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Abstract

In the current work, we connect token-level uncertainty in causal language model-
ing to two types of training objectives: 1) masked maximum likelihood (MLE), 2)
self-distillation. We show that masked MLE is effective in reducing epistemic un-
certainty, and serve as an effective token-level automatic curriculum learning tech-
nique. However, masked MLE is prone to overfitting and requires self-distillation
regularization to improve or maintain performance on out-of-distribution tasks.
We demonstrate significant performance gain via the proposed training objec-
tive - combined masked MLE and self-distillation - across multiple architectures
(Gemma, LLaMA, Phi) and datasets (Alpaca, ShareGPT, GSM8K), mitigating
overfitting while maintaining adaptability during post-training. Our findings sug-
gest that uncertainty-aware training provides an effective mechanism for enhanc-
ing language model training.

1 Introduction

Training large language models (LLMs) through next-token prediction with a maximum likelihood
objective has shown remarkable generalization capabilities in diverse tasks Chung et al. [2022],
Ouyang et al. [2022], Touvron et al. [2023a], Wang et al. [2022], Zheng et al. [2023]. The power
of the self-supervised training objective lies in its ability to unify a wide range of language model-
ing tasks (e.g. grammatical correctness, arithmetic, code generation). However, despite their power
and wide adoption, LLMs still suffer from issues such as hallucinations that could stem from over-
fitting to the training data, particularly during the post-training stage, where the size and diversity of
the training set are limited.

In the present work, we examine the heterogeneous nature of tokens and their associated aleatoric
and epistemic uncertainties more carefully Hüllermeier and Waegeman [2021], Gupta et al. [2024],
Fadeeva et al. [2024]. Aleatoric uncertainty refers to the inherent irreducible stochasticity in the data,
whereas epistemic uncertainty refers to model limitations that can potentially be reduced with addi-
tional information or a better model. We argue that, as opposed to the vanilla maximum likelihood
estimation (MLE) objective, further performance gain could be obtained by focusing on learning to-
kens with high epistemic uncertainties, while avoiding overfitting by maintaining adequate aleatoric
uncertainty estimation on remaining tokens. This issue is particularly prevalent in post-training,
where the pre-trained model must simultaneously adapt to new response patterns (high epistemic
uncertainty tokens) while retaining generalization across diverse tasks.

However, accurate uncertainty estimation requires aggregating predictions over a large model
ensemble obtained by, for example, stochastic forwards by Monte Carlo Dropout Sampling
Gal and Ghahramani [2016] (MCDO). As MCDO could require hundreds of forward passes to con-
verge, a simpler alternative is required to be used during training. We show that the model’s pre-
dictive loss, which only requires single forward pass to compute, is a good proxy for epistemic un-
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Figure 1: Proposed training procedure combines maximum likelihood with self-distillation training
objective to improve both in-distribution and out-of-distribution performances.

certainty estimated via Bayesian Activate Learning by Disagreement (BALD) Houlsby et al. [2011],
Kirsch et al. [2019].

Through extensive experiments on multiple architectures (Gemma Team et al. [2024a,b],
LLaMATouvron et al. [2023a,b], Grattafiori et al. [2024], PhiAbdin et al. [2024]), datasets (Alpaca,
ShareGPT, GSM8K) and downstream tasks (AlpacaEval, IF-Eval, GSM8K), we show that training
only on tokens with high loss (masked MLE objective) results in strong in-distribution performance
gain compared to vanilla MLE baseline. As epistemic uncertainty reduces with training, the masked
MLE objective also provides a natural token-level automatic curriculum learning.

Finally, we observe that training only on tokens with high epistemic uncertainty via the masked
MLE objective leads to poor out-of-distribution generalization as a result of overfitting. We show
that such issues could be remedied by combining masked MLE on high-loss tokens with a distillation
objective on the remaining tokens as shown in Fig. 1.

In conclusion, we propose an uncertainty-aware training objective that outperforms the predominant
MLE objective in post-training across both in-distribution and out-of-distribution tasks.

2 Related Works

Training Data Selection Training (core-set) data selection aims to identify a subset of the train-
ing data that can effectively represent the entire dataset. Prior arts draw inspiration from a wide
range disciplines, ranging from computational geometry Sener and Savarese [2018], gradient-based
selection Mirzasoleiman et al. [2020], Xu et al. [2021], Killamsetty et al. [2021], influence func-
tions Wang et al. [2020], statistical mechanics Sorscher et al. [2023] and implicit reward modeling
Zhou et al. [2024]. In the current work, we focus on token-level data selection methods Lin et al.
[2025].

Curriculum Learning Curriculum learning aims to improve model training by presenting data
in a meaningful order, and has been shown to be effective across computer vision Bengio et al.
[2009], Weinshall et al. [2018] and language modeling Elman [1993], Xu et al. [2020], Zhang et al.
[2018] tasks. In recent years, automated methods of curriculum designs have been proposed based
on model competence Platanios et al. [2019], model ranking Sachan and Xing [2016], and gradient
norm Liu et al. [2020].

Uncertainty Estimation Uncertainty estimation Hüllermeier and Waegeman [2021] and related
areas such as conformal prediction Quach et al. [2024], Yadkori et al. [2024], model calibration
Kong et al. [2020], Desai and Durrett [2020] are foundational areas of research especially in the
context of large language models Malinin and Gales [2021]. Uncertainty can be estimated via
Bayesian model ensembles Pearce et al. [2018] such as Monte Carlo Dropout Gal and Ghahramani
[2016] and deep ensembles Lakshminarayanan et al. [2017]. Uncertainty is classified into aleatoric
(data/irreducible) and epistemic (model/reducible) types, which can be separately estimated either
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via uncertainty estimation heads Nix and Weigend [1994], Kendall and Gal [2017] or Bayesian Ac-
tive Learning by Disagreement Houlsby et al. [2011].

3 Heterogeneous Token-Level Uncertainty

Traditionally, the training loss of a single datum (i.e. single document in the training corpus) is
aggregated across all tokens by taking their average (or sum) of losses. This metric is intuitive in
that minimizing such metric is equivalent to maximizing the overall joint likelihood of all tokens in
the entire document (we refer to this objective as vanilla MLE), which asymptotically converges the
model to the data generating distribution (as illustrated in Fig. 1 1©).

Figure 2: (A) Token level uncertainties, predictive loss and entropy for Gemma-2B-it. Note that
only tokens in the completion are color coded by the various uncertainty and loss metrics. (B)
Correlation between uncertainty (epistemic/aleatoric) and model metrics (predictive loss/entropy) in
language modeling of Alpaca dataset across models. (C) Effect of training on different data subset
with varying degree of aleatoric/epistemic uncertainty varied based on distance from solution.

However, equally weighting all tokens is not the optimal objective due to (at least) two reasons.
First, when data has input-dependent noise that is not uniform across all tokens, this will affect the
likelihood in a per-token and heterogeneous manner. This is a case of aleatoric noise, referring to
noise inherent to the data and due to the environment. In this case it is proper to weigh low-noise
tokens higher according to the aleatoric noise level.

A second, competing force is the effect of reducible model uncertainty, called epistemic uncertainty,
which decreases with model training. If this is known, a Bayesian active learning framework pre-
scribes that the most important data points (tokens) are those which maximally reduce model uncer-
tainty. These can be intuitively understood as the most surprising examples (tokens).
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It is important to recognize that the appropriate weights in the MLE objective for each token dif-
fer in the aleatoric and epistemic components, and that this tradeoff changes with model training.
To demonstrate this in a well-understandable example, we explored a toy linear regression model
where we artificially inject known heteroscedastic aleatoric noise, and compared reduction in vali-
dation loss by training on single datum. We show that, in linear regression, training should focus
on reducing epistemic uncertainty when far from optimum and focus on avoiding data with high
aleatoric uncertainty when close to optimum (see Fig. 2(C) for results and Appendix. C.1.1 for de-
tailed description of the experimental procedure). This observation is confirmed by a toy MNIST
classification example as shown in Appendix C. In the beginning of training, the epistemic uncer-
tainty is uniform across examples, and it is preferable to prioritize low-aleatoric-noise examples.
Later, the epistemic uncertainty decreases faster for low-aleatoric-noise examples, and the impor-
tant points become the high-epistemic-uncertainty examples.

One of our central claims is that these effects are exaggerated in LLM training due to the nature of
the task. LLM training is inherently a massively multi-task endeavor at the token level: individual
tokens contribute to a wide range of linguistic and cognitive tasks. This multi-task nature of language
model is made apparent when comparing the uncertainty levels at individual tokens. We observe in
Fig. 2(A,B) that, across models and datasets, epistemic (resp. aleatoric) uncertainty vary greatly
between tokens (see also the overall statistics of per-token losses in Fig. 9 in Appendix. A). This
high degree of uncertainty variability across tokens can be exploited to bias the training objective
depending on whether a token is in high or low epistemic regime.

To construct the aleatoric and epistemic uncertainty levels for LLMs, we rely on Monte Carlo
dropout sampling to construct an ensemble Gal and Ghahramani [2016]. Define the output prob-
ability of an autoregressive model with parameters θ as π(x|x<t, θ). We can estimate the aleatoric
uncertainty as the entropy of the output classes, marginalized over the ensemble:

Ualeatoric = Eθ[H [π(x|x<t)]]

The epistemic uncertainty can be calculated via Bayesian Active Learning by Disagreement
Nix and Weigend [1994], Kendall and Gal [2017].

Uepistemic = H [Eθ[π(x|x<t)]]− Eθ[H [π(x|x<t)]]

While these metrics provide useful understanding about how and when tokens should be weighted,
they are not practical algorithms for training as they require multiple (hundreds) forward passes
to estimate. Here, we report that epistemic and aleatoric losses have definite correlations with the
model’s predictive loss and output entropy as shown in Fig. 2(B). In particular, the epistemic uncer-
tainty is more correlated with predictive loss than entropy, vice versa for aleatoric uncertainty. This
means that useful approximations can be used in practice to achieve higher performance gain.

Given these results, we propose to aggregate MLE loss only on tokens with high loss during training
(masked MLE). Simultaneously, we can avoid overfitting by incorporating self-distillation which
preserves information regarding aleatoric uncertainty of the remaining tokens.

4 Experiments

4.1 Experimental Setup

Given resource constraints, for our experiments on finetuning pretrained LLM using different
masked objectives, we chose three smaller base models Gemma-2B, Gemma-2-2B, and Llama-3.2-
1B. All models were trained using rank-32 Low Rank Adaptation (LoRA) on all linear modules with
α = 64. Unless specified otherwise, all models were finetuned for 1 epoch on the training dataset
with batch-size 32, at learning rate 1e-4 with cosine learning rate schedule.

Training & Evaluation Datasets Models were trained and evaluated using a wide range of
datasets/tasks as shown in Table 1. Each trained model is evaluated on all tasks to gauge both
in-distribution and out-of-distribution performances.

The performance evaluations presented in the current work focus on comparison of training with
modified objectives against the baseline (vanilla MLE). For freeform QA tasks such as AlpacaEval,
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Task Training Evaluation Train/Test Size

Single-Turn QA Alpaca AlpacaEval 2.0 52K/805
Multi-Turn QA ShareGPT - 52K/-
Instruction Following - IF-Eval -/541
Math. Reasoning GSM8K GSM8K 7.5K/1.5K

Table 1: Training and Evaluation benchmarks for each task considered in the current work. Note
that model trained using each training dataset is evaluated against all downstream tasks to gauge
both in-distribution and out-of-distribution performances.

Figure 3: In-Distribution performance gain of token-level masked MLE compared to baseline
(vanilla MLE) and document-level masked MLE. Models were trained on (top) Alpaca and (bot-
tom) GSM8K via masked MLE objective on tokens wiht top 25% quantile metric value.

the experiment generations (models trained with objectives other than MLE) were evaluated head-to-
head to the generations from the baseline (model trained with MLE), adjusted for both length and po-
sitional biases. Given the scale of the experiments, we opted to use Qwen/Qwen2.5-7B-Instruct
model as the judge, which in Oct. 2024 was the highest ranked judge model on Judge Arena that
is smaller than 50B in parameter size. For tasks with ground truth metrics such as IF-Eval and
GSM8K, we report both the raw performance metrics as well as the normalized the model perfor-
mance ((model - baseline) / baseline).

4.2 In-Distribution Performance of Token-Level Masked MLE

We show that the fine granularity of token-level masked MLE objective provides superior in-
distribution performance than document-level loss masking. We choose 25% of document/tokens to
compute MLE losses based on either 1) entropy, 2) loss or 3) Reducible Holdout Loss (RHO). For
reference, random selection was also included.

We observe that, as shown in Fig. 3 (and Fig. 6(A)), the finer granularity of token-level masked ob-
jective offers superior performance to the document-level counterpart. We observe that training with
tokens with highest loss is the only method that consistently outperformed baseline on AlpacaEval
in a statistically significant manner. Henceforth, we refer to Masked MLE as training on tokens with
highest loss via the MLE objective.

As training progresses, the distribution of epistemic uncertainty naturally progresses from structural
patterns (e.g., “<end_of_turn>”) to complex content (e.g., arithmetic) as shown in Fig. 4. Thus
providing a new approach to automatic curriculum at a token-level, allowing for fine-grained control
over the training process.
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Figure 4: Example of automatic curriculum learning as a result of training on high epistemic un-
certainty (color-coded) tokens. Note that while both prompt and response tokens are color coded,
losses are only computed and propagated for response tokens during training.

Figure 5: Downstream performance of (top) Llama-3.2-1B and (bottom) Gemma-2B trained on
Alpaca dataset with different training objectives.

4.3 Regularization via Self-Distillation Improves OOD Performance

The improved performance of masked MLE comes at the cost of overfitting to the training dataset.
As shown in Fig. 5 and Fig. 6(A), the improved Alpaca-Eval performances from finetuning Llama-
3.2-1B and Gemma-2B on Alpaca dataset via masked MLE objective result in deterioration of both
IF-Eval and other downstream task performances.

To address the issue of over-fitting, we propose to incorporate self-distillation to ensure aleatoric
uncertainty is captured by the model on tokens with low epistemic uncertainty. Thus resulting in the
final training objective of Masked MLE + Distill as shown in Fig. 1 and Fig. 6, given as:

Lit =

{
− log pθ(x

i
t|x

i < t) high loss
∑

x∈V −pref(x|x
i
<t) log pθ(x|x

i < t) otherwise,

where pref is the base model finetuned on the same dataset via the vanilla MLE objective.

As shown in Fig. 5, this training objective simultaneously improves in-distribution performance and
out-of-distribution generalization for both Llama-3.1-1B and Gemma-2B model trained on Alpaca
and ShareGPT (see Fig. 6 (right)) datasets.

We note that the 25% quantile was chosen arbitrarily and tuning of this hyperparameter could poten-
tially lead to stronger overall performance, which we leave for furture studies.
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Figure 6: (A) Single-Turn QA (in-distribution) and Instruction-Following (OOD) performance gain
over MLE baseline. (B) Fraction of all tasks where a training objective beating baseline.

5 Limitations

Data Selection Granularity and Computational Savings While token-level selection pro-
vides fine-grained control over training, its computational benefits are more limited compared to
document-level selection due to the underlying mechanics of transformer computation. Token-level
selection requires the full model forward and backward, with savings only in the final classification
layer which is negligible for very large models.

This modest computational benefit of token-level reselection suggests its primary value lies in its
ability to induce better learning dynamics and approximate reward signals, rather than in training
efficiency. Future architectures that allow for more efficient sparse attention computation could
potentially improve these savings, but with current transformer implementations, document-level
selection remains substantially more efficient for reducing computational costs.

Data Curriculum and Model Curriculum While our token-level selection method demonstrates
the emergence of an effective data curriculum, the model capacity does not change commensurately.
A more comprehensive curriculum would jointly optimize both the data distribution and model
complexity, and we leave the exploration of the Pareto frontier of data and model curricula for
future works.

6 Conclusion

In conclusion, we show that uncertainty estimation provides a new way of examining training objec-
tive in language model at a token-level. We propose a novel training objective that combines masked
maximum likelihood and distillation objective that improve model performance on in-distribution
and out-of-distribution downstream tasks.
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Figure 7: Token level uncertainty and loss metrics for Llama-3.2-8B-Instruct.

Figure 8: Token-level and datum-level losses of Phi-3.5-Mini-Instruct on two data points in the
GSM8K dataset.

A Token-Level Uncertainty via Dropout Ensemble

LLM training is inherently a multi-task as individual tokens contribute to a wide range of linguistic
and cognitive tasks, such as:

• Sentiment analysis (e.g., “The movie was excellent !”)

• Grammar and syntax (e.g., “The cat sat on the mat.”)

• Variable definition in code generation (e.g., “let x = 5;”)

• Arithmetic computation (e.g., “7 * 6 = 42 ”)

Which is demonstrated by both the high degree of loss variability at the token-level as shown in
Fig. 9, as well as the example in Fig. 7.

Here token-level uncertainties are estimated by Monte Carlo Dropout Sampling (MCDO) with 100
samples at dropout rate of 0.1. The total uncertainty is given by the entropy of the empirically
averaged predictive distribution, aleatoric uncertainty is given by the empirical average of entropy
of each MCDO sampled predictive distribution and epistemic uncertainty is their difference. In
effect, the epistemic uncertainty is equivalent to the Bayesian Active Learning by Disagreement
(BALD) objective. We note that measures of epistemic uncertainty should increase monotically with
parameter noise (dropout rate), which is confirmed for the BALD objective as shown in Fig. 10.

B Weighted Classification in Sequential Generative Modeling

In this section we formulate the weighted classification objective which unifies a wide range of
training objectives as well as data selection methods in sequential modeling.

Consider the following objective

max
θ

∑

(i,t)

∑

x∈V

wi,t(x) log pθ
(
x|xi

<t

)
(1)
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Figure 9: Distribution of datum-level and token-level losses across models and datasets.

Figure 10: Distribution of BALD metric across dropout rate for different models. Note that
BALD scales monotonically with increasing parameter noise, consistent with the notion of epis-
temic uncertainty. Also note that different models have different degree of sensitivity to dropout
ratio, partly due to the difference in the number of dropout modules in the model. For example
Phi-3.5-mini-instruct have 3 dropout modules at various levels of the model whereas LlaMA
models only have attention dropout.

where xi
<t is the context (the tokens before position t in sequence i), x ∈ V ranges over the vocabu-

lary V of size |V| = V and wi,t(x) is a token-level weight that scales the log-likelihood of predicting

token x given context xi
<t.

The formulation in (1) is general by design, admits a wide range of training objectives as special
cases:

• (Masked) Maximum Log-Likelihood Equivalent to CrossEntropyLoss with 1-hot labels, the
weights are given as

wi,t(x) = δ(x = xi
t),

which is the standard training objective in pre-/post-training (supervised fine-tuning) of language
models. This formulation further admits masked MLE objective which encompasses training with
core-set selection, where weights are given as

wi,t(x) = δ(x = xi
t)m

i
t

for some token-level mask mi
t ∈ {0, 1} that either includes or discards a token from the training

objective.
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• (Forward) Knowledge Distillation Equivalent to CrossEntropyLoss with full teacher distribu-
tions, where the weights are given as.

wi,t(x) = pteacher(x|x
i
<t),

This formulation further admits a special case of truncated KL divergence,

wi,t(x) = pteacher(x|x
i
<t) δ

(
x ∈ X i

t),

where X i
t , |X

i
t | ≤ |V| is some set of admissible tokens. Truncated KL divergence has previously

been been shown to improve student LM performance performance. Note that the this formulation
does not include reverse distillation which minimizes the objective DKL(pteacher||pstudent) (which
includes an entropy term of the student model in the objective). However, since the effectiveness
of reverse distillation is unclear, we omit this training objective from our formulation.

• Policy Gradient For techniques such as Proximal Policy Optimization (PPO) and Group Relative
Policy Optimization (GRPO), the weights are given as

wi,t(x) = A(x|xi
<t)

where A(·) is the advantage function of token x given context. Note that we omit the KL regular-
ization terms here for brevity.

• Weighing due to aleatoric (heteroskedastic) noise When labels are noisy and furthermore this
noise on labels is input-dependent, and not uniform across examples, the likelihood function
changes. The effective result of this is a per-example weighting of the log-likelihood. In Least-
Squares regression, for example, adjusting for the input-dependence variance of noise results in
Weighted Least Squares. In a classification setting, one instead considers the oracle distribution
poracle as capturing the true aleatoric label noise. If this is known (which is rare, although such
datasets are becoming more common, e.g. Wei et al. [2021]), then,

wi,t(x) = poracle(x|x
i
<t).

Note the similarity of this objective to model distillation.

• Active learning via epistemic uncertainty In an active learning setting, the goal is to select
examples for optimal learning, considering one’s current uncertainty. A principled formulation of
this is Bayesian active learning, a task-agnostic formulation which aims to decrease the uncertainty
over the model parameters. This can be expressed through a data masking function δ(x = xi

t) that
selects points which maximize expected information gain:

Ex∼pθ(·|xi
<t

)

[
DKL(p(θ|x

i
<t, x)|p(θ|x

i
<t))

]
,

where p(θ|xi
<t) represents the current posterior over model parameters and p(θ|xi

<t, x) is the
updated posterior after observing example x. In practice, this expectation can be approximated
using ensemble methods or Monte Carlo dropout, leading to computationally tractable uncertainty
estimates that guide the selection of informative examples for training (e.g. Kirsch et al. [2019]).

B.1 Comparing Three Special Cases

Assuming we are given training labels {xi
t}i,t sampled from some oracle distribution pteacher, and

assume that there exists an oracle reward model (and consequently an oracle advantage function A),
we argue that the performance of the student model trained via the three above objectives would
follow the order of:

Policy Gradient ≥ Knowledge Distillation ≥ MLE
︸ ︷︷ ︸

Distribution Matching

Policy Gradient vs. Distribution Matching - Task Alignment It is easy to see that Policy Gra-
dient and distribution matching objectives are equivalent when A(x|xi

<t) = pteacher(x|x
i
<t). This

corresponds to perfect “task alignment”, where the teacher model is optimized for the downstream
task of interest. This assumption holds true for tasks such as image classification, as evidenced
by the high correlation (> 0.95) between model likelihood scores and classification accuracy, and
by the asymptotic convergence of maximum likelihood training towards optimal performance (e.g.
super-human results on benchmarks like ImageNet).
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However, for language modeling, the alignment between downstream task performance and distribu-
tion matching to the data generating distribution varies substantially across domains. For example,
open domain QA tasks would exhibit higher correlation between likelihood and human preferences
as compared to structured reasoning tasks such as maths and code generation.

As shown by DeepSeek-R1, pure reward maximization via policy gradient can lead to state-of-the-
art performance on downstream tasks with oracle reward models (e.g. reasoning tasks with objective
ground truths). However, for majority of open domain tasks that do not have ground truth reward,
training with RL is prone to reward hacking and requires frequent data labeling and retraining of
reward model to ensure that the reward model adapts to the changing distribution of the underlying
language model. Fortunately, for such tasks, results above shows that distance to data generating
distribution is predictive of task performance.

C Data and Model Curriculum in Toy Models

In this section, we study the effect of biasing training on different samples based on model perfor-
mance and uncertainty estimations in two toy modes: linear regression and MNIST classification
with MLP.

C.1 Linear Regression

Consider the problem of linear regression, where for a linear system of equation Zw = d, we want
to find the optimal parameter w by solving the following optimization problem:

min
w
L(w) = min

w

1

2
‖Zw − d‖22 (2)

where for Z ∈ R
N×D is the measurement matrix, w ∈ R

D is parameters and d ∈ R
N is the

observation. Note that the linear regression problem can be applied to a wide range of problems
including both polynomial regression and sequence modeling (e.g. autoregressive modeling).

The linear optimization problem can be solved via gradient descent where the gradient update is
given as

wk+1 = wk − λ · ∇wL(w) = wk − λ · ZT (Zw − d) (3)

Here, we consider Data Subset Selection (Fig. 11a), which is akin to masked MLE objective dis-
cussed in the current work. Given a indicator function of the data entry ID ∈ {0, 1}

N , the updated
linear system and the associated gradient update is given as

Diag(ID) · Zw = d

∇wL(w)← (Diag(ID)Z)
T
(Zw − d)

(4)

We formulate the problem of finding the optimal subset ID in a greedy fashion: for each training
step given current estimate of the parameters wk, find the optimal subset such that the training loss
L(wk+1) is minimized.

For finding the optimal data subset ID, it can be shown that the optimal ID can be written as:

min
ID

L(wk+1) = min
ID

1

2
‖(I − λZZT

ID) (Zwk − y)
︸ ︷︷ ︸

ǫk

‖22 (5)

where wk is the parameter estimate at training step k, ǫk = Zwk − y ∈ R
N is the corresponding

residual error for the training dataset. It is easy to see that the optimal choice of ID is dependent
both on the current residual error and the covariance of training data ZZT . If the training data is
uncorrelated (or whiten-ed), which results in the covariance matrix ZZT being an identity matrix,
then the optimal choice of ID is exactly Diag(Top-K(ǫk)), where the selected data are those that
have the largest current residual error.

While the results above are only exact if very strong assumptions are place on the data matrix Z ,
we found that, in practice, these heuristics remain highly effective for arbitrary Z . In Fig. 11, we
compared the evaluation loss of models trained via the two heuristics on hold-out data against the
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(a) Training on data subset

(b) Results of Data Subset

Figure 11: Results of linear regression with training on data subset .

vanilla gradient descent using all of model parameters/gradients and all of the dataset (Full GD). We
also performed exhaustive search to find the globally optimal solution of ID at each step. Finally, we
also include random subset selection as baselines.

As expected, we note that the globally optimal solution (shown in red) that converges to the optimal
solution faster than the vanilla gradient descent algorithm for a fixed compute (in terms of number
of data trained or number of parameters updated).

In conclusion, we show that data subset selection during training can be done effectively and effi-
ciently via the maximum error heuristics for linear systems.

C.1.1 Effective of Data Uncertainty on Training

To measure the effect of training on data with different degree of epistemic and aleatoric uncertain-
ties, we first created a 5th degree polynomial with random coefficient as ground truth, and sampled
20 (x, y) pairs from the ground truth polynomial as training data. 100 uniformly spaced data in
range x ∈ [−1, 1] and their corresponding y values are computed as held-out validation data.

Aleatoric uncertainty is controlled by adding heteroscedastic Gaussian noise with known standard
deviation (0.1 · Unif(0, 1)) to the y value of each of the training datum. Epistemic uncertainty is
estimated by first adding 0-meaned Gaussian noise with standard deviation 0.002 to the coefficients
of the polynomial, and computing the the variance of 1000 y predictions for each x (with 1000
samples of the Gaussian noise).

We simulate different stages of training by adding 0-meaned Gaussian with standard deviation in
range [10−3, 1] to the ground truth coefficients. For each noisy coefficient value, we perform 1
gradient descent step with learning rate 0.01 on each of the 20 data points (with aleatoric noise
added), and compute the amount of validation error decrement before and after training. This allows
us to have accurate per-datum information on the impact of training on a given datum, which we can
relate to the amount of aleatoric and epistemic uncertainty of the said datum.

To evaluate how training on data with varying degree of aleatoric/epistemic uncertainty affects model
performance at different stages of training, we computed Spearman Ranked correlation between
uncertainty level and validation error decrement as shown in Fig. 2(C). We observe that when co-
efficients are far from ground truth, epistemic uncertainty is important for improving model per-
formance. In contrast, as model converges to ground truth, training on data with high epistemic
uncertainty can lead to worsening in model performance, and we instead ought to focus on avoiding
overfitting to data with high aleatoric uncertainty.
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Figure 12: Test accuracy vs. training epoch when trained on data in different loss quantile.

C.2 MNIST Classification with MLP

We applied the maximum-error data selection heuristic to the more complex problem of MNIST
Classification with MLP model. Note that this problem differs from that of the linear regression
problem described in the previous section both in terms of its complexity but also the optimiza-
tion’s convexity, as image classification via MLP is known to be a highly non-convex optimization
problem.

We chose a MLP model with two hidden layers of sizes 32 and 16 respectively and ReLU activation
function. The model is trained on the MNIST training set for 20 epochs using a constant learning
rate of 0.01 and batch-size of 256 with Stochastic Gradient Descent (SGD) optimizer.

To validate the effectiveness of the heuristics, we compared the test accuracy of the model trained
using data with losses in different quantiles. Note that, as opposed to linear regression, the larger
number of training data and parameters makes computing the quantiles for data losses globally
(across all training data) infeasible. Instead, we opted to computed the quantiles in-batch. In Fig. 12,
we show the test accuracy across training epochs for training on 10% subsets of loss. We observe that
test accuracy increases almost monotonically with increasing quantiles, suggesting that the heuristics
of choosing the data that require the most amount of update remains effective for the non-convex
MNIST problem.
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