
ar
X

iv
:2

50
5.

22
99

4v
1

 [
cs

.L
G

]
 2

9
M

ay
 2

02
5

Walking the Weight Manifold: a Topological Approach
to Conditioning Inspired by Neuromodulation

Ari S. Benjamin∗ Kyle Daruwalla∗ Christian Pehle∗ Anthony Zador
Cold Spring Harbor Laboratory
Cold Spring Harbor, NY 11724

{benjami,daruwal,pehle,zador}@cshl.edu

Abstract

One frequently wishes to learn a range of similar tasks as efficiently as possible,
re-using knowledge across tasks. In artificial neural networks, this is typically
accomplished by conditioning a network upon task context by injecting context as
input. Brains have a different strategy: the parameters themselves are modulated
as a function of various neuromodulators such as serotonin. Here, we take inspi-
ration from neuromodulation and propose to learn weights which are smoothly
parameterized functions of task context variables. Rather than optimize a weight
vector, i.e. a single point in weight space, we optimize a smooth manifold in weight
space with a predefined topology. To accomplish this, we derive a formal treatment
of optimization of manifolds as the minimization of a loss functional subject to
a constraint on volumetric movement, analogous to gradient descent. During in-
ference, conditioning selects a single point on this manifold which serves as the
effective weight matrix for a particular sub-task. This strategy for conditioning
has two main advantages. First, the topology of the manifold (whether a line,
circle, or torus) is a convenient lever for inductive biases about the relationship
between tasks. Second, learning in one state smoothly affects the entire manifold,
encouraging generalization across states. To verify this, we train manifolds with
several topologies, including straight lines in weight space (for conditioning on
e.g. noise level in input data) and ellipses (for rotated images). Despite their
simplicity, these parameterizations outperform conditioning identical networks by
input concatenation and better generalize to out-of-distribution samples. These
results suggest that modulating weights over low-dimensional manifolds offers a
principled and effective alternative to traditional conditioning.

1 Introduction

Conditioning is essential in the neural network toolbox. For example, an image generator might be
conditioned on which category of image to generate or with which style. A running robot might be
conditioned on a desired running speed or its goal location. In each of these examples, the sub-tasks
are so closely related—relative to all possible functions—that it is more efficient to use a single
neural network, provided that one can ensure that learning in one context appropriately generalizes to
learning in other contexts.

One way to encourage cross-task generalization would be to take advantage of the clear relationships
between these tasks. Here, we pay particular attention to the topology of sub-tasks. Running speed is
a 1D line through the task space of ambulating. Navigation on a map, conditioned on location, is a
2D operation over a sheet. Classifying images of 3D objects taken from arbitrary orientations lies
on the surface of a sphere in task space. An inductive bias which captures these topologies would

∗Denotes equal contribution, alphabetical order

Preprint.

https://arxiv.org/abs/2505.22994v1

ensure that knowledge transfers between tasks while enforcing that the true task topology constrains
the possible learned input/output mappings.

���������������

Task space

Weight space

�����������������a b

W(s) W(s)W

Traditional
conditioning Conditioning via modulation

“5”

“5”

“5”

“5”

“5”

“5”

“5”

“5”

initt

c

Figure 1: a. Traditional approaches map all conditions in task space to a single network in weight
space. Here, conditioning corresponds to the noise added to an image (i.e. input uncertainty) in a
classification task. b. Our approach maps various conditions to a parameterized manifold in weight
space with known topology chosen to match the task topology. For the task in a, this corresponds
to a line, but for alternative tasks like rotations of an input image, an ellipse is more appropriate. c.
Manifolds are optimized via our proposed steepest descent rule such that they minimize the volumetric
distance between steps. Here, we illustrate this by projecting an ellipse manifold of weights into
principal component space during learning. The weights correspond to the first convolutional layer of
a network trained to classify CIFAR-10 images.

Here, we realize this strategy by hypothesizing that for each manifold of tasks there exists a manifold
of corresponding topology in weight space which implements that range of tasks. For example, a
topological sphere in weight space likely implements the set of functions for classifying objects
rotated in 3D space. More formally, assuming smoothness over the weight and task manifolds, and a
topology over the task manifold, our “manifold hypothesis” postulates a homeomorphism between
both manifolds. Fig. 1a and b illustrate this hypothesis and how it differs from a traditional view on
neural network weights and conditioning.

To empirically evaluate this hypothesis, we formalize this notion and derive a learning rule for
optimizing manifolds. This rule is analogous to gradient descent, whose implicit learning biases are
arguably the key to success in high-dimensional optimization. Just as gradient descent effectively
minimizes the path length through weight space, our rule pushes a manifold in the direction of
steepest descent while minimizing its total volumetric movement through weight space. This ensures
that learning pressure at one location of the manifold does not push other locations on the manifold
in very far directions. This learning rule is designed to respect Occam’s razor, minimally changing
the function across the manifold in response to new data anywhere.

While it might not be obvious that lines, circles, or other simple shapes exist in weight space that
implement realistic functions, we find empirically that such solutions do indeed exist. Fig. 1c
demonstrates how the rule manipulates the structure of the manifold while taking minimal volumetric
steps through weight space (shown here for an image classification network’s first layer weights when
trained on CIFAR-10 [16]). Furthermore, we demonstrate a potential benefit of conditioning via
modulation: generalization to contexts not seen during training. Just as humans must learn while calm
but perform while nervous or angry, the modulation of artificial networks allows them to generalize
performance to areas in which the involved task slightly differs.

In brief, our major contributions include:

• a neuro-inspired formalism for topologically constrained weight manifolds
• a corresponding steepest descent rule for updating manifolds in principled manner
• computationally tractable instances of our rule for simple manifolds (e.g. a line, ellipse, etc.)
• practical implementations of our rule that leverage existing automatic differentiation libraries
• experimental evaluations demonstrating when the proposed rule is effective and ineffective;

notably, that it generalizes to novel conditions unseen in the training data relative to vanilla
gradient descent and traditional conditioning

2

1.1 Inspiration from neuroscience

The proposed abstraction of weight manifolds reflects a wide set of studies on the physiological
properties of neurons and small circuits. After it was observed in the early 20th century that neurons
integrate information from their synaptic inputs—directly leading to the earliest generations of neural
network models [20]—it later become clear that nearly all key parameters of neural systems are, in
fact, functions of various neuromodulators [12]. While this work vastly complicated the modeling
of small biological circuits, it revealed a general biological capability for reusing neural circuits for
different purposes in different behavioral states [19].

The mechanistic effects of neuromodulation are profound and diverse. The excitability of neurons
are affected, as well as specific synapses and specific ion channels [15, 17]. Effects vary depending
upon the cell type in question, sometimes in opposite directions for the same neuromodulator [10].
Furthermore, the delivery of neuromodulation can be extremely targeted to single neurons (i.e.
cotransmission) [22]. Together these endow neuromodulation with the potential for strongly affecting
the behavior of a single neural network at all functional scales.

In light of this astounding diversity, we aim to abstract only a very general principal of operation.
Notably, we are not attempting to model particular functions of various neuromodulators in different
circuits. Instead, we ask what advantage this general capability provides to artificial systems.

1.2 Modulating a network ⊂ conditioning a network

As a note of clarity, conditioning information may be either high-dimensional (for example, CLIP
embeddings to generate images from natural language descriptions) or low-dimensional (for example,
desired running speed of a robot). Here, we are solely interested in the low-dimensional case, which
we believe admits special treatment. To distinguish low-dimensional conditioning cases, we will refer
to this as modulating a neural network.

Low-dimensional modulations of a network are quite common. A helpful example can be found in
generative modeling via diffusion (DDPMs) where the denoiser is conditioned on the magnitude of
injected noise, or more specifically, the timestep of the diffusion process [13]. This allows a single
denoising neural network to denoise both low-noise and high-noise examples, but transfer knowledge
between noise regimes.

2 Optimizing a weight manifold: a formal treatment

Neural networks are typically optimized as a single point in weight space; however, our approach
requires optimizing an entire manifold of weights simultaneously. This section formalizes this
approach while providing intuition for the underlying concepts.

2.1 Weights as parameterized functions

In traditional neural networks, each weight (synapse) is described by a single value. Here, we make
each weight a function of the conditioning variable. Formally, consider a smooth manifoldM(s,P)
parametrized by s ∈ [0, 1] and depending on parameters P ∈ Rp. The parameter s represents the
modulator or conditioning value, and the parameters P are learnable. Then,M : R× Rp → Rd is
map from points on the manifold, selected by s, to the weights of the network.

Example: A simple manifold is a straight line segment through weight space. Just as a line can be
uniquely defined by its two endpoints, we can parametrize this manifold as a linear interpolation:

M(s,P) = (1− s)P1 + sP2 (1)

where P = (P1,P2) contains the endpoints. When s = 0, we get the weights P1; when s = 1, we
get P2; and for values in between, we get a smooth interpolation along the line.

3

2.2 Optimization

Unlike standard neural network training that minimizes a loss at a single weight configuration, we
need to minimize a loss functional L[M] that evaluates the entire manifold:

L[M] =

∫ 1

0

ℓ(M(s,P)) ds (2)

where ℓ : Rd → R is a function measuring the loss at each point along the manifold.

Intuition: We’re essentially averaging the performance across all possible conditioning values.
This ensures that our network performs well across the entire conditioning spectrum, not just at
isolated points.

2.2.1 The variational problem

At each optimization step, we need to find the best way to update our parameters P. This means
finding the optimal perturbation, ∆P, that moves the entire manifold in a beneficial direction.

∆P =argmin
∆P

L[M(s,P+∆P)] (3)

such that d2(M(s,P+∆P),M(s,P)) = C0

where d2 denotes the total squared distance over the manifold (i.e. the Euclidean distance at every
point integrated over s). The distance constraint ensures that the manifold does not move too far in a
single step.

Key insight: Just as gradient descent minimizes distance traveled through weight space, our
approach minimizes the volumetric movement of the entire manifold. This ensures that learning at
one point on the manifold does not cause excessive changes elsewhere.

2.2.2 Solving for ∆P

First, we note that small perturbations affect our manifold approximately linearly:

M(s,P+∆P) ≈M(s,P) +
∂M
∂P

∆P (4)

Thus, the perturbation ∆P affects the manifold dependent upon the Jacobian of the parameterization,
∂M
∂P . To express the optimal update, it is helpful to introduce the following notation:

M(s) =

(
∂M
∂P

)T
∂M
∂P

(local metric tensor) (5)

g(s) =

(
∂M
∂P

)T

∇ℓ(M(s)) (local gradient w.r.t. P) (6)

The metric tensor M(s) captures how parameter changes affect the manifold at each point s, while
g(s) represents the direction of steepest descent of the loss at each point.

Through Lagrangian optimization on Eq. 4 (detailed derivation in the supplemental information), we
arrive at the optimal parameter update:

∆P = − 1

2λ

[∫ 1

0

M(s) ds

]−1 ∫ 1

0

g(s) ds (7)

This update has an intuitive interpretation: we’re averaging gradients across the entire manifold and
then applying a correction based on the manifold’s geometry.

4

In practice, the integral over the gradients
∫ 1

0
g(s) ds can be computed via sampling without

modifications to stochastic gradient descent frameworks. The term in brackets,
[∫ 1

0
M(s) ds

]−1

, is

the inverse of the integrated metric tensor, which we will denote this as M−1. For general manifolds,
M−1 may be challenging to calculate as it represents the inverse of a very large matrix (with as
many rows as network weights). Luckily, this term is analytically computable in several special cases
that are relevant for practice, such as lines, ellipses, or any parameterized manifold expressible as a
weighted sum of certain basis points.

2.2.3 Manifolds with analytic M−1

For many manifold types, we can analytically determine the inverse integrated metric tensor M−1 =[∫ 1

0
M(s) ds

]−1

and its matrix-vector product. This allows for efficient optimization without needing
to compute and invert large matrices.

Example: Straight Line Manifold To illustrate this, let’s consider again the straight line manifold
parametrized as a linear interpolation between two pointsM(s,P) = (1− s)P1 + sP2.

To compute the metric tensor at any point s, we need the Jacobian:

∂M
∂P

= [(1− s)I sI] (8)

where I is the identity matrix with the same dimension as all network parameters, flattened. The
metric tensor is then:

M(s) =

(
∂M
∂P

)T
∂M
∂P

=

[
(1− s)2I s(1− s)I
s(1− s)I s2I

]
(9)

The inverse of this matrix after integrating over s from 0 to 1 is our desired M−1:

M−1 =

[∫ 1

0

M(s) ds

]−1

=

[
1
3I

1
6I

1
6I

1
3I

]−1

=

[
4I −2I
−2I 4I

]
(10)

This may seem like too a large matrix to hold in memory; however, it never needs to be instantiated—
all that is required to calculate ∆P is its matrix-vector product with the integrated local gradient.
This is simple to evaluate. Plugging into Equation 7, we obtain:

∆P = − 1

2λ

[
4∇P1ℓ(M(s))− 2∇P2ℓ(M(s))
−2∇P1ℓ(M(s)) + 4∇P2ℓ(M(s))

]
(11)

Thus, this method is easy to implement and consists only of fast linear combinations of gradients
computed through automatic differentiation. By comparison, if we had not considered the metric
penalty, the update rule would simply be the gradient [∇P1 l(M(s)) ∇P2 l(M(s))]

T , without any
mixing of the gradients with respect to each endpoint.

Summary of Analytical Cases: Many useful manifold parameterizations have closed-form expres-
sions for M−1, making them computationally efficient. Table 1 summarizes key examples.

2.3 Practical Implementation: Efficient Optimization of Weight Manifolds

During learning and inference, one sees a batch of examples with varying levels of conditioning,
{(xi, si)}Bi . The challenge is to obtain the output for each example, noting that each different values
of s correspond to the outputs of effectively different neural network with weightsM(s,P). It would
be inefficient to instantiate each neural network separately to process each example, as the memory
requirements would scale linearly with the batch size, B.

5

Table 1: Analytical forms of M−1 for common manifold types

Manifold Type Parameterization M−1

Straight Line (1− s)P1 + sP2

[
4I −2I
−2I 4I

]

Ellipse P1 +P2 cos(2πs) +P3 sin(2πs)

[
I 0 0
0 2I 0
0 0 2I

]

Tethered Rod (1− s)P1 + sP2

[
0 0
0 3I

]
Cubic B-Splines

∑n
i=0 Ni,k(s)Pi

D−1 where D is banded diagonal;
1

60n [120, 78, 24, 3] along diagonals

The key insight of our implementation is that for all of the manifolds shown in Table 1, the weight
vector at a specific point on the manifold,M(s,P), is a linear combination of n “basis points” Pi.
Each basis point defines a particular instance of the network.

M(s,P) =

n∑
i=0

ai(s)Pi (12)

Conveniently, most learnable operations in neural networks (e.g. fully-connected layers, convolutions,
embeddings, sub-operations of self-attention, etc.) are also linear in that they are additive and
homogenous—f(αa + βb) = αf(a) + βf(b). Nonlinear operations such as ReLU generally do
not contain any learnable components. This property along with Eq. 12 allows us to process all B
examples in a batch while only ever holding the n basis points in memory.

The reason for this is that within each layer, the effective s-dependent weight matrix W(s) never
needs to be instantiated to obtain the matrix-vector product W(s)x. Instead, one can apply each
basis point separately, then linearly combine them:

W(s)x = a1(s)W1x+ a2(s)W2x+ . . . (13)
Often, n is small enough that each term in the linear combination can be computed in parallel. This
procedure can then be extended layer-by-layer to cover an entire neural network. Thus, with minimal
memory overhead and no runtime overheads, we can compute a full batch of examples over the
manifold despite B ≫ n.

Algorithm 1 (in appendix) provides a high-level overview of our approach.

3 Empirical results

In evaluating our proposed approach, we must consider when our neuromodulation-inspired abstrac-
tion is useful for training artificial networks. To this end, we study two settings where topological
constraints on network weights are effective but also where they are ineffective. First, Sec. 3.1
demonstrates the generalization ability of our approach to unseen data augmentation conditions when
the augmentation topology is known. Surprisingly, this occurs even for simple, rigid manifolds,
experimentally proving our “manifold hypothesis.” Second, Sec. 3.2 attempts to leverage manifolds
to regularize networks in the face of uncertainty where the mapping from conditioning value to task
manifold is more complex. Our aim in these experiments goes beyond validating the correctness
of our approach; we hope to highlight both the use cases and pitfalls of using modulation as a
mechanism to address a learning challenge. Please refer to the appendix for complete details on
reproducing these results.

3.1 Generalization to unseen conditions

Here, we design a setting where data augmentation is applied the inputs to the network, and the
conditioning describes the augmentation that was applied. Specifically, we rotate CIFAR-10 images

6

passed to a moderately sized convolutional network (CNN) and the conditioning, s, encodes the
angle of the rotation from [0, 2π]. The network must classify these images despite the rotation. To
test generalization, we only sample a fixed subset of the possible angles during training (e.g. 10% of
[0, 2π]). During evaluation, we sample the full range and report the test accuracy as a function of the
sparsity of the training conditions. Fig. 2a illustrates the overall setting.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Fraction of conditions seen

0.62

0.64

0.66

0.68

0.70

0.72

A
cc

ur
ac

y
(%

)

�����������������������������

Baseline (no conditioning)
Baseline (concat conditioning)

Ellipse manifold

ba
������
��	�����������
����������
	�����
�
�
������
�������������	�������
��

���������
����������	�������

�����

�������
��
���������������
���
�
��
�	���

Figure 2: a. An illustration of the training paradigm used to test the generalization abilities of our
manifold approach. We sample a sparse subset of the possible conditions (rotation angles of the input)
during training and test on the full set of conditions. b. Performance of the ellipse manifold network
on the test set vs. a baseline network with and without conditioning.

As shown in Fig. 2b, training an ellipse manifold generalizes to unseen angles even at extremely
sparse sampling of conditions during training. Furthermore, the performance of the manifold network
surpasses conventional networks with and without conditioning input. We also note that the baselines
lose performance as the training conditions become sparser, while the manifold networks maintains
its peak performance for a wider range of sampling sparsities.

We emphasize that these results are non-trivial. They demonstrate, empirically, that the “manifold
hypothesis” is true, and that we can match the appropriate homeomorphism between the task and
weight manifolds with even a simple parametrized ellipse. The manifold used here is simple in that it
is rigid—it can rotate and stretch in high dimensional weight space, but it cannot bend and must lie in
a plane. This is an extremely strong constraint on space the weights can occupy while still performing
the task correctly and generalizing. Yet, when the topological structure in the data is clear (such as
rotation invariance of images), modulating weights with even a simple mechanism is sufficient to
exploit this structure.

3.2 Controllable regularization of networks

While known data transformations such as augmentation have clearly definable topologies that can be
exploited, this is not the only form of conditioning that our approach could target. An unknown data
transformation that must frequently be dealt with is input noise, and models must robustly perform in
the face of this uncertainty. Regularization of a networks weights is a common attempt for dealing
with noisy data. Traditionally, a single network is regularized by a fixed amount which may be overly
conservative when the noise varies from sample to sample.

Here, we study a setting where a network classifies images from CIFAR-10 with additive Gaussian
noise. Specifically, for each example, we sample a noise level s ∼ Unif(0, S) where S denotes the
maximum noise level. Then, we augment the input image as x̂ = (1− s)x+ sη where η ∼ N (0, I).
Thus, s reflects the uncertainty of the example. We train a CNN whose weights are constrained to a
line manifold with L2-regularization. For a given sample, (xi,yi, si), the loss of that sample is

ℓM(xi,yi, si;M(si,P)) = ℓ(xi,yi;M(si,P)) + siλ∥M(si,P)∥22 (14)
where ℓ is the original loss (e.g. cross entropy),M(si,P) are the network weights used for the i-th
sample, and λ is a regularization coefficient. Thus, our uncertainty conditioning controls the level of
regularization applied to each example.

Fig. 3 shows the test performance on CIFAR-10 (which is also noised in the same manner). While
the manifold network does slightly outperform the baseline cases, its advantage is minimal. We

7

ba

0 50 100 150 200 250
Epochs

0

10

20

30

40

A
cc

ur
ac

y
(%

)

���������������������������

Baseline (concat)
Baseline (embedding)
Baseline
Line Manifold

160 180 200 220 240 260
Epochs

36

38

40

42

44

A
cc

ur
ac

y
(%

)

Baseline (concat)
Baseline (embedding)
Baseline
Line Manifold

Figure 3: a. Noised CIFAR-10 test accuracies for baseline networks and the line manifold. Noise
procedure is described in Sec. 3.2. b. A zoomed-in view of a.

hypothesize that this is because of the mismatch between our specification of uncertainty and the true
uncertainty manifold. Namely, only the few examples closed to the learned decision boundary are
relevant to the model’s uncertainty, and thus, our chosen manifold spans a much wider range of the
task space than the true manifold. These results illustrate cases where modulation is not useful—when
the topology is difficult to define or properly infer and relate to the conditioning value.

4 Related work

Dynamic weights: Our work and several other works share the general idea that weight matrices
might be adaptive, rather than fixed. For example, fast weight programmers, dynamic filter networks,
and linear transformers can all be seen as having weights which are themselves a function of the
input [2, 14, 25]. These methods differ from our approach in that the contexts are inferred rather
than supplied as a method for external conditioning. Furthermore, these methods do not constrain
the movement of the implied manifold over weights, nor ensure that its topology matches the task at
hand.

Linear modes and distributions over networks: Weight manifolds are one way to establish a set
of networks that work well. In this way, it is closely related to hypernetworks [11] and Bayesian
networks [18, 3], which both establish distributions over weight space. More close in spirit is work
which documents the existence of “linear mode connectivity,” i.e. that paths of everywhere-low loss
exist in weight space which connect separate learning trajectories [8]. Such paths are also empirically
found connecting minima from related tasks, i.e. connecting the pretrained multitask solution with a
fine-tuned solution [21]. Here, rather than find such solutions empirically, we provide a framework for
directly training lines in weight space, and in general, any low-dimensional manifold. Interestingly,
our results provide proof that there exist straight lines that connecting modes, not only the smoothly
curved lines found post hoc after training as in prior works.

Conditioning methods: Although conditioning via input concatenation and embedding are stan-
dard, several other methods for conditioning exist. One closely related work is FiLM, which learns to
apply an affine transformation to the network’s intermediate activations which is a function of the
conditioning variable [24]. Other methods with a similar philosophy include Conditional Instance
Norm [9] and Conditional Batch Norm [7], which adapt standard layer normalization layers to be
functions of the conditioning information. These methods effectively establish a manifold over the
biases of each layer, which is either an affine manifold (in the case of FiLM) or curved according to
the divisive normalization scheme. Our approach can be seen as a generalization of these methods.

Models of neuromodulation: Weight manifolds can be seen as an abstraction and generalization
of many computational models of neuromodulation. While no single paragraph can summarize all
such models, here we highlight those models in which neuromodulation acts as a functional knob
upon circuit behavior [1, 5, 26, 28, 23, 6, 27]. For example, one classic model describes the effect of
acetylcholine in the hippocampus as a knob upon top-down/bottom-up gain in a generative model,
effectively correlating acetylcholine to perceptual uncertainty [29, 30]. While details differ, these

8

papers generally supply specific mechanisms in which neuromodulation affects circuit behavior. We
argue that each of these models are equivalent to a manifold in weight space of a single network, and
furthermore that it is productive to consider the abstract properties of such manifolds for learning and
computation.

5 Broader impact

This work is focused on foundational theoretical research for optimizing manifolds of model weights.
As such, it does not have direct deployment considerations or immediate negative harms. Still, a
plausible positive impact of this work is better control, interpretation, and constraint of learned
neural network functions. This should not be misconstrued for safety guarantees—networks learned
with our approach are only constrained along the conditioning axes specified by the researcher.
Misalignment between the intended axes and the specification can result in unexpected behavior, and
more importantly, the model is not constrained on unspecified axes. Finally, an common application of
conditioning is in large language models and generative models (e.g. image diffusion models), so the
improvements in this work endow these models with additional capabilities, potentially exacerbating
existing harms and misuse.

6 Discussion

Here, we demonstrated how the general principle behind neuromodulation can be ported to artificial
neural networks by analogy to low-dimensional manifolds in weight space. We showed experimentally
that simple manifolds (such as straight lines and ellipses) that solve tasks indeed exist in weight space,
and furthermore, can be trained using a novel steepest rule for manifolds. Our approach provides a
robust and principled procedure to create collectives of networks that learn together yet differ from
one another in meaningful ways.

We conjectured that the advantage of conditioning by modulating weights instead of injecting input
would be the ability to exploit the topology of the data. Thus, the choice of manifold provides a
programmable inductive bias for conditioning. In support of this claim, we demonstrated that this
allows for out-of-distribution generalization to unseen conditioning values better than conditioning
via injecting input. On the other hand, when the chosen manifold and task topology are misspecified,
modulating weights provides limited advantages. Thus, our experimental results demonstrate that
modulating weights is useful computational primitive when the topology of the task is clear, and it is
easily exploited by simple modulation schemes (i.e simple manifolds).

Our theoretical formulation provides a foundation for many potential applications beyond those
that we studied in this paper. In particular, we focused on a few simple manifold types, but future
extensions could include more complex manifolds that can be bent and distorted in weight space
to permit more flexible topology embeddings. Alternatively, two, three, or higher dimensional
topologies would permit the exploration of how different conditions across tasks interact in weight
space. Furthermore, we study settings where the conditioning value is explicit and known, but this is
the rarely the case for biological networks. Instead, a more realistic case should explore inferring
or controlling the conditioning value through learned experience. Finally, an important use case for
conditioning is encouraging a model to be invariant or equivariant to data transformations. Unlike
many existing methods, our framework allows a network to target either case and potentially explore
the trade-off between the two. Ultimately, the success of deep learning models has been their ability
to decipher and exploit structure in the world. While this is typically statistically gleaned from data,
inductive biases that are strong yet flexible allow networks to learn more efficiently and generalize.
Our work, through a formal treatment of the connection between functions embedded in weight space
and topologies in task space, enables a new generation of programmable, flexible, and controllable
inductive biases for neural networks.

Code availability

The code for all figures in this paper were written in Jax [4] and will be made available shortly.

9

References
[1] L F Abbott. Modulation of function and gated learning in a network memory. Proceedings of

the National Academy of Sciences, 87(23):9241–9245, December 1990.

[2] Jimmy Ba, Geoffrey E Hinton, Volodymyr Mnih, Joel Z Leibo, and Catalin Ionescu. Using Fast
Weights to Attend to the Recent Past. In Advances in Neural Information Processing Systems,
volume 29. Curran Associates, Inc., 2016.

[3] David Barber and Christopher M Bishop. Ensemble learning in Bayesian neural networks. Nato
ASI Series F Computer and Systems Sciences, 168:215–238, 1998. Publisher: Springer Verlag.

[4] James Bradbury, Roy Frostig, Peter Hawkins, Matthew James Johnson, Chris Leary, Dougal
Maclaurin, George Necula, Adam Paszke, Jake VanderPlas, Skye Wanderman-Milne, and Qiao
Zhang. JAX: composable transformations of Python+NumPy programs, 2018.

[5] V. Brezina and K. R. Weiss. Analyzing the functional consequences of transmitter complexity.
Trends in Neurosciences, 20(11):538–543, November 1997.

[6] Julia C. Costacurta, Shaunak Bhandarkar, David M. Zoltowski, and Scott W. Linderman.
Structured flexibility in recurrent neural networks via neuromodulation. bioRxiv, page
2024.07.26.605315, July 2024.

[7] Harm de Vries, Florian Strub, Jeremie Mary, Hugo Larochelle, Olivier Pietquin, and Aaron C
Courville. Modulating early visual processing by language. In Advances in Neural Information
Processing Systems, volume 30. Curran Associates, Inc., 2017.

[8] Felix Draxler, Kambis Veschgini, Manfred Salmhofer, and Fred Hamprecht. Essentially No
Barriers in Neural Network Energy Landscape. In Proceedings of the 35th International
Conference on Machine Learning, pages 1309–1318. PMLR, July 2018. ISSN: 2640-3498.

[9] Vincent Dumoulin, Jonathon Shlens, and Manjunath Kudlur. A Learned Representation For
Artistic Style, February 2017. arXiv:1610.07629 [cs].

[10] Charles R. Gerfen and D. James Surmeier. Modulation of Striatal Projection Systems by
Dopamine. Annual Review of Neuroscience, 34(Volume 34, 2011):441–466, July 2011. Pub-
lisher: Annual Reviews.

[11] David Ha, Andrew Dai, and Quoc V. Le. HyperNetworks, December 2016. arXiv:1609.09106
[cs].

[12] Ronald M. Harris-Warrick and Eve Marder. Modulation of neural networks for behavior. Annual
Review of Neuroscience, 14:39–57, 1991. Place: US Publisher: Annual Reviews.

[13] Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising Diffusion Probabilistic Models. In
Advances in Neural Information Processing Systems, volume 33, pages 6840–6851. Curran
Associates, Inc., 2020.

[14] Xu Jia, Bert De Brabandere, Tinne Tuytelaars, and Luc V Gool. Dynamic Filter Networks. In
Advances in Neural Information Processing Systems, volume 29. Curran Associates, Inc., 2016.

[15] M Klein, J Camardo, and E R Kandel. Serotonin modulates a specific potassium current in
the sensory neurons that show presynaptic facilitation in Aplysia. Proceedings of the National
Academy of Sciences, 79(18):5713–5717, September 1982. Publisher: Proceedings of the
National Academy of Sciences.

[16] Alex Krizhevsky. Learning Multiple Layers of Features from Tiny Images. page 60, 2009.

[17] I B Levitan. Modulation of ion channels in neurons and other cells. Annual review of neuro-
science, 11:119–136, January 1988.

[18] David JC MacKay. A practical Bayesian framework for backpropagation networks. Neural
computation, 4(3):448–472, 1992. Publisher: MIT Press.

10

[19] Eve Marder. Neuromodulation of Neuronal Circuits: Back to the Future. Neuron, 76(1):1–11,
October 2012.

[20] Warren S McCulloch and Walter Pitts. A logical calculus of the ideas immanent in nervous
activity. The bulletin of mathematical biophysics, 5:115–133, 1943. Publisher: Springer.

[21] Seyed Iman Mirzadeh, Mehrdad Farajtabar, Dilan Gorur, Razvan Pascanu, and Hassan
Ghasemzadeh. Linear Mode Connectivity in Multitask and Continual Learning, October
2020. arXiv:2010.04495 [cs].

[22] Michael P. Nusbaum and Mark P. Beenhakker. A small-systems approach to motor pattern
generation. Nature, 417(6886):343–350, May 2002. Publisher: Nature Publishing Group.

[23] Mohammed Abdal Monium Osman, Kai Fox, and Joshua Isaac Stern. A Hopfield network
model of neuromodulatory arousal state, September 2024. Pages: 2024.09.15.613134 Section:
New Results.

[24] Ethan Perez, Florian Strub, Harm de Vries, Vincent Dumoulin, and Aaron Courville. FiLM:
Visual Reasoning with a General Conditioning Layer, December 2017. arXiv:1709.07871 [cs].

[25] Imanol Schlag, Kazuki Irie, and Jürgen Schmidhuber. Linear Transformers Are Secretly Fast
Weight Programmers, June 2021. arXiv:2102.11174 [cs].

[26] Jake P. Stroud, Mason A. Porter, Guillaume Hennequin, and Tim P. Vogels. Motor primitives
in space and time via targeted gain modulation in cortical networks. Nature Neuroscience,
21(12):1774–1783, December 2018. Publisher: Nature Publishing Group.

[27] Ben Tsuda, Stefan C. Pate, Kay M. Tye, Hava T. Siegelmann, and Terrence J. Sejnowski.
Neuromodulators generate multiple context-relevant behaviors in a recurrent neural network by
shifting activity flows in hyperchannels. bioRxiv, 2024. Publisher: Cold Spring Harbor Labora-
tory _eprint: https://www.biorxiv.org/content/early/2024/09/12/2021.05.31.446462.full.pdf.

[28] Nicolas Vecoven, Damien Ernst, Antoine Wehenkel, and Guillaume Drion. Introducing neuro-
modulation in deep neural networks to learn adaptive behaviours. PLOS ONE, 15(1):e0227922,
January 2020. Publisher: Public Library of Science.

[29] Angela Yu and Peter Dayan. Acetylcholine in cortical inference. Neural Networks, 15(4-6):719–
730, 2002. Publisher: Elsevier.

[30] Angela J. Yu and Peter Dayan. Uncertainty, neuromodulation, and attention. Neuron, 2005.

11

A Supplement: Mathematical details of manifold optimization

A.1 Theorem 1: Optimal Manifold Perturbation

Theorem 1. Given a parametrized manifold M(s,P) with loss functional L[M] =∫ 1

0
ℓ(M(s,P))ds, the optimal perturbation ∆P that minimizes the first-order approximation of

L[M(s,P + ∆P)] subject to a constraint on the total squared distance
∫ 1

0
|M(s,P + ∆P) −

M(s,P)|2 ds = C0 is given by:

∆P = − 1

2λ

[∫ 1

0

M(s) ds

]−1 ∫ 1

0

g(s) ds (15)

where M(s) =
(
∂M
∂P

)T ∂M
∂P is the local metric tensor, g(s) =

(
∂M
∂P

)T ∇ℓ(M(s)) is the local
gradient, and λ is a Lagrange multiplier that controls the step size.

A.2 Proof of Theorem 1

We begin by establishing the linearization of the loss functional around the current manifoldM(s,P).
For a small perturbation ∆P, the manifold changes approximately as:

M(s,P+∆P) ≈M(s,P) +
∂M
∂P

∆P (16)

Using this linearization, we can approximate the loss functional:

L[M(s,P+∆P)] ≈
∫ 1

0

ℓ

(
M(s,P) +

∂M
∂P

∆P

)
ds (17)

≈
∫ 1

0

[
ℓ(M(s,P)) +∇ℓ(M(s,P)) · ∂M

∂P
∆P

]
ds+O(∥∆P∥2) (18)

= L[M] +

∫ 1

0

∇ℓ(M(s,P)) · ∂M
∂P

∆P ds+O(∥∆P∥2) (19)

Here, we’ve used a first-order Taylor expansion of ℓ aroundM(s,P).

Now, let’s consider the distance constraint. The squared distance between the original and perturbed
manifolds is:

d2(M(s,P+∆P),M(s,P)) =

∫ 1

0

|M(s,P+∆P)−M(s,P)|2 ds (20)

≈
∫ 1

0

∣∣∣∣∂M∂P ∆P

∣∣∣∣2 ds+O(∥∆P∥3) (21)

=

∫ 1

0

∆PT

(
∂M
∂P

)T (
∂M
∂P

)
∆P ds+O(∥∆P∥3) (22)

For notational convenience, let’s define:

M(s) =

(
∂M
∂P

)T
∂M
∂P

(local metric tensor) (23)

g(s) =

(
∂M
∂P

)T

∇ℓ(M(s,P)) (local gradient) (24)

12

Our optimization problem now becomes:

minimize
∫ 1

0

g(s)T∆P ds

subject to
∫ 1

0

∆PTM(s)∆P ds = C0

(25)

To solve this constrained optimization problem, we form the Lagrangian:

L(∆P, λ) =

∫ 1

0

g(s)T∆P ds+ λ

(∫ 1

0

∆PTM(s)∆P ds− C0

)
(26)

Taking the functional derivative with respect to ∆P and setting it to zero:

δL
δ(∆P)

=

∫ 1

0

g(s) ds+ λ

∫ 1

0

2M(s)∆P ds = 0 (27)

⇒
∫ 1

0

g(s) ds = −2λ
∫ 1

0

M(s)∆P ds (28)

⇒
∫ 1

0

M(s)∆P ds = − 1

2λ

∫ 1

0

g(s) ds (29)

Now, we need to solve for ∆P. Since ∆P is independent of the conditioning variable s, we can pull
it outside the integral:

∫ 1

0

M(s)∆P ds =

(∫ 1

0

M(s) ds

)
∆P (30)

⇒
(∫ 1

0

M(s) ds

)
∆P = − 1

2λ

∫ 1

0

g(s) ds (31)

⇒ ∆P = − 1

2λ

(∫ 1

0

M(s) ds

)−1 ∫ 1

0

g(s) ds (32)

The parameter λ controls the step size and can be set to satisfy the distance constraint. In practice, it
serves a similar role to the learning rate in gradient descent.

B Metric tensors for common parameterizations

B.1 Elliptical Manifold

The manifold is given by:

M(s,P) = c+ a cos(2πs) + b sin(2πs)

where P = (c,a,b).

The Jacobian with respect to the parameters c, a, and b is:

∂M
∂P

= [I, cos(2πs)I, sin(2πs)I]

The metric tensor is:

13

M(s) =

(
∂M
∂P

)T
∂M
∂P

=

 I cos(2πs)I sin(2πs)I
cos(2πs)I cos2(2πs)I cos(2πs) sin(2πs)I
sin(2πs)I cos(2πs) sin(2πs)I sin2(2πs)I

Integrating the metric tensor over s ∈ [0, 1] yields 2:

∫ 1

0

M(s) ds =

I 0 0
0 1

2I 0
0 0 1

2I

The inverse of the integrated metric tensor is:

(∫ 1

0

M(s) ds

)−1

=

[
I 0 0
0 2I 0
0 0 2I

]

Given the local gradient g(s) =
(
∂M
∂P

)T ∇ℓ(M(s)), the optimal update is:

∆P = − 1

2λ

(∫ 1

0

M(s) ds

)−1 ∫ 1

0

g(s) ds

Substituting the inverse of the integrated metric tensor:

∆P = − 1

2λ

[
I 0 0
0 2I 0
0 0 2I

]
∫ 1

0
∇ℓ(M(s)) ds∫ 1

0
cos(2πs)∇ℓ(M(s)) ds∫ 1

0
sin(2πs)∇ℓ(M(s)) ds

The final update becomes:

∆P = − 1

2λ

∫ 1

0
∇ℓ(M(s)) ds

2
∫ 1

0
cos(2πs)∇ℓ(M(s)) ds

2
∫ 1

0
sin(2πs)∇ℓ(M(s)) ds

B.2 B-Spline Parametrization

B-splines provide a flexible and numerically stable way to represent curves in weight space. A
B-spline manifold is parametrized as:

M(s,P) =

n∑
i=0

PiBi(s) (33)

where P = (P0,P1, . . . ,Pn) are the control points in weight space, and Bi(s) are the B-spline
basis functions of degree k.

Below, we will derive the metric tensor for the parameterization, assuming that the basis points are
distributed strictly uniformly over the line. This assumption simplifies the metric, but would require
maintaining uniformity through optimization via a constraint.

2a large language model was used to assist with evaluating this integral

14

B.2.1 Metric Tensor Derivation

To apply our manifold optimization approach, we need to compute the integrated metric tensor
M =

∫ 1

0
M(s)ds. The Jacobian matrix is:

∂M
∂P

= (B0(s)I B1(s)I · · · Bn(s)I) (34)

where I is the identity matrix with the same dimension as the network parameters. The local metric
tensor is:

M(s) =

(
∂M
∂P

)T
∂M
∂P

=

B0(s)

2I B0(s)B1(s)I · · · B0(s)Bn(s)I
B1(s)B0(s)I B1(s)

2I · · · B1(s)Bn(s)I
...

...
. . .

...
Bn(s)B0(s)I Bn(s)B1(s)I · · · Bn(s)

2I

 (35)

To compute the integrated metric tensor, we need to evaluate:

Mij =

∫ 1

0

Bi(s)Bj(s) ds · I (36)

B.2.2 Cubic B-Splines on Uniform Knots

For cubic B-splines (k = 3) on a uniform knot sequence with spacing h, each basis function Bi(s) is
nonzero only over four adjacent knot spans. Note that the spacing can be assumed to be uniform in s
such that h = 1/n for n knots.

B.2.3 Definition of Cubic B-Spline Basis Functions

For a uniform knot sequence, the cubic B-spline basis function Bi(s) can be explicitly defined as:

Bi(s) =
1

6h3

(s− si−2)
3, s ∈ [si−2, si−1)

(s− si−2)
3 − 4(s− si−1)

3, s ∈ [si−1, si)

(si+2 − s)3 − 4(si+1 − s)3, s ∈ [si, si+1)

(si+2 − s)3, s ∈ [si+1, si+2)

0, otherwise

(37)

A key property is that Bi(s)Bj(s) = 0 if |i − j| > 3, meaning the metric tensor has a banded
structure with bandwidth 3.

B.2.4 Integration of B-Spline Products

To evaluate the integrated metric tensor, we need to compute the integrals of products of B-spline
basis functions. Due to the compact support and piecewise polynomial nature of B-splines, these
integrals can be computed analytically.

The analytical integration of products of B-spline basis functions yields 3:

Mij =

∫ 1

0

Bi(s)Bj(s)ds · I =

1

140 · I, if |i− j| = 3
1
60 · I, if |i− j| = 2
11
140 · I, if |i− j| = 1
1
20 · I, if |i− j| = 0

(38)

For a system with n + 1 control points (from P0 to Pn), the integrated metric tensor M has the
following banded structure:

3a large language model was used to assist with evaluating this integral

15

M =
1

420
·

21 33 3 1 0 . . . 0
33 21 33 3 1 . . . 0
3 33 21 33 3 . . . 0
1 3 33 21 33 . . . 0
0 1 3 33 21 . . . 0
...

...
...

...
...

. . .
...

0 0 . . . 1 3 33 21

· I (39)

The inverse of this metric tensor is required for the optimal manifold perturbation as shown in
Theorem 1. This matrix is invertible as it is a Gram matrix; this inverse can be precomputed and used
for all updates.

C Supplement: Algorithmic details

Below is an algorithmic specification of our update rule.

Algorithm 1 Efficient Manifold Optimization
Require: Training data D = {(xi,yi, si)}Ni , manifold typeM with basis size n, network F

1: Initialize manifold parameters P for each layer in F
2: for each epoch do
3: for each batch {(xi,yi, si)}Bi ⊂ D do
4: // Forward pass
5: for each weight W(s) =

∑N
k ak(s)Wk in each layer in F do

6: Compute outputs for basis points matrices {Wkx}nk
7: For each example, get outputs for the batch as {zi =

∑n
k ak(s)Wkxi}Bi

8: Apply nonlinearities to zi
9: end for

10: Compute loss L = ℓ(ŷ, y) using final outputs ŷ
11: // Backward pass
12: Compute gradients∇PL via auto-differentiation
13: Apply manifold-specific rescaling: ∇PL←M−1∇PL
14: Update manifold parameters using rescaled gradients
15: end for
16: end for

D Supplement: Additional methods details

Throughout the manuscript, the term ‘CNN’ specifically refers to a network with 3 convolutional
layers with [32, 64, 128] filters and kernel size of 3, followed by a MLP with one layer of 512 features.
Each convolutional layer is followed by max pooling with a window shape and stride of 2, and all
nonlinearities are ReLU.

All experiments in the main manuscript use SGD with a learning rate of 0.01 and momentum of 0.9.

For the ‘concat’ conditioning strategy, the conditioning information was injected into the CNN
after the convolutional layers, and before the fully connected layers. For the ‘embed’ strategy,
an embedding layer with width 32 was created which sees the conditioning information, and the
embedding was concatenated the flattened output of the convolutional filters.

All experments were carried out on Nvidia H100 cards. For consistency, we report the mean
and standard deviations of 20 random initialization seeds. For efficiency, these 20 networks were
v-mapped in Jax and thus see the same data in the same order, i.e. share a data seed.

16

a b c

Figure 4: a) We train an elliptical manifold in the space of weights of the same CNN architecture in
the main manuscript on rotated CIFAR-10, conditioning on rotation angle by mapping it to ellipse
phase. Interestingly, we find that Adam and AdamW do not show meaningful improvements over
SGD with momentum. b) Manifolds can also be trained without conditioning on task variables. Here,
we train an ellipse on CIFAR-10 using several optimizers, randomizing for each example which
network on the manifold is chosen. Convergence accuracy is identical to training a point network. c)
Here, we train on the identical task in panel b but using a ResNet18 architecture with LayerNorm.
Manifolds and single points (i.e. standard training) perform similarly.

E Additional experiments

Here, we extend the experiments in the main manuscript to other optimizers, architectures, and to
cover the case when the entire manifold is trained on the same objective with the same data rather
than conditioned on side information. The training details are as follows.

Panel a: Here, we train an elliptical manifold of CNN weights using Adam and AdamW. As with
the SGD, the gradients on the basis points after metric rescaling were fed directly into standard Optax
optimizers. Learning rates were tuned in the range 1e-5 to 1e-3 on each optimizer, with optimal rates
at 0.01 for SGD and 0.0002 for Adam variants.

Panel b: Here, we train an identical CNN architecture with standard optimizers on the standard
(not-rotated) CIFAR-10 task, and contrast this to training an elliptical architecture over weights but
without conditioning. To ensure that the entire manifold is good at CIFAR-10, a random point on the
manifold was used on each example.

Panel c: Similar to b, but using a ResNet-18 architecture with LayerNorm normalization layers.

17

	Introduction
	Inspiration from neuroscience
	Modulating a network conditioning a network

	Optimizing a weight manifold: a formal treatment
	Weights as parameterized functions
	Optimization
	The variational problem
	Solving for P
	Manifolds with analytic 3mu-3muM-3mu3mu-1

	Practical Implementation: Efficient Optimization of Weight Manifolds

	Empirical results
	Generalization to unseen conditions
	Controllable regularization of networks

	Related work
	Broader impact
	Discussion
	Supplement: Mathematical details of manifold optimization
	Theorem 1: Optimal Manifold Perturbation
	Proof of Theorem 1

	Metric tensors for common parameterizations
	Elliptical Manifold
	B-Spline Parametrization
	Metric Tensor Derivation
	Cubic B-Splines on Uniform Knots
	Definition of Cubic B-Spline Basis Functions
	Integration of B-Spline Products

	Supplement: Algorithmic details
	Supplement: Additional methods details
	Additional experiments

