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The brain is a complex system comprising a myriad of interacting neurons, posing significant challenges in understanding its struc-
ture, function, and dynamics. Network science has emerged as a powerful tool for studying such interconnected systems, offering a
framework for integrating multiscale data and complexity. To date, network methods have significantly advanced functional imaging
studies of the human brain and have facilitated the development of control theory-based applications for directing brain activity.
Here, we discuss emerging frontiers for network neuroscience in the brain atlas era, addressing the challenges and opportunities in
integrating multiple data streams for understanding the neural transitions from development to healthy function to disease. We
underscore the importance of fostering interdisciplinary opportunities through workshops, conferences, and funding initiatives, such
as supporting students and postdoctoral fellows with interests in both disciplines. By bringing together the network science and neu-
roscience communities, we can develop novel network-based methods tailored to neural circuits, paving the way toward a deeper
understanding of the brain and its functions, as well as offering new challenges for network science.
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Introduction
During the past two decades, network science has become a vital
tool in the study of complex systems, offering a wide range of an-
alytical and algorithmic techniques to explore the structure of a
complex, interconnected system (Albert and Barabási, 2002;
Newman, 2003). Previous reductionist approaches, built on dec-
ades of empirical research, have focused on the functioning of
individual elements while neglecting how their interactions give
rise to emergent aspects of organization. More recently, network
approaches helped map out the interactions between molecules,
cells, tissues, individuals, and organizations. It is becoming clear
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that network theory can aid neuroscience in understanding how
distributed patterns of interactions create function, accounting
for the complexity of integrated systems. At the same time, neu-
roscience introduces novel questions for network science, pro-
viding the potential for new tools and inquiries.

The brain, with its billions of cells connected by synapses, is
the ultimate example of a complex system that cannot be under-
stood through the study of individual components alone. In
order to unveil the neural basis of complex behaviors and func-
tions, such as perception, movement, cognition, memory, and
emotion, we must acknowledge and catalog the interactions
between the neurons, allowing us to integrate multiple levels of
observations and apply diverse approaches, including computa-
tional and mathematical modeling (Fornito et al., 2015; Bassett
et al., 2018; Pulvermüller et al., 2021). The goal of this perspective
is to outline how network science provides valuable insights and
methods that can greatly enhance our broader understanding of
brain function. Toward this goal, The Kavli Foundation convened
a workshop in which participants began to outline how recent net-
work science techniques can contextualize the emerging wave of
neuroscientific big data, focusing on three topics: neurodevelop-
ment, functional brain data, and health and disease. Below, we
summarize these discussion points and outline research frontiers
in which the fields of network science and neuroscience can jointly
benefit from defining common goals and language (Fig. 1).

Techniques
Neuroscience
In the recent past, technical and experimental advancements
in neuroscience have enabled scientists to study the brain at
increasingly finer scales, ranging from coarse circuit analysis to
whole-animal, cellular-level neural recording, connectivity map-
ping, and genetic profiling. While previous techniques already
necessitated the use of graph theoretical tools, recent data collec-
tion methods have started to offer a consistent stream of multi-
modal and high-quality connectomic reconstructions that make
the use of network science a necessity. For example, while a con-
nectome of Caenorhabditis elegans has been available since 1986
(White et al., 1986), recent advances in electron microscopy
(Abbott et al., 2020) have produced whole-animal wiring informa-
tion in Ciona Intestinalis (Ryan et al., 2016) and Platynereis
dumerilii (Verasztó et al., 2020), as well as brain-wide connectivity

maps for Drosophila at different stages of development (Eichler et
al., 2017; Scheffer et al., 2020; Winding et al., 2023), along with
partial connectomes for zebrafish (Hildebrand et al., 2017), mice
(Bae et al., 2021), and humans (Shapson-Coe et al., 2021). Single-
cell transcriptomics has also enabled rapid and diverse profiling of
cellular identity in various animals, developmental stages, and
brain health patterns (Zeng, 2022). Additional “bridge” techniques
allow for rapid acquisition of multimodal datasets, such as spatial
transcriptomics (Chen et al., 2019), promising physical and genetic
information of cells from a single measurement. These datasets
offer detailed connectivity and identity information about thou-
sands, and soon millions, of neurons. To analyze these data, and
to extract experimentally testable signals and hypotheses, we need
to integrate all data points via the use of network science tools,
which in turn will also necessitate further advancement of the cur-
rent tools in network science to address emerging challenges.

To study functional properties of individual neurons and
neural networks in the living brain, in vivo techniques, such as
two-photon microscopy (Grienberger and Konnerth, 2012)
and multiunit electrode recording (Steinmetz et al., 2018),
provide rapid profiling of local and mesoscale neuronal activ-
ity and anatomy in animal models, revealing principles of cir-
cuit organization and dynamic coding underlying a variety of
neural processes in sensory perception, movement control,
decision-making, and behavior generation. However, pres-
ently, the application of these approaches is largely restricted
to one or a few brain regions at a time. Technology advance-
ment is needed to monitor neuronal activities across multiple
brain regions and at high resolution, necessary to truly under-
stand the dynamic interplay of the different components of
the brain-wide circuits for brain function.

Currently, MRI is the primary technology for noninvasively
recording functioning brain networks in the human brain, either
by reconstructing white matter tracts using diffusion tensor imag-
ing or by inferring axonal connectivity through the measurement
of cytoarchitectural or morphometric similarity between brain
regions. The analysis of brain-wide neural activity maps has al-
ready broadly showcased the insight network neuroscience can
bring (Sporns and Betzel, 2016; Shine and Poldrack, 2018; Lurie
et al., 2020; Suárez et al., 2020), and the field continues to have
immense potential. For instance, the rapid growth and wide-
spread usage of datasets, such as the Allen Human Brain Atlas

Figure 1. Multiscale interaction in network development, function, and disease. a, Development: Neural connectivity emerges as a function of cell identity, linking network dynamics across
modalities and scales. Regulatory networks (top left) underlie cell differentiation, and protein–protein interactions guide morphologic maturation and synaptic specificity (top right). b,
Function: Structural connectivity guides the emergent possibilities of functional networks, determining the strength with which one neuron can influence the next (bottom). c, Disease: In a dis-
eased state, failures at multiple network levels lead to perturbed function. Genetic mutations cause disruptions in gene regulatory networks (top left), as well as conformation changes that
change protein–protein interactions (top right), potentially leading to loss of synaptic connectivity (dashed neurites). In turn, reduced connection strength between neuron disruptions activity
propagation (bottom), providing links between genetic changes and cognitive dysfunction.
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(Hawrylycz et al., 2012), highlight the need for a wider range of
human brain atlases that document gene expression and other
molecular or cellular phenotypes that are commensurate with
the structural phenotypes, such as volume and myelination. We
must integrate multiple levels of analysis and apply diverse
approaches, including computational and mathematical model-
ing, to successfully unravel the complexity of the brain net-
works and the role of its many interacting components. Future
functional brain profiling methods must also account for the
multiple cell identities and network features that define neuro-
nal systems.

Box 1: Common concepts in network neuroscience

Studying the brain requires moving across scales and
modalities, and a set of shared terms provides a common
reference frame. Structural connectivity refers to “ground-
truth” physically instantiated networks, such as measured
synaptic connections or axon tracts, while functional con-
nectivity represents estimates of statistical dependencies
between neural time courses. Similarly, dynamics of net-
works corresponds to changing of the connection topol-
ogy, such as synaptic updates or pruning, while dynamics
on networks refers to the neural activity patterns instanti-
ated on top of the structural connectivity.

Network science
Traditionally, neural connectivity is modeled as a simple graph, for-
malizing the brain as a set of nodes (neurons) connected by links
(synapses, gap junctions). Network science aims to go beyond the
study of such simple graphs: starting from the adjacency matrix of
the system, encoding who is connected to whom, network science
offers a suite of tools to characterize local and large-scale structure,
ranging from degree distributions to community structure, degree
correlations, and even controllability, exploring our ability to guide
the dynamics of the circuit. Yet, this “time-frozen” graph-based
approach highly oversimplifies the true complexity of the brain,
ignoring cell identities, signaling types, dynamics, and spatial and
energetic constraints that shape this complex organ. Emerging
approaches in network science offer a suite of tools to start captur-
ing this rich complexity, helping us analyze the structural and func-
tional brain data across scales (Betzel and Bassett, 2017).

For example, multiplex and multilayer networks provide a
framework for understanding and describing cell–cell relation-
ships and hierarchies, capturing the circuit motifs that can signif-
icantly impact the dynamical and topological properties of
functional networks. Indeed, multiplex networks can represent
multiple types of connections, such as synapses, gap junctions,
neuromodulators, and circulating gut peptides, within a single
formal framework (Bianconi, 2018; Presigny and De Vico
Fallani, 2022). Triadic interactions, in which a node affects the
interaction between two other nodes, can also be incorporated,
capturing, for example, how glia can influence the synaptic signal
between neurons (Sun et al., 2023). These triadic interactions can
lead to the emergence of higher-order networks, often repre-
sented as hypergraphs or simplicial complexes (Battiston et al.,
2020, 2021; Bianconi, 2021; Torres et al., 2021). Promise Theory
furthers network analysis by incorporating complex agent mod-
eling and conditional linkage, process interconnection language,
and accounting for the functional and structural diversity of cells
and their roles (Burgess, 2015, 2021).

Traditional network-based analyses of the brain have largely
ignored the spatial component of multiscale datasets, such as

geometry and morphology of neurons, treating them as point-
like nodes rather than physical objects with length, volume, and
a branching tree structure. At larger scales, numerous network
models have attempted to incorporate the physical dimension or
geometry of extended neural networks, through considerations
of wiring economy (Markov et al., 2013; Horvát et al., 2016),
metabolic cost, and conduction delays (Bullmore and Sporns,
2012). The emerging study of physical networks promises the
tools to explore how the physicality and the spatial organization
of the individual neurons and the noncrossing constraints affect
the network structure of the whole brain (Pósfai et al., 2022).
These approaches have the potential to address the metabolic
cost of building and maintaining wiring, and incorporate the
physical length of connections. There is a real need, for both
network science and neuroscience, to go beyond simple con-
nectivity information and incorporate the true physical nature
of neurons, informed by weighing cell properties with their
connections, allowing us to enrich our understanding of neuro-
nal circuit operations.

Application Areas
Neurodevelopment
System neuroscience and genomics have relied on a fruitful collab-
oration between theory and experiment. However, a similar sym-
biosis has so far escaped neurodevelopment. Neurodevelopment
has strong core principles, ripe for modeling, empowered by the
recent availability of rich connectomics, genomics, and imaging
datasets, from which computational and network-based analyses
can unleash rich insights. For instance, in addition to whole-body
behavior and neural recordings, C. elegans now has developmen-
tally resolved connectomes and transcriptomes (Boeck et al., 2016;
Witvliet et al., 2021), allowing for the integrated analysis of con-
nectivity, genetics, activity, and behavior, inspiring the ongoing ac-
quisition of similar datasets for larger organisms. The main use of
network tools in brain science has so far been limited to the map-
ping and analysis of static network maps, ignoring the temporal
scale of brain connectivity and especially the temporal aspects of
brain activity (i.e., network dynamics). However, a key discovery
of network science is that we must understand the regularities and
rules governing the growth and assembly of networks (i.e., the
evolving topology of their connectivity) to understand the origin
of the empirically observed network characteristics (A. L. Barabási
and Albert, 1999). Network science offers important tools to
address this gap, and hence can provide a comprehensive quanti-
tative framework to study and understand the temporal unfolding
of neurodevelopment across species. It offers the formal language
to describe, and then to analyze, how the emerging cell identity
and its physical instantiation lead to the observed connectivity of
the brain. Reciprocally, new insights from biological systems that
first establish and then prune structured networks may inspire
new network approaches (Wo�zniak et al., 2020).

One central question in this field is how neuron identity, cap-
tured by gene expression profiles, location, and shape, deter-
mines the wiring patterns of neurons and leads to stereotyped
connectivity and behavior. Network models of neurodevelop-
mental principles are needed, therefore, to validate hypotheses
and make predictions for future experiments. For instance,
Roger Sperry’s hypothesis that genetic compatibility drives neu-
ronal connectivity, helped infer the protein interactions that
underlie connectivity in C. elegans (D. L. Barabási and Barabási,
2020; Kovács et al., 2020) and in the Drosophila visual system
(Kurmangaliyev et al., 2020). These models are most successful
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when they take into account the affordances of the niche in which
organisms operate, including noise from data collection limita-
tions and spatial restrictions, offering more accurate descriptions
of the complex landscape of neuronal circuit construction.

Further work on cell migration, morphogenesis, and axon
guidance can help unveil the temporospatial considerations
that lead to specific circuit implementations and overall net-
work assembly. For example, the preconfigured dynamics of
the hippocampus have been shown to be influenced by factors,
such as embryonic birthdate and neurogenesis rate (Huszár et
al., 2022). Additionally, it is now known that certain network
features, including heavy tailed degree distributions, modular-
ity, and interconnected hubs, are present across species and
scales in the brain (Towlson et al., 2013; Buzsáki and Mizuseki,
2014; van den Heuvel et al., 2016). One potential explanation
for the conservation of these features is the existence of universal
constraints on the brain’s physical architecture that arise from the
trade-off between the cost of development, physical constraints,
and coding efficiency. In this context, it is likely that high-cost
components, such as long-distance intermodular tracts, are topo-
logically integrative to minimize the transmission time of signals
between spatially distant brain regions (Bullmore and Sporns,
2012). Further research in this area has the potential to improve
our understanding of the development and organization of the
brain, with potential implications for the diagnosis and treatment
of neurologic disorders, as we discuss later.

Brains are networks that do
In technological networks, such as the Internet or a computer
chip, structure and function are carefully separated: information
is encoded into the signal; hence, the role of the network is only
to guarantee routing paths between nodes. In the brain, however,
action potentials do not encode information in isolation. Instead,
the brain relies on population coding, meaning that encoding is
implemented by the patterns of signals generated by multiple
physical networks of connections. Thus, monitoring and quanti-
fying this network structure are critical for understanding how
neuronal coding achieves information processing. This makes
the structure of the network more than a propagation backbone;
it becomes an integral part of the algorithm itself (Molnár et al.,
2020). Thus, the connectome cannot be understood divorced
from the context of the actions it performs. Hence, the modules,
metrics, and generative processes that support robust representa-
tion need to be integrated with the structural representation.

While many recent studies have revealed ways in which task
structures are reflected in the networks of neural representations
(Chung and Abbott, 2021), little work has been done to elucidate
how such representational geometries arise mechanistically and
dynamically. Future research should aim to unveil how connec-
tivity patterns at multiple temporal and spatial scales influence
the population-level representational geometry, and how this
leads to the implementation of behaviorally relevant task dynam-
ics. For instance, hippocampal “cognitive maps” that support
reasoning in different encountered task spaces have a natural
extension to network formalism: each behavioral state can be a
node, and possible transitions between states are edges (Muller,
1996; Eichenbaum and Cohen, 2004; Stachenfeld et al., 2017;
George et al., 2021), a representation that can be extended to the
challenge of inducing latent networks from sequential inputs
(Raju et al., 2022). Further, we must account for the dual dy-
namics present in the brain: network connectivity defines the
possible functions that can be supported. In the reverse direc-
tion, the functional dynamics of the network allows synapses to

form and change, allowing dynamics (activity) to change the
connectivity of the underlying networks (Papadimitriou et al.,
2020). Important insights into brain function can be revealed
when dynamics taking place at the node level (single neurons,
brain regions) are integrated with dynamics taking place on
links (synaptic signals, edge signals) (Faskowitz et al., 2022) or
on higher-order motifs (Santoro et al., 2023), which are driven
by the network cyclic structure and its higher-order topology
(Millán et al., 2020). For instance, studying symmetrical com-
plexes, such as automorphisms (Morone and Makse, 2019) and
fibrations (Morone et al., 2020), in structural and functional
neural connectivities, has succeeded in unveiling the building
blocks for neural synchronization in the brain. Graph neural
networks (Battaglia et al., 2018; Bronstein et al., 2021), which
combine the benefits of network topology and machine learn-
ing, may also help us relate connectomically constrained graphs
to the neural dynamics that take place over them.

For a brain to perform the numerous processes it supports, it
is expected to simultaneously control the activity of the individ-
ual neurons, as well as the dynamics of individual circuits and
ultimately the full network. This represents an enormously com-
plex control task, as unveiled by recent advances in network con-
trollability that merged the tools of control theory and network
science (Liu and Barabási, 2016). These tools help us identify the
nodes through which one can control a complex neural circuit,
just like a car is controlled through three core mechanisms: the
steering wheel, gas pedal, and brake. Recent work used network
control to predict the function of individual neurons in the C.
elegans connectome, leading to the discovery of new neurons
involved in the control of locomotion, and offering direct falsifi-
able experimental confirmation of control principles (Yan et al.,
2017). An alternate description of brain function requires a
deeper understanding of the underlying control problems, which
requires simultaneous profiling and understanding of network
structure and dynamics (Tang and Bassett, 2018; Stiso et al.,
2019).

Finally, machine learning methods have offered a unique
approach for linking network structure to task performance
(Chami et al., 2020; Veli�ckovi�c, 2023), allowing for rapid profil-
ing of learning and behavior that can later inform how we
query biological learning (Marblestone et al., 2016; Vu et al.,
2018; Richards et al., 2019). To move forward, we must study
the statistics of AI architecture’s weight structures that offer
high performance on complex tasks, helping identify powerful
subnetworks, or “winning tickets,” responsible for the majority
of the performance of a system (Frankle and Carbin, 2018). An
alternative approach lies in identifying generative processes
that produce highly performing networks. This is inspired by
innate behaviors: animals arrive into the world with a set of
evolution-tested preexisting dynamics, implying an optimized
set of developmental processes that yield a fine-tuned func-
tional connectome at birth (Zador, 2019; D. L. Barabási et al.,
2023). This process, termed the “genomic bottleneck,” has the
potential to greatly increase the flexibility and utility of AI sys-
tems (Koulakov et al., 2022). Indeed, developmentally inspired
encodings of neural network weights have already shown high
and stable performance on reinforcement learning, meta-learn-
ing, and transfer learning tasks (D. L. Barabási and Czégel,
2021; D. L. Barabási et al., 2022).

Further work in these directions would require streamlined
integrations of powerful circuits identified in the connectome
with machine learning systems. A major barrier lies in the com-
plexity of the initial setup of tasks that the networks are asked
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to learn (Seshadhri et al., 2020), embedded in complex pack-
ages, such as the simulated physics environment of Mujoco
(Todorov et al., 2012). It is also challenging to provide custom
topologies or weights to current machine learning packages,
thereby moving past the standard feedforward, layered archi-
tectures. Addressing these challenges would allow the network
science toolkit to define a systematic search of network priors
in machine learning, thereby modeling the neuroevolutionary
processes and neurodevelopmental solutions responsible for bi-
ological intelligence.

Health and disease
The integration of connectivity and genetic data and their
dynamic patterns is crucial for understanding the neural transi-
tions from a healthy state to a disease state, particularly in the
context of brain disorders, diseases, and mental illnesses, often
rooted in the early years of life. Large-scale MRI datasets have
allowed for the modeling of normative trajectories of brain devel-
opment (Bethlehem et al., 2022); however, major opportunities
remain for network science to reveal the causes and physiologies
of brain disorders through population analyses.

In addition to the brain’s own internal networks, the connec-
tions between the brain and other organs robustly affect neural
development and function. Complex interactions have been
revealed in the gut–brain axis, where microbiota can modulate
immune and neural states, as well as in the brain’s interaction
with the reproductive system, driving intricate fluctuations in
levels of sex hormones during puberty, menopause, and preg-
nancy (Andreano et al., 2018; Pritschet et al., 2020). Overall, the
connections between the brain and other organs can have signifi-
cant effects on neural development and function, highlighting
the importance of a holistic exploration of neural networks to-
gether with the body (Buzsáki and Tingley, 2023).

Ultimately, to diagnose and treat disease, we must understand
the temporally evolving complex interactions between genetic,
disease, and drug networks and their impact on the connectome.
Toward that goal, network neuroscience must partner with net-
work medicine, which applies network science to subcellular
interactions, aiming to diagnose, prevent, and treat diseases
(A. L. Barabási et al., 2011). This need is reinforced by studies
that have found that high degree hubs, located mainly in dorso-
lateral prefrontal, lateral and medial temporal, and cingulate
areas of human cortex, are co-located with an enrichment of
neurodevelopmental and neurotransmitter-related genes and
implicated in the pathogenesis of schizophrenia (Morgan et al.,
2019). Network medicine takes advantage of the structure of
subcellular networks, as captured by experimentally mapped
protein and noncoding interactions, to identify disease mecha-
nisms, therapeutic targets, drug-repurposing opportunities, and
biomarkers. In the case of brain diseases, mutations and other
molecular changes that alter the subcellular networks within
neurons and non-neuronal cells in turn affect the wiring and
rewiring of the connectome and neural dynamics. Hence, effec-
tive interventions and treatments for brain disorders must con-
front the double network problem, accounting for the impact
of changes in the subcellular network on connectivity and ulti-
mately brain function.

Discussion
In conclusion, major funding directives, such as the public-pri-
vate funding alliance of the U.S. BRAIN Initiative, have signifi-
cantly advanced the development of technologies for studying

the brain across temporal and spatial scales and measurement
modalities. Yet, the massive amount of data produced and
expected to emerge from these tools have created a complexity
bottleneck. We need guiding frameworks to organize and con-
ceptualize these data, leading to falsifiable hypotheses. Network
science offers a natural match for this task, with the potential for
integrating complexity across cell identities, signaling types, dy-
namics, and spatial and energetic constraints that shape brain de-
velopment, function, and disease.

We need the joint engagement of network scientists and
neuroscientists to develop novel network-based methods that
address the unique priorities and challenges posed by brain
research. Such approaches will need to account for the
dynamic nature of connections in the brain, which are contin-
ually changing as a result of various factors, such as experi-
ence, aging, and disease, as well as incomplete or uncertain
reconstructions of brain connectivity. Continued advances in
neuroscience have opened up exciting possibilities for a deeper
understanding of the brain and its function, and now require
input from network science to fully capture the dynamics of this
complex system with the goals of unlocking how neural identity,
dynamics, behavior, and disease all link together.

These methodological advances can run parallel to ever-
increasing efforts toward adoption of open-science practices,
such as data and code sharing. Such efforts bring new chal-
lenges related to reproducibility, and have, in some cases,
resulted in examples of findings that fail to replicate (Open
Science Collaboration, 2015; Errington et al., 2021) or exhibit
substantial variability attributable to software (Bowring et al.,
2019; Botvinik-Nezer et al., 2020) or analysis teams (Botvinik-
Nezer et al., 2020). As a discipline, neuroimaging has champ-
ioned open-science initiatives, promoting practices including
detailed methodological descriptions and sharing of data and
code used to generate results in a publication (Nichols et al.,
2016), and even multiverse analyses that consider all plausible
analytical variations (Dafflon et al., 2022).

To achieve these goals, there is a need to facilitate greater
interaction between the network science and neuroscience
communities. A well-tested way is to offer interdisciplinary
grants from public and private organizations, such as The
Kavli Foundation, the National Institutes of Health, and the
National Science Foundation, that focus on developing net-
work tools for emerging neuroscience technologies and
questions, as well as support for students and postdoctoral
fellows with interests in both disciplines. These grants could also
support workshops and conferences that bring together research-
ers from both fields, and provide funding for coursework in net-
work neuroscience at the undergraduate and graduate levels.
Actively fostering collaboration between these two fields will
encourage the adaptation of novel network approaches to under-
standing biological data, a necessary step toward advancing our
understanding of the brain in health and disease.
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