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Over the last decade, the artificial intelligence (AI) has undergone a revolution that is poised to transform the
economy, society, and science. The pace of progress is staggering, and problems that seemed intractable
just a few years ago have now been solved. The intersection between neuroscience and AI is particularly
exciting.
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What is AI?
The term artificial intelligence (AI) has no

strict definition. Broadly speaking, AI

refers to computer systems that are de-

signed to mimic human intelligence, with

the goal of performing any task that a

human can perform (Figure 1). AI is gener-

ally considered a subfield of computer

science but is closely allied with several

other areas of research, including data

science and machine learning, as well as

statistics. Much of the promise of AI in

the sciences derives from its ability to

discover (or ‘‘learn’’) structure in large da-

tasets and to use this structure to make

predictions or even perform tasks. Such

AI systems have strengths that can com-

plement those of humans. For example,

AI systems have the ability to see patterns

in very high-dimensional data and thus

can serve as powerful tools to assist

rather than replace human researchers.

Almost all modern AI systems rely on var-

iations of artificial neural networks (ANNs),

which were inspired by the organization of

the nervous system.

There are three classic paradigms in

AI for extracting structure from data. In

‘‘supervised learning,’’ the data consist

of pairs—an input item (e.g., an image of

an elephant) and its label (e.g., the word

‘‘elephant’’)—and the goal is to predict

the labels of novel items. Supervised

learning can be seen as a particularly

powerful form of nonlinear regression. In

‘‘unsupervised learning,’’ the data have
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no labels, and the goal is to find the under-

lying statistical structure (e.g., to infer the

existence of elephants and giraffes from a

collection of safari pictures). Unsuper-

vised learning can be seen as a general-

ization of classical statistical techniques

such as clustering and principal compo-

nent analysis. (Many modern AI systems

also rely on ‘‘self-supervised learning,’’

which achieves the same goals as

unsupervised learning by labeling the

data using automatic methods, e.g.,

applying the same label to different artifi-

cially generated variations of an object).

Finally, in ‘‘reinforcement learning,’’ the

task is to discover strategies that achieve

some goal, using information about

the rewards obtained from previous

actions. Reinforcement learning ap-

proaches have recently been used to

achieve superhuman performance in

games such as chess and Go, as well as

in the design of novel drugs.

In what follows, we first discuss the

impact of AI tools in analyzing and inter-

preting data on the life sciences, with spe-

cial focus on neuroscience.We then focus

on a second application of AI, specific to

neuroscience, whereby ANNs are used

as models for how biological neural net-

works compute. This commentary com-

plements several other recent reviews on

applications of AI to biology and medicine

(Rajpurkar et al., 2022; Hassabis et al.,

2017; Sapoval et al., 2022; Kriegeskorte

and Douglas 2018).
d by Elsevier Inc.
AI tools for analyzing and
interpreting data
The first important application of AI in-

volves the development of tools for

analyzing and interpreting data. For

example, the motion tracking software

Deeplabcut (Mathis et al., 2018), which re-

lies on AI tools, now makes it possible to

analyze video in order to identify and/or

label the precise pose of animals,

enabling much more precise character-

ization of animal behavior (both of individ-

uals and social groups) during neural

recordings or perturbations. Another

application of machine learning is to

reconstruct synaptic connectivity maps

from serial electron microscopy data us-

ing segmentation and tracking algorithms

from machine learning, which has so far

resulted in reconstruction of an entire

Drosophila brain, the entire mouse retina,

and a cubic millimeter of mouse V1 (MI-

CrONS Consortium, 2021). Such systems

are transforming how experimental data

are collected and interpreted.

Although the primary focus of this com-

mentary is on the application of AI to

neuroscience, AI has applications to

many other areas of biology. For example,

AI has important applications to diverse

fields including protein modeling, the

analysis of genetic sequences, medical

diagnosis, and drug discovery. In one

striking breakthrough, Alphafold-2, an

AI-based approach to predicting 3D

protein structure from 1D amino acid
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Figure 1. Example of modern AI success
This illustration was generated automatically from a ‘‘text-to-image’’ AI system, Dalle (Ramesh et al.,
2022). The input to the system was the textual prompt ‘‘Three blind men touching an elephant trying to
figure out what it is, except the blind men are humanoid robots.’’
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sequence, recently leap-frogged all previ-

ous algorithms in the most recent compe-

tition (Jumper et al., 2021). We can expect

more such breakthroughs in the coming

years, in a wide range of domains.

AI tools for modeling the brain
A second important application of AI

involves using ANNs as a model of

neural computation. ANNs were originally

developed asmodels of the brain. The pio-

neering researchers, such as John von

Neumann (who invented the modern ‘‘von

Neumann’’ computer architecture) and

Frank Rosenblatt (who invented the ‘‘per-

ceptron,’’ the first neural network system

to learn from examples), had as their goal

not only to build machines that could

mimic human thought and reasoning, but

also to understand how the brain com-

putes (Lindsay 2021). This use of ANNs

as a model of real neural computation

was further pursued in the 1980s by cogni-

tive scientists whose explicit goal was to
understand and model human cognition.

Similarly, the research in the 1980s that

led to the development of reinforcement

learning was also primarily concerned

with modeling how animals learned from

‘‘trial-and-error’’ (Sutton and Barto 2018).

Indeed, at that time, a key driving premise

of cognitive science was that we could

study intelligence as a general phenome-

non, using AI models to understand

the mind and, in turn, using our

understanding of the mind to build

better AI systems. Researchers from

various domains, including both those

who used ANN or reinforcement learning

models and those who used more tradi-

tional logic-based models (sometimes

referred to as ‘‘Good Old-Fashioned AI,’’

or GOFAI), agreed that neuroscience/psy-

chology and AI were concerned with

many of the same problems and would

benefit from interdisciplinary interactions.

Although the application of AImodels to

cognitive science and neuroscience fell
out of favor in the 1990s and early

2000s, the recent success of ‘‘deep

learning’’ has rekindled interest in these

approaches over the past decade.

Thanks to a combination of much larger

computational power, much larger data-

sets, and some new tweaks to the

models, AI researchers were able to engi-

neer ANNs that could finally fulfill their po-

tential. The last decade has seen stunning

advances in the ability of AI to solve diffi-

cult problems once thought intractable

for artificial systems. Throughout this

time neuroscientists also began using

ANNs in their originally intended purpose,

as models of real neural computation (Ri-

chards et al., 2019). In part, these recent

successes were facilitated by newly

developed experimental techniques for

monitoring the activity of large popula-

tions of neurons. This allowed re-

searchers to compare ANNs and real

brains more directly, leading to the dis-

covery that the representations that

emerge in ANNs trained on relevant tasks

can bear striking resemblance to those

seen in the real brain (Richards et al.,

2019). This correspondence has emerged

in both feedforward and recurrent neural

networks across many brain areas,

including low- and high-level visual areas,

language areas, motor areas, and pre-

frontal areas (Figure 2A; Yamins et al.,

2014). For example, it was found that infe-

rotemporal cortex, a region critical for

representing object identity in primates,

is spatially organized into a map of object

space whose two axes are the same as

those in a late layer of the deep network

trained on object classification (Bao

et al., 2020). At the same time, computa-

tional neuroscientists interested in under-

standing learning and plasticity in the

brain began looking at the techniques

used to train ANNs and found that some

of the same principles could, in theory,

be in operation in the brain (Figure 2B; Ri-

chards et al., 2019). The result has been a

huge increase in research using AI sys-

tems to model many aspects of animal

behavior and cognition.

There is also a renewed hope that

neuroscience will be able to provide

additional insights for the development

of new ANN approaches that can further

advance the state of AI moving forward.

There are still many areas where brains

clearly excel over ANNs, and these
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Figure 2. How ANNs are helping us to understand brain function and plasticity
(A) ANNs are providing neuroscientists with a rich set of models to explain neural activity in different brain
areas, an important step toward understanding how complex functions such as face recognition are
accomplished by the brain. Researchers can show a set of stimuli to an animal, record responses of
neurons in that area, and then ask howwell different ANNs capture the responses. One popular strategy is
to model a neuron as a linear combination of ANN units and then ask how much variance in the neural
response is explained by the linear model.
(B) In both brains and ANNs, there are many possible synaptic paths leading from input to output. For
example, here there are three possible paths and six possible synapses. Thismakes it challenging to know
which synapses should change during learning, an issue known as the ‘‘credit assignment problem.’’
ANNs solve this problem by using the gradient of a loss function to determine how to change synapses.
Recent work in computational neuroscience shows the brain has mechanisms that could enable ap-
proximations to gradient descent.

ll
Commentary
provide rich grounds for new, neuro-

inspired ANN models. One example is

the machine learning problem of cata-

strophic forgetting, whereby learning

new examples causes forgetting of old

samples. A recent DARPA grand chal-

lenge to solve this problem identified

‘‘replay’’ as the most effective solution

(Kudithipudi et al., 2022). This is a

biological mechanism in which the hippo-

campus re-activates already learned

memories. Another line of inquiry arises

from the recognition that a great deal of

animal (including human) behavior is

innate and thus somehow embedded in

the genome. This has inspired attempts
2642 Cell 185, July 21, 2022
to create ANNs whose structure, like the

structure of biological networks, must

pass through a ‘‘genomic bottleneck’’

(Koulakov et al., 2021). There is growing

recognition that neuroscience has a role

to play in guiding future innovations in AI.

Future perspectives
AI is influencing all scientific disciplines by

providing new tools to analyze high-

dimensional data. In particular, in neuro-

science AI is providing powerful new

models to explain how brains compute.

The use of AI as a model of neural compu-

tation can be considered a fulfillment of

AI’s original birth purpose. Yet AI is also
showing itself to be a truly disruptive,

paradigm-shifting child, with recent

advances compelling neuroscientists to

rethink the entire epistemological basis

for their enterprise. What does it mean to

understand the brain? For much of the

history of neuroscience, the answer has

been that understanding entails ‘‘being

able to explain as much neural activity

as possible by a simple model.’’ For

example, Hubel and Wiesel’s model of

neurons in primary visual cortex as edge

detectors was considered successful

because it could explain, with a single

parameter model (‘‘edge orientation’’),

stimulus-evoked responses of neurons

to a wide range of different stimuli. How-

ever, with the advent of models contain-

ing millions of parameters, the notion of

‘‘simple explanation’’ is now becoming

fuzzy. What is the value of explaining a

brain area by a neural network containing

countless units that itself may not be well

understood? Many answers are possible,

e.g., to enable new predictions (even if a

weather model contains millions of pa-

rameters, it is still useful if it can accu-

rately predict the weather), to identify the

optimal architecture and learning rule

used by the brain (these system descrip-

tions are much lower dimensional and

hence understandable compared to pat-

terns of weights and resulting stimulus se-

lectivities of units), or to enable important

practical applications (e.g., brain machine

interfaces and sensory prostheses).

The great physicist Richard Feynman

famously said, ‘‘I do not understand

what I cannot build,’’ but recent suc-

cesses of AI suggest that ‘‘I cannot under-

stand even that which I can build.’’ Even

within the field of deep learning there is a

strong sense that the models are shock-

ingly, unreasonably effective. The field is

currently progressing in an evolutionary

mode, in which the most successful

models rise to the top not so much due

to engineering based on foundational

principles but due to survival of the fittest.

As a consequence, intense interest is now

growing in theoretical machine learning, in

hopes of gaining deeper understanding of

effective models (for example, one insight

that has emerged is that deep networks

do not get stuck in local minima because

in high dimensions, true local minima are

virtually non-existent). For a neuroscien-

tist, this raises the question: what is the
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value of overcoming incredible technical

challenges to record activity from tiny

neurons in a fragile sheet of brain tissue

encased in a hard and opaque skull,

whenwe do not even understand the prin-

ciples of completely transparent deep

networks in which the activity of every

unit in response to any stimulus/perturba-

tion can be instantly measured? A deter-

mined graduate student might answer,

‘‘The machines aren’t conscious, and I

want to understand an intelligence

capable of begetting consciousness.’’

But what if one day the machines do

aver that they are fully conscious—

perhaps even exclaiming to us how

intensely they dream about understand-

ing consciousness? Will neuroscien-

tists—at least those motivated by the

desire to understand the brain—then put

away their microscopes and toss their

electrodes?
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