “power” is usually computed as the average over time, but
here we assumed ergodicity and thus took the average—at each
sampled time point after probe onset—over the populations (indicated
by the angle brackets without subscripts). In the infinite data limit
(i.e., every possible probe examined with all possible conditioning
stimuli), the predictable response power should become time-invari-
ant: �[�(t) � �i(t)]3 �2 �

� ��[�(t) � �i(t)]�t, where the symbol “
�

�”
means “equal in expectation.” In practice, however, the population
average of the response power was nonstationary over time—typi-
cally, with large fluctuation soon after the transition from conditioning
to probe stimuli (Fig. 3B, thin black) because of a finite recording
length and stimulus design. Moreover, the estimated power was
noisier at longer delay because of the variability in the stimulus
duration (see NATURAL SOUNDS). For the sake of normalization, we thus
smoothed the predictable response power (the denominator of Eqs. 20
and 43; gray line in Fig. 3B, top) by taking the running average over
[0, 2t] at time t (�0), where the window is selected to be symmetric
around the time of interest t, but always nonnegative. Because a
reliable estimate of the predictable power over time could not be
obtained at the single-cell level due to data limitation, Figs. 2E and 7C
show the unnormalized context-dependent response power (or esti-
mated variance; Eq. 19 without population average): ��̂i

2(t)�i.
The fractional response powers can be estimated by considering the

“average power” and the “power of the average,” under the assump-
tion that the additive components in Eq. 11 are all uncorrelated
between each other at any given moment (see also Sahani and Linden
2003). Considering the average over trials (for j � 1, . . . , m), we have

��rij
2
t��j�i

�
� ���
t� � �i
t� � ���ij

2
t��j�i (15)

��rij
t��j
2�i

�
� ���
t� � �i
t� � ���ij
t��j

2�i (16)

From the central limit theorem, we have: ���ij(t)�j
2�i

�
� ���ij

2(t)�j�i/m,
and thus

�̂��
t� � �i
t� � ��m�rij
t��j
2 � �rij

2
t��j

m � 1
�

i

� (17)

where � � � (without subscripts) indicates the average over all the tested
probe stimuli in the population data. Similarly, considering the aver-
age of the trial average [�rij(t)�j] over contexts (conditioning stimuli;
i � 1, . . . , n), we have

�̂��
t� � �n��rij
t��j�i
2 � ��rij
t��j

2�i

n � 1
� (18)

Therefore from Eqs. 17 and 18, the context-dependent fractional
power can be given in expectation as (note that this estimated power
can be negative; thick black line in Fig. 3B, top)

�̂��i
t� � �̂��
t� � �i
t� � �̂��
t� (19)

and we could use the following quantity Q(t) as a measure of the
contribution of context dependence to response dynamics (black line
in Fig. 3B, bottom)

Q
t� �
�̂��i
t�

�̂��
t� � �i
t�
(20)

where the denominator was smoothed by taking the moving average
over [0, 2t] at time t before computing Eq. 20 (and Eq. 43 in RESPONSE

PREDICTABILITY) to obtain better estimates of Q(t). The total context-
dependent effects can then be well described as the area under the
curve of this fractional power measure over time

lim
t3�
�

0

t

Q
s�ds (21)

In Fig. 8C, however, the area was computed only for large enough
time (t � 4 s) from the population results examined with various
stimulus ensembles (Fig. 8B) and normalized by the corresponding
area for the effects examined with natural sounds (Fig. 3B). Confi-
dence intervals were computed by resampling methods (200 repeats
with randomly selected 1,000 samples).

This fractional power measure in Eq. 20 differs from the signifi-
cance measure in two ways. First, the fractional power measure is
continuous over time, whereas the significance measure involves
arbitrary thresholding procedure to determine the significance level
and is consequently binary. Second, the fractional power measure
involves the normalization (by the stimulus-related response power)
and thus depends on the “relative” difference to the overall fluctuation
between the response patterns caused by stimulus history and its
context, whereas the significance measure (and the numerator of the
fractional power measure, i.e., the context-dependent fractional power
in Eq. 19) depends on the “absolute” observed differences. Therefore
the fractional power measure would be more reliable in these respects
(see also the relation to the response predictability; RESPONSE

PREDICTABILITY).

CONTEXT DEPENDENCE AT SYNAPTIC INPUT LEVEL. For those re-
cordings for which we could test at least two repeats of context–probe
sequences at all three holding potentials, we first estimated net evoked
synaptic conductance and computed its excitatory and inhibitory
components as described previously (Monier et al. 2008; Wehr and
Zador 2003, 2005). As a measure of context dependence, we then
computed the variance of the conductances (evoked by probe stimuli)
over contexts and took the population average (over 29 probes tested
in 14 cells; Fig. 6; see also Eqs. 30 and 31).

Estimation of evoked synaptic conductance. To compute total
synaptic conductance, gsyn(t), a model of a linear, isopotential neuron
was used (see also Monier et al. 2008; Wehr and Zador 2003, 2005).
The total synaptic current Isyn(t) is then given by the following generic
membrane equation

Isyn
t� � gsyn
t��V
t� � Esyn
t� (22)

where Esyn(t) is the net synaptic reversal potential and V(t) is the
holding potential corrected off-line for somatic voltage escape and a
liquid junction potential (Vjp, calculated to be �12 mV; Barry 1994).
That is
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V
t� � Vhold � I
t�Rs � Vjp (23)

where Vhold is the command potential, Rs is the series resistance, and
I(t) is the total recorded current. In this study Rs was computed from
the peak current transients by taking the median across the train of 10
voltage pulses (preceding acoustic stimuli), and no on-line series
resistance compensation was used (see Electrophysiology). The total
current I(t) is given by the sum of the synaptic current Isyn(t) and the
additional holding current required to voltage-clamp the soma away
from its resting potential Erest

I
t� � Isyn
t� �
V
t� � Erest

Rin

(24)

where Rin is the input resistance estimated from the steady-state
current induced by the voltage pulses. Note that Erest can also be
estimated by the steady-state current–voltage (I–V) relationship,
where Isyn(t) is assumed to be zero. From Eqs. 23 and 24, the
sound-evoked synaptic current can be specifically expressed in terms
of the change in the recorded currents 	I(t), due to stimulus presen-
tation

Isyn
t� �
Rin � Rs

Rin

	I
t� �
Rin � Rs

Rin

�I
t� � Ibaseline (25)

where Ibaseline is the baseline, spontaneous current level for a given
holding potential, estimated as the 90 percentile value of the recorded
currents for each trial.

Using V(t) and Isyn(t) obtained from Eqs. 23 and 24, respectively,
we can in principle solve Eq. 22 for gsyn(t) and Esyn(t) by linear
regression. In practice, however, here we used Isyn(t) from Eq. 25 to
minimize potential distortions introduced by any additional nonlin-
earities in the steady-state I–V relationship and by nonstationarity in
the recordings. Note that the net evoked synaptic conductance can be
negative, meaning a reduction of the conductance relative to the
baseline synaptic conductance.

Conductance decomposition into excitatory and inhibitory compo-
nents. The excitatory and inhibitory components of the total synaptic
conductance—indicated by the subscripts “exc” and “inh,” respectively—
can be extracted by assuming the following conductance model

gsyn
t� � gexc
t� � ginh
t� (26)

gsyn
t�Esyn
t� � gexc
t�Eexc � ginh
t�Einh (27)

Solving Eqs. 26 and 27 for gexc(t) and ginh(t), we have

gexc
t� � gsyn
t�
Esyn
t� � Einh

Eexc � Einh

(28)

ginh
t� � gsyn
t�
Eexc � Esyn
t�

Eexc � Einh

(29)

Here we set Eexc � 0 mV and Einh � �85 mV by our internal solution
(see Electrophysiology in preceding text).

Context-dependence measurement. For those recordings that we
could test at least two repeats of context–probe sequences at all
three holding potentials, we first estimated evoked synaptic con-
ductance, ĝsyn

i (t), using regression in Eq. 22 for each conditioning
stimulus i � 1, . . . , n, and computed its excitatory and inhibitory
components, ĝexc

i (t) and ĝinh
i (t), from Eqs. 28 and 29, respectively.

As a measure of context dependence, we then estimated the vari-
ance of true conductances g#

i (t) over contexts, �g#
2 (t) for t � 0,

where # is either “syn,” “exc,” or “inh.” Assuming i.i.d. noise on
conductance estimation, �#

i (t) � ĝ#
i (t) � g#

i (t), in expectation we
have

�g#
2 
t�

�
� � ĝ#

2 
t� � ��#
2 , (30)

where �ĝ#
2 (t) is the variance of the estimated conductances, esti-

mated here as the population average (over 29 probes tested in 14
cells)

�̂ ĝ#
2 
t� � � 1

n � 1
�

i
�ĝ#

i 
t� � �ĝ#
i 
t��i

2� (31)

and ��#
2 is the variance of the noise, computed using the conductance

estimate on the spontaneous activity in the absence of stimuli (aver-
aged over time and population).

Estimation errors. For conductance estimation in Eqs. 28 and 29,
we calculated the excitatory and inhibitory reversal potentials by our
internal solution. However, errors in these estimates—	Eexc and
	Einh, respectively—result in the errors in the conductance decom-
position by

	gexc
t� � ĝexc
t� �gexc
t� � �gexc
t�

�
Eexc	Einh � Einh	Eexc � 
	Eexc � 	Einh�Esyn
t�

�Esyn
t� � Einh
Eexc � Einh � 	Eexc � 	Einh�
(32)

	ginh
t� � ĝinh
t� � ginh
t� � ginh
t�

�
Eexc	Einh � Einh	Eexc � 
	Eexc � 	Einh�Esyn
t�

�Eexc � Esyn
t�
Eexc � Einh � 	Eexc � 	Einh�
(33)

In particular, erroneous estimate of the holding potential V(t) leads to
	Eexc � 	Einh (�	E) and thus the estimation errors for excitatory
and inhibitory conductances are given by

	gexc
t� � �gexc
t�
	E

Esyn
t� � Einh

(34)

	ginh
t� � ginh
t�
	E

Eexc � Esyn
t�
(35)

The estimated strength of context dependence (see Eqs. 30 and 31)
will then be in error. However, the estimated timescale will be less
affected because the errors in Eqs. 34 and 35 do not substantially
affect the temporal pattern of the estimated conductances (see follow-
ing text).

Estimation bias. In this study we assumed a linear, isopotential
neuron to estimate synaptic conductance from voltage-clamp mea-
surements. However, such an assumption does not hold in reality
and thus our estimates will contain certain systematic errors (in
addition to the errors described earlier). As described previously
(see supplemental information in Wehr and Zador 2003), these
errors result in underestimates of the absolute conductance and
biased decomposition into excitatory and inhibitory components,
but do not significantly affect estimates of relative timing. There-
fore the strength of context dependence in the excitatory and
inhibitory conductances can be underestimated, although the time-
scale will be less affected by the bias inherent to our estimation
methods. Importantly, the emergence and detectability of the con-
text dependence per se should be less affected, specifically because
responses were compared across different conditioning stimuli
within a given cell.

Here we analytically discuss the effects of cable attenuation
(“space-clamp” problem) on estimating synaptic conductance and
context dependence. In the regime of small synaptic conductances, the
estimated net synaptic conductance ĝsyn and the estimated synaptic
reversal potential Êsyn underestimate the true gsyn and Esyn by

ĝsyn � �2gsyn (36)
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Êsyn � Erest �
Esyn � Erest

�
(37)

where � � 1 is the electrotonic voltage attenuation factor between
soma and dendrite and Erest is the resting potential (Carnevale and
Johnston 1982; Koch et al. 1982; Zador et al. 1995). Together with
Eqs. 28 and 29, we then have underestimates of excitatory and
inhibitory conductances as

ĝexc � ��� � 
1 � ��
Esyn � Erest

Esyn � Einh
�gexc �

��1 � 
1 � ��
Einh � Erest

Einh � Esyn
�gexc (38)

ĝinh � ��� � 
1 � ��
Esyn � Erest

Esyn � Eexc
�ginh �

��1 � 
1 � ��
Eexc � Erest

Eexc � Esyn
�ginh (39)

Therefore cable attenuation causes a bias in the decomposition as
follows

ĝexc

gexc

�
ĝinh

ginh

if Eexc � Esyn � Erest � Einh and

ĝinh � 0 if � �
Esyn � Erest

Eexc � Erest

while ĝexc � 0 for all � � 1

(40)

ĝinh

ginh

�
ĝexc

gexc

if Eexc � Erest � Esyn � Einh and

ĝexc � 0 if � �
Erest � Esyn

Erest � Einh

while ĝinh � 0 for all � � 1

(41)

In our recording data, the evoked synaptic reversal potential was
mostly above rest (Êsyn � Êrest). From Eq. 37, the true synaptic
reversal potential was then likely above rest (Esyn � Erest) and thus the
inhibitory conductance was relatively more underestimated (so as the
ratio of inhibitory to excitatory conductance), as shown in Eq. 40.

Despite the bias in the relative magnitudes of the excitatory and
inhibitory components, the temporal features of these components are
much less affected by cable attenuation if the change in gexc (or ginh)
over time is relatively larger than that in the attenuation ratio ĝexc/gexc

(or ĝinh/ginh, due mostly to the change in Esyn). Moreover, although
context-dependent changes in Esyn can affect the context dependence
in both ĝexc and ĝinh, such effects will be small because ĝexc/Esyn �
�(gexc/Esyn

2 ) and ĝinh/Esyn � �(ginh/Esyn
2 ) from Eqs. 38 and 39,

respectively, and the other variables involved in the estimation bias—�, Eexc,
Einh, and Erest—will be less likely to show substantial context depen-
dence. Therefore our ability to detect context dependence in excitatory
and inhibitory conductance should be less deteriorated, and the esti-
mated timescale of context dependence will be more likely to be
faithful.

CONTEXT DEPENDENCE AT SUPRATHRESHOLD LEVEL. Context de-
pendence at the spike level (in thalamus) was analyzed for those
recordings that we could test �10 repeats of any given combinations
of a probe stimulus and at least two conditioning stimuli (Fig. 9).
Using the bin size of 	t � 100 ms, we first generated poststimulus
time histograms qi(tk) for all the conditioning stimuli i � 1, . . . , n we
examined, where 	t �k � tk � 	t � (k � 1) ms for k � 0, 1, . . . , 60

(see, e.g., Fig. 9B). As a measure of context dependence, we then
computed the SD of qi(tk) over contexts (Fig. 9C) and took the average
across the population (over all 93 probes tested in 14 thalamic
neurons; Fig. 9D)

� 	 1

n � 1
�

i

qi
tk� � �qi
tk��i�

2� (42)

RESPONSE PREDICTABILITY. To analyze how response predictability
in A1 depends on stimulus history and its context over time, we
computed the time course of the ratio between context-independent
fractional power �[�(t)] and the stimulus-related response power
�[�(t) � �i(t)] (Fig. 4). From a modeling perspective, �[�(t)]
represents the power we could capture in the response estimation
exploiting the stimulus history for a limited duration of t (i.e., using a
temporal window from the probe onset), whereas �[�(t) � �i(t)]
gives the upper-bound that no model could outweigh under the
additive noise assumption because it uses the entire stimulus history.
The context-dependent response power �[�i(t)] indicates the fraction
that is not accessible when only a finite stimulus history (i.e., infor-
mation only on the “probes”) is available, and that the trial-to-trial
noise power �noise

2 �
� ��̂[�ij(t)]�t is the fraction that is never accessi-

ble under the additive noise assumption. Therefore the following ratio
(at time t after probe onset) indicates the context dependence of the
response predictability, which constitutes an upper-bound estimate of
the response prediction performance for a given window length t

�̂��
t�

�̂��
t� � �i
t�
(43)

where the denominator and numerator were computed from Eqs. 17
and 18, respectively.

Two points should be mentioned here. First, Eq. 43 also indicates
(the population average of) the fraction of the stimulus-related power
attributable only to the probe stimulus at time t after probe onset.
Second, it is the context-independent fraction �[�(t)] that character-
izes the model performance (Fig. 4), whereas it is the context-
dependent fraction �[�i(t)] that we used to characterize the neuronal
behaviors (Figs. 2, 3, 7, and 8).

EXPONENTIAL CURVE FIT. To measure the relevant timescales of the
context dependence, we fit (a sum of) exponential processes to the
population data (Figs. 3, 4, 8, 9D, and Supplemental Fig. S1)

� � �
k

�k exp��
t

�k
� (44)

where �k and �k indicate the decay size and constant, respectively. We
used the lsqcurvefit function in MATLAB Optimization Toolbox for
the curve fitting and used the following criterion for choosing the
number of exponential processes: � �k � � ¥k � �k �/10 for all k, that is,
the contribution of an exponential process must be at least one tenth
of the total.

TIMESCALE OF INTRINSIC MEMBRANE PROPERTIES. The noise cor-
relation was computed as the autocorrelation of additive noise �ij(t)
(defined as in Eq. 11 and estimated as in Eq. 14)

�ij
t� �
�ij
�t���ij
t�

�noise
2 (45)

where � indicates convolution. The correlation function �ij(t) repre-
sents a similarity in the trial-to-trial noise components �ij(t) over time
and thus characterizes the timescale of the intrinsic (stimulus-inde-
pendent) dynamics of the membrane potential. However, we found
that �ij(t) had a sharp peak with a rapid decay (within �100 ms; data
not shown), much faster than the slow timescale identified in neural
responses in area A1 (Fig. 3). The autocorrelation of the spontaneous
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activity was computed in a similar manner using Eq. 45, which also
decayed within roughly 100 ms (data not shown).

NEURAL ENCODING MODELS. We used linear–nonlinear cascade
models (Klein et al. 2000; Machens et al. 2004) and compared their
performance to the upper-bound estimate (Eq. 43) for further analyz-
ing the context dependence of the response predictability (Fig. 4). The
estimated response by a linear spectrotemporal receptive field (STRF)
model, r̂(t), is given by

r̂
t� � �� STRF
�, �� �S
t � �, ��d�d� (46)

where S(t, �) is the spectrogram (short-time Fourier transform) of the
sound pressure waveform s(t)

S
t, �� � 20 log10
 1

	2	
� e�j��s
��h
� � t�d�
 (47)

where h(t) is a window function (Cohen 1995). Because the recording
data we collected for examining context dependence were not tested
with enough varieties of stimuli (see Stimulus design), which could
cause a bias in the STRF estimation (Paninski 2003; Simoncelli et al.
2004), here we (re)analyzed the recording data (20 cells) from the
previous work (Machens et al. 2004).

Parameter estimation. We used the ridge regression technique to
obtain the best estimate of STRF, as detailed in Hastie et al. (2001) (in
the context of neuroscience, see, e.g., Machens et al. 2004; Wu et al.
2006). In short, we discretized time t and frequency � and reordered
the indices to simplify Eq. 46 into the following form

r̂�S� (48)

where r̂ and � are column vectors of the estimated response and the
STRF, respectively, and the ith row of the matrix S consists of the ith
stimulus vector. (Here we use boldface to indicate vectors and
matrices in lower- and uppercase letters, respectively.) Ridge regres-
sion is one of the shrinkage methods to penalize strong deviations of
the parameters from zero, and the error (objective) function to be
minimized is given as

Eridge
�, �) � �r � S��2 � ����2 (49)

where � � � indicates L2-norm and the parameter � � 0 determines the
strength of the ridge (power) constraint. The solution that minimizes
Eq. 49 is then given as

�̂ridge � (S�S � �I)�1S�r � V(�2��I)�1�U�r (50)

where I is the identity matrix, U and V are orthonormal matrices
whose columns span the column space of S and S�, respectively, and
� is a diagonal matrix of the singular values given by the singular
value decomposition: S � U�V�. (Here we used superscript “�” to
indicate a matrix transpose and used the svd function in MATLAB for
the computation.)

In this study we performed 10-fold cross-validation, i.e., split the
data set into training (90%) and validation (10%) data sets, used the
training data set to estimate STRF as in Eq. 50 with various values of
�, and chose such � and corresponding STRF �ridge that gave the best
model performance on the validation data set (see Eq. 53 in MODEL

PERFORMANCE). The resulting model performance on the training and
validation data set can then be considered as the upper and lower
estimates, respectively (Ahrens et al. 2008; Machens et al. 2004;
Sahani and Linden 2003).

To vary the window length while fixing the model complexity—
i.e., the number of free parameters in a model—for a fair comparison
of the model performance, we varied the time-bin sizes in a pseudo-
logarithmic scale: 	kt � 2k ms for k � 2, . . . , 10 from near to distant

past. In this study we set the number of bins for 	kt (45 in total) as [45,
0, . . . , 0], [9, 36, . . . , 0], . . . , [9, 8, . . . , 1], resulting in models with
window lengths of 180, 324, 548, 884, 1,364, 2,004, 2,772, 3,540, and
4,052 ms, respectively. Frequency discretization was 	x � 3 bins/
octave (ranging from 0.40 to 22 kHz; 17 frequency bins), leading to
765 parameters in total for the linear part of the model (i.e., STRF in
Eq. 46). Static nonlinearities were then identified using a scatterplot
between actual responses and the estimates by the STRF (see follow-
ing text).

Static nonlinearities. Static nonlinearities can be given as a nonlin-
ear transformation �sn that acts on the output of the linear model (Eq.
46) to form a new (better) estimate (Machens et al. 2004; Simoncelli
et al. 2004)

�sn : r̂
t� � r̂sn
t� (51)

For fitting the static nonlinearities, we plotted the actual response r
against the estimated response r̂ridge � S�̂ridge from Eqs. 48–50 and
used the robust locally weighted scatterplot smoothing (Cleveland
1979; Cleveland and Devlin 1988; Hastie et al. 2001) with 5% data
span and five iterations. Here we identified such a continuous trans-
formation �̂sn, using the training set, and then applied �̂sn to the
validation data set, resulting in upper and lower estimates of the model
performance, respectively.

MODEL PERFORMANCE. The model performance for Eqs. 46 and 51
was quantified as the ratio between the estimated response power
captured by a model �model

2 and the stimulus-related (predictable)
response power �2 (Ahrens et al. 2008; Machens et al. 2004; Sahani
and Linden 2003). Note the similarity to the analysis of response
predictability (RESPONSE PREDICTABILITY).

Assuming additive i.i.d. Gaussian noise �j(t) � �[0, �noise
2 ] over

trials (for j � 1, . . . , m) and time t, we can express the observed
response for the jth trial as rj(t) � �(t) � �j(t), with the stimulus-
related components �(t) [equivalent to �(t) � �i(t) in Eq. 11] and the
total power in the observed response as �total

2 � �2 � �noise
2 , with the

stimulus-related power �2 � ��2(t)�t in the limit of large t. (As before,
we use � � � to indicate the average over time with subscript t and over
trials with subscript j and we have ��(t)�t � 0 because rj(t) is
preprocessed to have zero mean.) From the central limit theorem,
the power of the average response over trials can be written as:
��rj(t)�j

2�t

�
� �2 � �noise

2 /m. Therefore the predictable response power
�2 can be estimated as

�̂2 � �m�rj
t��j
2 � �rj

2
t��j

m � 1
�

t

(52)

where we use �̂total
2 � ��rj

2(t)�j�t. Note the similarity to Eqs. 17 and 18.
The model performance �model

2 /�2 is then given as

�̂total
2 � �̂error

2

�̂2 (53)

where �̂error
2 � ��[ri(t) � r̂i(t)]

2�j�t is the model error power. In Eq. 43,
the average was taken over the population (but not over the time), but
the quantities in Eqs. 43 and 53 are equivalent under the assumption
of ergodicity.

R E S U L T S

We developed a novel experimental paradigm for estimat-
ing the time course and magnitude of context-dependent
effects on neural responses in rat primary auditory cortex
(area A1). We probed neurons with a variety of spectrotem-
porally rich stimuli (e.g., animal vocalizations) in sequence
(see Stimulus design in METHODS and Fig. 1). The use of such
complex stimuli allowed us to probe a larger fraction of
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stimulus space than conventional protocols using tones and
other simple stimuli (see also Bar-Yosef et al. 2002; Garcia-
Lazaro et al. 2006; Machens et al. 2004; Theunissen et al.
2001).

Our analysis consisted of the following five parts. First,
we assessed the overall context dependence of neurons in
A1 using natural sound ensembles. Second, we quantified
the context dependence from the viewpoint of model con-
struction, i.e., measured the response predictability given all
the past stimulus information within an arbitrary window
length. Third, we examined the context dependence at the
synaptic input level by decomposing the acoustic responses
into their underlying excitatory and inhibitory components.
Fourth, we used synthetic sounds to characterize how con-
text dependence depended on stimulus properties such as
stimulus intensity and modulation rates. Finally, we exam-
ined thalamic contributions to the context dependence in
auditory cortical neurons.

Context dependence

Firing rates in A1 were typically low under our experimental
conditions (spontaneous, 0.47 � 0.61 Hz; evoked, 0.57 � 0.77
Hz; mean � SD in 194 cells; see also Hromádka et al. 2008;
Wehr and Zador 2005). We therefore examined subthreshold
responses rather than firing rates. Because subthreshold re-
sponses consist of a continuous variable in time (membrane
potential) rather than a sparse binary time series (a train of
action potentials), we could obtain good estimates of activity
even in the complete absence of spiking outputs. From a
modeling perspective subthreshold responses may offer an
additional advantage in that they have been subjected to one
fewer nonlinearity—that imposed by the spike-generation
mechanism—and so may be more linearly related to the stim-
ulus.

Figure 2 shows a typical example of subthreshold responses
to a 6-s natural sound stimulus in three different natural sound
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FIG. 2. Context dependence can persist for several seconds. A: typical subthreshold responses of a rat A1 neuron to part of a natural sound sequence
(spectrogram; time 0 indicates the transition from conditioning to probe stimuli) over 6 repeats (red lines). Spikes were clipped by a median filter (window
length, 10 ms; see also Supplemental Fig. S2). The neuron showed high trial-to-trial reliability (correlation coefficients across trials to this particular probe
stimulus, 0.74 � 0.08; and across trials across all natural sound stimuli examined in this cell, 0.61 � 0.07; mean � SD). B: the mean responses to the
probe stimulus in 3 different contexts: red line for the one shown in A and blue and green lines for the one in response to the same probe stimulus but
preceded by “silence” and another conditioning stimulus, respectively. Significant dependence on the stimulus history was observed for �4 s (gray bands;
see D for details), whereas the responses between 2 and 4 s after the onset of the probe stimulus were not affected by the differences in conditioning
stimuli. C: the recorded cell in this example was histologically identified as a layer II–III pyramidal neuron (scale bar: 100 �m). D: we performed a
pointwise statistical (Kruskal–Wallis) test for equal medians between the responses to the probe stimulus in all different contexts (black line; P values)
and the gray bands show the time points where the context dependence was statistically significant under the criterion: P � 0.01 for �5 ms. E: the response
power estimate that depends on the context [black line; ��̂i

2(t)�i from Eqs. 17–19 without population average] well represents the magnitude of the context
dependence. (Note that the estimated power can be negative; see CONTEXT DEPENDENCE AT SUBTHRESHOLD VOLTAGE LEVEL in METHODS for details.) The
population average of this quantity with and without normalization by the average predictable power is shown in Fig. 3B (thick black curves in the bottom
and top panels, respectively).
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contexts, i.e., preceded by three different 6-s conditioning
stimuli (see also Supplemental Fig. S2). Consistent with pre-
vious work (Machens et al. 2004), this neuron showed high
trial-to-trial reliability (Fig. 2A) within each set of trials for
which the conditioning stimuli were held fixed: the correlation
coefficient of the response traces across trials in a given context
was 0.61 � 0.07 (mean � SD) for the seven natural sound
fragments tested in this cell. The reliability varied within a
given neuron as a function of the stimuli tested and across
neurons; the mean correlation coefficient was 0.31 � 0.09
(mean � SD) over the population.

Changing the conditioning stimulus—i.e., the stimulus con-
text—caused a dramatic change in the response to the probe
stimulus (Fig. 2B). In this example, the effects of the context
on the response lasted �4 s. Interestingly, context-induced
differences could sometimes be intermittent; the three average
response traces showed no difference in the interval 2 to 4 s
after the onset of the probe, but diverged again after about 4 s.

We used two measures to quantify the differences in the
probe stimulus induced by temporal context (see CONTEXT

DEPENDENCE AT SUBTHRESHOLD VOLTAGE LEVEL in METHODS for
details). The first examined whether the differences in the
observed traces were statistically significant (Kruskal–Wallis
test, P � 0.01 for �5 ms; Fig. 2D), whereas the second method
assessed the component of the response power (variance at a

given time) dependent on stimulus history (Eq. 19; Fig. 2E
shows the power without the population average). These two
measures generally agreed quite well, as can be confirmed by
noting that when at least one trace was significantly different
from the others (vertical gray strips), the power was typically
high.

We found that the total response power tended to be high on
average soon after the transition from conditioning to probe
stimuli (Fig. 3B, top panel). This increase in response power at
the transition could lead to an overestimate of the contribution
of context. We therefore also used a normalized version of the
second (power based) measure in which we divided the con-
text-dependent response power by the stimulus-related re-
sponse power (Eq. 20; Fig. 3B, bottom). This compensates for
the effects of the nonstationarity of the response at the transi-
tion, and thus provides a more conservative measure of the
context dependence.

Although context-dependent effects often manifested inter-
mittently in a given cell (as in Fig. 2), across the population
these effects showed an orderly monotonic decay (Fig. 3). Of
305 natural sound probe stimuli tested with different—typi-
cally around five to eight—natural sound contexts in 39 cells,
significant effects were observed in 204 probes (66.9%; Fig.
3A), and about a quarter (23.7%) of the events occurred longer
than one second after the onset of a probe stimulus (Fig. 3A).
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FIG. 3. Long-lasting context dependence in auditory cortex. A: significance measure. Top: each raster shows periods during which the significance measure
exceeds threshold (P � 0.01 for �5 ms; see CONTEXT DEPENDENCE AT SUBTHRESHOLD VOLTAGE LEVEL in METHODS) for a particular probe–stimulus combination
in a given neuron (an example is shown as gray bands in Fig. 2). The rasters are sorted according to the longest-lasting effect, so successive rasters may
correspond to different neurons. Significant context dependence was observed in about two thirds of probe stimuli (204 of 305 probes in 39 neurons). Bottom:
the thick black curve shows the proportion—or the probability—of observing the significant context dependence and the thin gray curve shows the noise floor
computed by resampling methods. The probability curve is well fit by the sum of 2 exponentials (thick gray; �1 � 0.17, �1 � 0.20 s, �2 � 0.09, and �2 � 0.90 s
for Eq. 44 with the mean noise floor over time � � 2.8 � 10�3). Around a quarter of the context-dependent events occurred at �1 s from the onset of probe
stimuli (thin black; cumulative probability corrected for the noise floor and normalized at its peak t � 4.72 s; broken part indicates the events at the noise level).
B: fractional power measure. Top: from the same population data, we computed the stimulus-related response power (thin black; �̂[�(t) � �i(t)] in Eq. 17; gray,
its moving average over the data in [0, 2t] at time t) and the fraction that depends on stimulus history and its context (thick black; �̂[�i(t)] in Eq. 19). The
context-dependent fraction corresponds well to the significance measure as shown in A (bottom). See also Fig. 1A. Bottom: the ratio of the context-dependent
power to the stimulus-related power represents well the contribution of stimulus history to the response dynamics (black; Eq. 20). The decay size and constant
are: �1 � 0.49, �1 � 1.04 s with � � 0 (gray).
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This fraction represents a lower bound on the maximum
duration of the possible effect in a given cell, since the number
of conditioning–probe combinations tested per neuron was
quite small, and was not tailored to the properties of the cell.
For both measures there was a long decay constant of about
one second (� � 0.90 and 1.04 s, respectively; see Fig. 3 for
details). This timescale was much longer than that imposed by
the intrinsic membrane properties or the time course of the
stimulus-evoked synaptic events (�100 ms; see Eq. 45 in
TIMESCALE OF INTRINSIC MEMBRANE PROPERTIES), suggesting that it
arose from cortical network rather than single neuron mecha-
nisms (see also Context dependence of synaptic conductances
and Subcortical contribution to context dependence).

Relation to response predictability

We have shown that temporal context can influence neuronal
responses in area A1 for as long as several seconds. To what
extent do these context-dependent effects limit the success of
predictive models describing the input–output behavior of A1
neurons? To address this question, we compared the best
possible model performance with and without knowledge of
stimulus history (see CONTEXT DEPENDENCE AT SUBTHRESHOLD

VOLTAGE LEVEL and RESPONSE PREDICTABILITY in METHODS for
details).

To estimate the best model performance achievable, we
assumed that the experimentally observed responses to a given
probe stimulus consisted of the sum of a deterministic stimu-
lus-dependent component and a stochastic stimulus-indepen-
dent (noise) component responsible for trial-to-trial variability.
The magnitude of the deterministic component was estimated
using methods similar to those introduced in Sahani and
Linden (2003) (Eqs. 15–17; see also Eq. 52 in MODEL PERFOR-
MANCE). We then further assumed that the deterministic com-
ponent could be decomposed into context-dependent and -in-
dependent components (see Eq. 11). Under these assumptions,
the optimal estimate of the response to a probe stimulus given
a particular context is obtained by averaging responses over all
presentations of the probe preceded by that context; this is the
very best response model achievable under the additive noise
assumption. The optimal context-independent estimate is ob-
tained by averaging responses over all presentations of the
probe, regardless of the preceding context; this is the best
model achievable in the absence of knowledge of the context
(i.e., using a temporal window from the probe onset; see also
Eqs. 12–14). The context-dependent estimate will inevitably be
superior to—or equal to, in the case where context provides no
information—the context-independent estimate because it in-
corporates the effect of the stimulus history.

By comparing the performance of the above-cited two mod-
els, we then estimated an upper bound on the best possible
prediction achievable from a fixed window (Eq. 43). The
estimated upper bound (thick black curve in Fig. 4) shows that
no model can capture more than a half (1 � � �1 � � 0.51) of the
response power given a window length of �100 ms. To
achieve prediction accuracy beyond that, however, stimulus
history over seconds must be considered (� � 1.04 s, thick gray
curve).

This long timescale may explain in part why classical linear
encoding (spectrotemporal receptive field [STRF]) models
with a limited window length—typically, a few hundred mil-

liseconds—have not provided good predictions for some stim-
ulus ensembles. The performance of STRF-based models was
in general unsatisfactory (�20%), consistent with previous
work (Ahrens et al. 2008; Machens et al. 2004; Sahani and
Linden 2003). The performance did not improve significantly,
however, when we extended the window length (up to �4 s;
light gray bands in Fig. 4 for mean lower- and upper-bound
estimates), even when we added static nonlinearities (thin
black lines). This failure could result from inappropriate
choices of the model class and/or the initial transformation of
sound stimuli from the time domain into the time–frequency
domain (Eq. 47 in NEURAL ENCODING MODELS; see also Gill et al.
2006). Instead, it could be simply because we used rather
coarse time and frequency resolutions and thus relevant infor-
mation for the neurons might have been lost. However, we
could not identify distinct structures or “features” in the STRFs
longer than several hundred milliseconds, suggesting a role of
A1 neurons in more than detecting instantaneous stimulus
features (Ahrens et al. 2008; Nelken et al. 2003). It is a future
challenge to address how neurons in A1 exploit stimulus
history and its context on such a long timescale and how we
could build a plausible predictive model (see also DISCUSSION,
Context dependence and model construction).
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FIG. 4. Context dependence of response predictability. Using responses to
natural sound probe stimuli in different natural sound contexts (305 probe
stimuli in 39 cells), we computed the ratio between the context-independent
fraction of the response power and the stimulus-related response power in A1
neurons (thick black; Eq. 43 in RESPONSE PREDICTABILITY). The stimulus-
related fraction is given by the mean response over trials in each context—or
the best response estimate under additive noise assumption—whereas the
context-independent fraction is given by the mean over all contexts or the best
estimate of the responses to a probe stimulus without any knowledge on the
conditioning stimulus. Therefore the ratio (at time t after probe onset) repre-
sents the upper bound of the response prediction performance for a given
window length t, which asymptotically approached the true upper limit (black
broken line; unit model performance) by extending the window length—or
available stimulus history—on the timescale of seconds (thick gray; �1 �
�0.49 and �1 � 1.04 s for exponential curve fit as in Eq. 44 with � � 1). In
contrast, the performance (Eq. 53; 20 cells from Machens et al. 2004) of linear
encoding models (spectrotemporal receptive field [STRF], thin gray; Eq. 46)
was low for any window length up to about 4 s, even with static nonlinearities
(LN, thin black; Eq. 51). Crosses and open circles, respectively, show the
average model performance on the validation and training data sets, corre-
sponding to the lower and upper estimates of the performance. Here we varied
the bin sizes in a pseudologarithmic manner for changing the window length
of the STRF models while fixing the model complexity (for details, see NEURAL

ENCODING MODELS in METHODS).
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Context dependence of synaptic conductances

What are the mechanisms responsible for the long-lasting
context dependence in responses of auditory cortical neurons?
To address this question, we directly measured sound-evoked
synaptic currents by voltage clamping neurons to three differ-
ent holding potentials and decomposed the responses into their
underlying excitatory and inhibitory components (Monier et al.
2008; Wehr and Zador 2003, 2005; see also CONTEXT DEPEN-
DENCE AT SYNAPTIC INPUT LEVEL). Figure 5B shows an example of
these synaptic currents in response to a sequence of context–
probe stimuli shown in Fig. 5A (see also Supplemental Fig.
S3). Evoked synaptic currents were inward at hyperpolarized
holding potentials and outward at depolarized holding poten-
tials, consistent with a mixture of excitatory and inhibitory
conductances (Fig. 5C; Monier et al. 2008; Wehr and Zador
2003, 2005).

In this cell we also measured the responses to the same probe
stimulus following five other conditioning stimuli (Supplemen-
tal Figs. S4–S8) and extracted excitatory and inhibitory con-
ductances accordingly (Fig. 5, D and F, respectively). In all
cases we examined, both excitatory and inhibitory conduc-
tances elicited in this cell decayed rapidly within about 100 ms,
yet the context dependence measured as the variance of the
conductances lasted long, especially for the inhibitory conduc-
tance in this example (Fig. 5E for excitation and Fig. 5G for
inhibition). This suggests that a change of synaptic input, rather
than a persistent inhibitory or excitatory current, is responsible
for the context dependence in responses of auditory cortical
neurons.

Although context-dependent effects often appeared differ-
ently between excitatory and inhibitory components of the
responses in a given cell (as in Fig. 5), across the population
these effects showed monotonic decays for both excitation and
inhibition (29 probes tested in 14 cells; Fig. 6, A and B,
respectively). For both excitatory and inhibitory conductances,
there was a long decay constant on the order of seconds (� �
1.22 and 2.50 s, respectively) and a short decay constant on the
order of hundreds of milliseconds (� � 0.14 and 0.13 s,
respectively). These time constants are comparable to those we
measured by current-clamping neurons (see Context depen-
dence and Fig. 3), even though here we did not compensate for
the nonstationarity effects of the responses, and also similar to
those reported for activity-dependent, short-term synaptic plas-
ticity (Abbott et al. 1997; Tsodyks and Markram 1997; Wehr
and Zador 2005; Zucker and Regehr 2002). We therefore
conclude that the context dependence described is either inher-
ited from thalamic inputs—which we reject later in Subcortical
contribution to context dependence in the following text—or
generated by synaptic depression and/or facilitation at thalamo-
cortical or intracortical synapses.

Relation to stimulus properties

Thus far we used natural sounds because of their rich
spectrotemporal structure and because the ultimate test of a
model is whether it is able to account for responses to arbitrary
stimuli. However, a disadvantage of using natural sounds as
stimuli is that we could not readily determine which stimulus
properties were responsible for the long-lasting context effects
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we observed. We therefore performed an additional set of
experiments using well-controlled synthetic conditioning stim-
uli to manipulate different stimulus properties independently.

For example, to examine the role of the frequency content of
the conditioning stimulus, we first generated a dynamic mov-
ing ripple stimulus (Eqs. 1–3 in SYNTHETIC SOUNDS in METHODS)
and then manipulated its frequency content by up- or down-
shifting its spectral components (Fig. 7; see also Supplemental
Fig. S9). We could thereby generate conditioning stimulus
ensembles in which only a particular sound property of interest
was different, leaving all other characteristics unchanged. Thus
in Fig. 7A frequency was varied but parameters such as
intensity were unchanged. Using this approach we examined
the effect of varying the following acoustic properties in
conditioning stimuli: intensity (amplitude), frequency, ampli-
tude-modulation (AM), frequency-modulation (FM), and higher-
order spectrotemporal structure (see Stimulus design in METH-
ODS and Fig. 1B). We used both natural and synthetic sounds as
probe stimuli in these experiments, but found no difference
between them and so combined the results in the population
analysis (Fig. 8).

When we varied either intensities or frequencies—i.e., lower-
order sound properties—in conditioning stimuli, we observed
context-dependent effects in 77 probes (81.1%) of 95 probes
(tested in 31 cells) and in 73/110 (64.6%; 35 cells), respec-
tively (Fig. 8A). The effects were as large and long-lasting as
those induced when natural sounds were used as conditioning
stimuli (Fig. 8, B and C).

We then examined the effects of AM and FM changes in
conditioning stimuli using modulated harmonic tones (Eqs. 4

and 5) and also the changes in even higher-order acoustic
properties such as complex interactions between spectrotem-
poral sound elements by comparing the differences between
modulated colored noise and its corresponding natural sounds
(Eqs. 6–9). Context-dependent effects were observed in 62/96
(64.6%; 27 cells) for AM modulation; in 47/82 (57.3%; 25
cells) for FM modulation; and in 59/137 (43.1%; 27 cells) for
colored noise modulation; but the effects were substantially
smaller and shorter than the effects induced by the changes in
natural sound contexts (Fig. 8C). That is, higher-order sound
properties contributed to the context dependence mainly on a
very short timescale, on the order of about 100 ms (Fig. 8B).
From these population results, we conclude that neural re-
sponses in area A1 are more sensitive to changes in lower-
order sound properties such as overall intensities and frequen-
cies than to changes in higher-order properties such as ampli-
tude- and frequency-modulations.

Subcortical contribution to context dependence

We have concluded that stimulus context can exert signifi-
cant effects on the timescale of seconds in area A1 (see Context
dependence and Context dependence of synaptic conduc-
tances). This context dependence could originate in the cortex
(as suggested by previous work; Creutzfeldt et al. 1980; Miller
et al. 2002; Ulanovsky et al. 2003, 2004; Wehr and Zador
2005) or could be inherited from thalamic response properties.

To test this in our preparation, we used the loose cell-
attached patch method to record extracellularly from well-
isolated single units in the auditory thalamus (MGB). Because
firing rates in MGB were typically high (spontaneous, 0.78 �
1.25 Hz; evoked, 11.4 � 16.9 Hz; mean � SD), here we could
obtain good estimates of stimulus-evoked activity from the
average firing rate, without examining the subthreshold re-
sponses.

Figure 9A shows a typical example of a thalamic unit in
response to a sequence of two natural sound fragments. As
observed in the subthreshold responses in area A1 (Figs. 2 and
3), changing the preceding conditioning stimulus caused a
difference in the suprathreshold responses to the following
probe stimulus. However, in this example the effect of the
conditioning stimulus was limited to the first bin (100 ms) of
the poststimulus time histograms (PSTHs in Fig. 9B; see also
Supplemental Fig. S10), indicating a rapid decay of the con-
text-dependence effect.

To quantify the effect over the population, we first computed
the SD of the PSTHs to each probe stimulus over all different
conditioning stimuli (Fig. 9C) and then computed the average
over all probes examined across the population of thalamic
units (Fig. 9D; see also Eq. 42 in CONTEXT DEPENDENCE AT

SUPRATHRESHOLD LEVEL). We found that the neuronal responses
in MGB depended only on a short timescale (� � 80 ms; 93
probes tested in 14 cells). Therefore we conclude that the
contribution of subcortical adaptation to the cortical effects
reported earlier is minimal and that the long-lasting component
arises mainly in the cortex.

D I S C U S S I O N

We have used in vivo whole cell patch-clamp recordings to
study how stimulus history affects neural responses—and thus
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constrains neuronal encoding models—in the primary auditory
cortex (area A1). We found that temporal context can exert
rather long-lasting effects—sometimes as long as 4 s. Even
though sound-evoked synaptic conductances rarely lasted
longer than around 100 ms, both excitatory and inhibitory
components of synaptic inputs to A1 neurons showed long-
lasting context dependence, suggesting that presynaptic mech-
anisms such as synaptic depression and/or facilitation would be
involved. Restricting knowledge of the stimulus history to only
a few hundred milliseconds reduced the predictable component
of the response by about half. However, extending the time
horizon did not lead to an appreciable increase in the perfor-
mance of linear STRF-based models, indicating that the long-
lasting effects of context were nonlinear. Thalamic recordings
revealed that this long-lasting context dependence originated in
the cortex. Our results demonstrate the importance of long-
range temporal effects in auditory cortex and suggest a poten-
tial neural substrate for stream segregation and other forms of
auditory processing that require integration over timescales of
seconds or longer.

Context dependence and model construction

A central aim of this study was to characterize the length of
the “memory” of auditory cortical neurons. To achieve this
goal, we developed a novel experimental approach that al-

lowed us to quantify the importance of long-lasting contextual
effects within the framework of input–output model construc-
tion.

Our approach differs from previous studies in at least three
significant ways. First, we assessed the effect of context us-
ing spectrotemporally complex stimuli, rather than simpler stimuli
such as pure or AM/FM tones and clicks as in many previous
studies (Abeles and Goldstein 1972; Bartlett and Wang 2005;
Brosch and Schreiner 1997, 2000; Calford and Semple 1995;
Hocherman and Gilat 1981; Phillips 1985; Pienkowski and
Eggermont 2009; Ulanovsky et al. 2003, 2004; Wehr and
Zador 2005; but see David et al. 2009). To do this we designed
an efficient stimulus protocol in which each sound serves
double duty, both as a probe for the previous context and as a
context for the following probe (see Stimulus design in METH-
ODS). We could therefore directly address the role of temporal
context for determining responses to arbitrary natural stimuli
and quantified its effects from the viewpoint of response
prediction (rather than examining the parameter changes in
linear STRF-based models; David et al. 2009; Pienkowski and
Eggermont 2009). Second, we monitored subthreshold rather
than suprathreshold responses. Because neurons in area A1 are
highly selective, firing rates to most stimuli are typically low
under our experimental conditions (see also Hromádka et al.
2008; Wehr and Zador 2005). By using the subthreshold
responses, however, we were able to generate reliable esti-
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mates of the response from only a few presentations of each
stimulus. Third, we decomposed synaptic inputs into excitatory
and inhibitory components and analyzed context-dependence
effects separately (see also Monier et al. 2008; Wehr and Zador
2003, 2005). In this way we could better speculate the mech-
anisms underlying the long-lasting context-dependence effects
in area A1 (see Mechanisms).

Our analysis revealed a rather long window (� � 1.04 s; Fig.
4) over which temporal context exerts its effect in A1. Building
on studies in area A1 demonstrating that forward suppression
and facilitation decay within a few hundred milliseconds (e.g.,
Brosch and Schreiner 1997, 2000; Calford and Semple 1995;
but see Bartlett and Wang 2005; Pienkowski and Eggermont
2009; Ulanovsky et al. 2003, 2004; Wehr and Zador 2005),
most linear encoding models typically use a window that is
only a few hundred milliseconds long. Our results demonstrate
that for spectrotemporally rich stimulus ensembles this is a
period so short that even the best nonlinear model could not

hope to capture more than about half of the predictable com-
ponent of the subthreshold response. Since linear models have
largely failed to predict responses to spectrotemporally com-
plex stimuli (Ahrens et al. 2008; Machens et al. 2004; Sahani
and Linden 2003), we expected that extending the length of the
stimulus history available to the linear model would improve
performance.

We found, however, that incorporating a longer time horizon
into the model yielded only a modest improvement in model
performance. Figure 4 provides a detailed accounting of the
various sources of model error. About half of the response
power is predictable from even brief (�100-ms) segments of
the stimulus. However, less than half of that (i.e., �20% of the
total) is accessible to the optimal linear model and only slightly
more to a linear model with a static nonlinearity. Our results
thus suggest that STRF-based models are limited not only by
the length of the stimulus history, but also by their simplicity,
i.e., by their linearity (see also Ahrens et al. 2008).
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What kinds of nonlinearities might be needed? At one
extreme, the nonlinearities might be involved in adaptation;
adaptation on various timescales is ubiquitous in sensory sys-
tems (Baccus and Meister 2002; Carandini and Ferster 1997;
Dean et al. 2005; Fairhall et al. 2001; Kvale and Schreiner
2004; Movshon and Lennie 1979; Müller et al. 1999; Ul-
anovsky et al. 2004). Such adaptive nonlinearities might be
relatively simple in form. At the other extreme, A1 neurons
might detect acoustic “features” such as edges or even more
complex high-order acoustic invariants (Fishbach et al. 2001,
2003). An intermediate possibility is that A1 neurons might
implement both kinds of nonlinearities, but at different time-
scales: over relatively short time periods (e.g., �100 ms) they
might act as feature detectors, whereas on longer timescales
simpler forms of adaptation operate. In support of this view is
the time course of the adaptation in Fig. 4: a very fast
(�100-ms) time constant that accounts for 50% of the predict-
able response and a slower one for the remainder.

Mechanisms

What mechanisms might underlie the long-lasting history
dependence we observed? Our data provide at least three clues

to address this question. First, consistent with previous results
(Creutzfeldt et al. 1980; Miller et al. 2002; Ulanovsky et al.
2003, 2004; Wehr and Zador 2005), the long-lasting effects
were absent in the auditory thalamus (Fig. 9) and thus unlikely
to be inherited from thalamic inputs. Second, the decay con-
stant we observed in A1 was on the order of seconds for both
excitatory and inhibitory components of the responses (Fig. 6)
and it was much longer than the membrane constant of neurons
or the duration of sound-evoked synaptic events (�100 ms; but
see Carandini and Ferster 1997; Sanchez-Vives et al. 2000).
Third, learning was unlikely to be involved under our experi-
mental conditions (see, in contrast, Fritz et al. 2003, 2005). We
thus think it is likely that native cortical network properties,
acting via synaptic depression and/or facilitation (Abbott et al.
1997; David et al. 2009; Tsodyks and Markram 1997; Wehr
and Zador 2005; Zucker and Regehr 2002), were largely
responsible for the long-lasting effects of stimulus history and
its context in A1.

Functional implications

What functional role might such long-lasting context depen-
dence play? One important role of adaptation is to increase the
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effective dynamic range of a sensory neuron (Brenner et al.
2000; Fairhall et al. 2001). Sensory neurons typically have a
dynamic range greatly exceeded by that of the sensory envi-
ronment. The timescale of adaptation typically depends on
stimulus statistics and the direction of the changes (Baccus and
Meister 2002; David et al. 2009; DeWeese and Zador 1998;
Kvale and Schreiner 2004; Pienkowski and Eggermont 2009;
Scholl et al. 2008; Smirnakis et al. 1997; Wehr and Zador
2005). In fact we found that differences in stimulus intensity
and bandwidth had stronger and longer effects on the neuronal
responses to the following stimuli than those in AM, FM, or
other higher-order spectrotemporal modulations (Fig. 8). Ad-
aptation can thus provide a means of making efficient use of
limited sensory bandwidth.

The context dependence we describe is most closely related
to stimulus-specific adaptation (SSA), which can be observed
in a paradigm in which a rare (“oddball”) probe stimulus is
intermixed with a more common conditioning stimulus. Neu-
rons in A1 respond to the probe stimulus more strongly when
it is rarer, consistent with the proposal that SSA is a mecha-
nism for enhancing rare foreground events from a more homo-
geneous acoustic background (Ulanovsky et al. 2003, 2004).
The context dependence we describe differs from SSA in that
our experimental design includes no explicit common or rare
stimuli—it is elicited by a very broad range of complex
stimuli—and so cannot be readily interpreted in terms of
foreground and background. Nevertheless, the context depen-
dence we describe may represent a generalization of SSA and
they may share similar or even identical mechanisms.

From a functional viewpoint, detecting an oddball stimulus
in a noisy background may represent a specialized computation
required to perform stream segregation (Bregman 1990). Psy-
chophysical experiments indicate that sensory memory of
sounds—or “echoic memory” (Neisser 1967)—typically per-
sists on the order of a few seconds (Glucksberg and Cowen
1970; Kubovy and Howard 1976). It is then tempting to
speculate that both SSA and context-dependent adaptation
represent neural correlates of stream segregation. Furthermore,
the integration of stimulus history and its context in area A1
might contribute to many other auditory perceptual tasks,
including speech processing, pitch/rhythm detection, and mu-
sic expectation. They all require extracting certain spectrotem-
poral patterns in acoustic stimuli over seconds and, impor-
tantly, they all depend on context. Because the responses in
area A1 are in general highly selective (Hromádka et al. 2008),
however, the processing in A1 per se would be insufficient to
fully perform such perceptual tasks. Nevertheless, the presence
of long time constants in A1 but not in auditory thalamus
suggests that area A1 might play a critical role in auditory
perception by forming building blocks for processing at later
stages.
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