
p-network as an initial condition for SVHN training (g-network mediated transfer). Remarkably, the performance of
g-network mediated transfer was indistinguishable from the standard approach (Fig. 3F, orange solid line, "L1-9"), even
though in this case the number of transferred parameters was 92 times fewer. These results indicate that whatever is
crucial for transfer from CIFAR10 to SVHN is captured by the nearly 92-fold smaller g-network.

Figure 3: Genomic bottleneck solution to CIFAR10. (A) Examples of CIFAR10 data set of images. (B) To classify
CIFAR10 images, we used nine layer all convolutional network. Each layer was created by individual g-networks.
(C) p-network achieves excellent tabula rasa performance even with 100-fold compression. (D) Tradeoff between
compressibility and performance. (E) Learning rate of compressed networks is the same as tabula rasa networks. (F)
Example of SVHN data set. (G) Transfer learning to SVHN data set.

To further dissect the consequences of genomic compression, we examined the effect of transferring only one or a
few layers at a time. When only the first two lower layers (layers 1-2) were transferred from CIFAR to SVHN, while
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randomly initializing the remaining layers, genomic transfer actually yielded faster learning than direct transfer (Fig.
3F, red arrows). For example, when layer 1 was initialized with g-network, 50% performance was reached in about
3.2 training epochs, while similar levels were only achieved in 4.8 epochs using direct CIFAR10 transfer—a 1.5-fold
difference. Thus, it appears that the lower layers of the network contain features that generalize across datasets, and
these features are extracted particularly well using the g-network based compression algorithm. On the other hand,
transferring the last two layers of the network resulted in slower training compared to naive case, a result reminiscent
of our previous result with MNIST-to-F-MNIST transfer (Fig. 2H). This result implies that the last two layers of
CIFAR10-trained network contained features that are specific to the dataset and were not useful for the recognition of
the house numbers in SVHN data.

Taken together, these findings demonstrate that g-networks can extract structure that is generalizable across datasets.
Compression with g-networks yields performance that is comparable to—and in some cases better—than simple
uncompressed weight transfer, indicating that g-networks identify a special subclass of p-networks that are compressible
and capture essential structure of the data (Fig. 1D). This enhancement is particularly evident is the rate transfer of
the lower layers in deep nets (Fig. 3G). Interestingly, the receptive fields of neurons in the lower visual system show
substantial similarities between different species, while higher layers are more specialized (Rodieck and Rodieck, 1998).
This parallel with our results suggests that the early visual system may have extracted a simple yet potent set of features
while subject to genomic bottleneck-like constraint.

Discussion

We have proposed that a genomic bottleneck arises inevitably because of the need for a relatively low-capacity genome
to specify the complex neural circuits required for innate behaviors. We argue that under a wide range of conditions,
there is evolutionary pressure for organisms to be born with as much innate ability as possible, and thereby to maximize
their fitness at birth (Fig. 2E). This leads to a model in which genomes, and the circuits they encode, are co-optimized in
nested loops: an inner loop corresponding to "learning" in animals, and an outer loop corresponding to "evolution." Our
results suggest that dividing the usual machine learning problem into such nested loops linked by a low-information
bottleneck serves as a regularizer on the resulting neural circuit, guiding it to find simple circuit motifs that can be
reused and can adapt with changes in the environment.

The genomic bottleneck can be viewed as a constraint forcing lossy compression of the weight matrix (Eq. 1). The idea
of minimizing the description length, or Kolmogorov Complexity, of the weights has been proposed before (Hinton and
Van Camp, 1993). Although the genomic bottleneck algorithm was motivated by considerations of the relative size of
the genome and the connectome, it has close parallels with the "information bottleneck" method (Tishby et al., 2000).
We hypothesize that, by squeezing the neural circuit diagram through a much smaller genome, evolution has extracted
the most useful and important network motifs.

To perform tasks, the compressed (genomic) representation must be uncompressed into a functional network through a
process analogous to neural development. For reasons of efficiency, we have used gradients to optimize both the inner
and outer loops. Evolution, which can be viewed as a form of reinforcement learning but without a gradient, is in general
a relatively slow and inefficient algorithm, successful because it operates on massive numbers of individuals in parallel
over hundreds of millions of years. The feedback in our algorithm that guides the gradient from each generation—the
fact that the trained weight matrix in the kth generation is used to modify the genome in the (k + 1)st generation—can
be viewed as a form of Lamarckian evolution, and is, as such, biologically unrealistic. The net effect of our approach,
however, is similar to Darwinian evolution our algorithm is designed to optimize fitness. Our algorithm can be seen as
an implementation of the Baldwin effect (Baldwin, 1896; Hinton and Nowlan, 1987), according to which, if the ability
to learn a particular behavior rapidly conferred a selective advantage, that ability would, over the course of evolution, be
"genetically assimilated" and might appear to have arisen through a Lamarckian process.

Network pruning can be viewed as a method of network compression, complementary to the genomic bottleneck
mechanism considered here (LeCun et al., 1990; Han et al., 2015). Convolutional neural networks (LeCun and Bengio,
1995) represent an example of network pruning whereby each neuron only connects to a small fraction of other neurons
in lower layers. Another example is provided by the lottery ticket hypothesis, according to which the number of weights
in a well-performing network can be substantially reduced by discovering "winning ticket" sparse subnetworks (Frankle
and Carbin, 2018). Cortical networks are inherently sparse with each neuron connecting to a small fraction of about
10−6 of other cortical cells. Evolution is thought to select sparse and functionally important connections due to physical
constraints, such as a space and time limitations(Chklovskii et al., 2002). Even after sparsification, cortical connections
cannot be encoded in the genome with the single neuron precision. Thus, pruned connectivity is a default solution to the
evolution of cortical fitness, and does not by itself resolve the discrepancy between cortical and genomic information
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capacities; even sparse connectivity must be further compressed through the genomic bottleneck. Here we study the
additional rules that can encode both fully and sparsely connected networks.

We developed a genomic bottleneck algorithm that could achieve several orders of magnitude compression on two
standard ANN tasks, MNIST and CIFAR. Although it might seem surprising that these networks could be so highly
compressed with relatively little loss of performance, there is a considerable literature on network compression
(Choudhary et al., 2020).

For example, a standard technique—weight pruning—can eliminate 90% of parameters with minimal loss of accuracy
(LeCun et al., 1990; Han et al., 2015), but such pruned networks are typically difficult to train. Unlike sparse networks
obtained by pruning, the genomic bottleneck approach described here leads to networks that are not only compressed
but also easily trained. According to the lottery ticket hypothesis, the compressibility of pruned might be explained
in part by the existence of "winning ticket" subnetworks (Frankle and Carbin, 2018). However, the "winning ticket"
sub-network does not exhibit good ab initio performance; indeed, the winning ticket neurons actually tend to change
their synaptic weights even more than the other neurons. Thus the relationship between winning ticket subnetworks and
those obtained by the genomic bottleneck remains unclear.

Our results contribute to a growing literature highlighting the importance of inductive biases in machine learning.
Much of this literature is focused on achieving faster learning. Perhaps the most successful examples are convolutional
neural networks (LeCun and Bengio, 1995), which exploit the translational invariance of images with an architecture
inspired by the structure of receptive fields in early sensory cortex (Hubel and Wiesel, 1962). However, the present
work—inspired by evolutionary constraints (Fig. 2D)—is focused not on faster learning but rather enhanced initial
performance, a goal that has received comparatively less attention (but see (Gaier and Ha, 2019)). Indeed, in our
experiments we find that genome-initialized networks start off at a higher level of performance but then follow the same
trajectory as randomly-initialized networks (Fig. 3D). Although these results highlight the potential dissociation of
two distinct process—better initial performance and faster learning through inductive biases—there is likely strong
evolutionary pressure to maximize both.

The relative importance of genomically-encoded innate structures in determining specific human abilities such as
language has been hotly debated, but the importance of innate factors to the behavior of other animals is less controversial.
For both humans and other animals, the better question is usually not whether a behavior is innate, but rather how innate
and learned factors interact. For example, the propensity to form "place fields" in the hippocampus is innate—a map of
space emerges when young rat pups explore an open environment outside the nest for the very first time (Langston
et al., 2010)—but the content of place fields is learned, as new place fields form whenever the animal enters a new
environment. In this example it appears that, as suggested by (Fig. 2D), ab initio performance has been maximized by
providing a scaffolding for place fields to appear.

The genomic bottleneck takes its inspiration from fundamental considerations about the evolution and development of
brain circuits. Although the genomic bottleneck algorithm builds on existing machine learning techniques, and yields
surprisingly effective performance, we have not attempted to optimize this approach to compete with state-of-the-art
benchmarks. The bottleneck framework is potentially quite rich, and could be extended in several directions. For
example, we have not explored variations in the structure of the genomic network, e.g. by imposing a sparseness
constraint. Such a constraint would have the physical interpretation of limiting interactions among surface neuronal
markers. Similarly, at present, each layer is compressed with its own genome, but it would natural to attempt to extract
regularities among layers by encoding them with a single genome. Furthermore, in the current formulation the decoding
of the genomic network is deterministic, whereas developmental rules are often stochastic, so the decoding framework
might be generalized to include rules like "connect on average to 10% of your nearby neighbors." Finally, the framework
could be extended to co-optimize the learning rules and the wiring.
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Methods

MNIST/F-MNIST dataset

For MNIST and F-MNIST datasets, we used a fully connected 2-layer network that included 800 hidden layer ReLU
units (Simard et al., 2003). We did not use data augmentation for simplicity and our network could be trained to 98%
performance on testing data. The number of parameters in the MNIST network was therefore 282 × 800 + 800× 10
weights and 800 + 10 biases amounting to the total of 636010. We used three g-networks to encoded two weight
matrices and one bias vector for the hidden layer. The ten biases for the output layer were not compressed since the
corresponding g-network would include more than ten parameters. The structures for various configurations of the three
g-networks are listed in Table 1. The schematic of the structure of g-network for MNIST dataset is shown in Fig. S.1A.

Each neuron was described by a binary label of length 10. For the neurons in the input image, the label encoded
two coordinates of the neuron’s position in the image, 5 bits for the "X" and "Y" coordinates. Both coordinates were
represented by the Gray code. The neurons in the hidden layer were represented by simple binary codes ranging from 1
to 800, since their order is of no particular importance. The ten neurons in the output layer were encoded by the one-hot
vector of 10 bits. Each neuron in the networks was therefore described by a ten-bit label. The inputs into each of the
two g-networks that generated weight matrices represented pairs of neurons and had the length of 20 bits. The output of
g-network is the value of the corresponding weight between two input neurons and was a single real number (Table
1). For the network generating biases for the hidden layer, the input contained the binary label for the neuron and was
therefore 10 bits long.

There are several options to train g-networks. The simplest one is to use end-to-end backpropagation from the dataset
(MNIST) to g-network using automatic differentiation of the deep learning library (PyTorch, Fig. S.1A). We found
this implementation to be inefficient as it involves generation of the entire set of weight matrices for each minibatch of
MNIST images. Instead, we developed the intermittent training paradigm. Before the first iteration, the g-networks are
initialized randomly. On each iteration of this method, we start with the g-networks generating weights of the MNIST
network (p-net). We then train the p-net using a subset of images. For the MNIST network, this training used 10,000
images from the training set or 1/6th of the epoch. This yielded a higher performance p-net with the set of weights
described by matrix Wn. We then train g-networks to approximate this weight matrix by backpropagating the difference
between the g-network output (W̃n) and Wn. We used different number of weights to train each of the three g-networks
on each iteration (105, 104, and 104 for hidden layer, output layer, and hidden layer biases g-networks, respectively).
This amounted to about 1/6th of all weights and further accelerated training in each generation. We then used the
adjusted g-networks to generate the complete set of p-net weights W̃n+1 that served as initial conditions for the next
generation (Fig. S.1B). This set of iteration mimicked real biological evolution as it alternated the generation of p-nets
from g-networks, analogous to the neural development, and improvement of p-nets similar to the natural selection. We
repeated these iterations 500 times to achieve the asymptotic performance.

CIFAR10/SVHN datasets

In this example we used all convolutional 9-layer implementation of network (Springenberg et al., 2015) (Fig. S.1B).
Between layers 3 and 4, we included the dropout layer with 50% dropout probability. The network could be trained
to 89% correct rate without data augmentation. Each layer in this 9-layer CNN was generated via two g-networks,
one for the weight matrix and one for the biases. To provide inputs into the g-networks for weights, we described
positions in the weigh matrix by a 20-bit binary number. For the lowest 8 layers, the binary number was composed of
2+2 bits containing Gray code representation for the input coordinates within the CNN kernel, 8 bits representing the
input filter type, and 8 bits representing the output filter type. The latter two components were formed as consecutive
binary numbers, since input/output filter identity is not expected to form a continuous topographic space. In this
representation, the input neurons were identified by a 12-bit binary label (2 + 2 Gray + 8 binary) while the output
neurons are identified by the 8-bit label. The binary labels for the last CNN layer were composed of 1+1 binary Gray
(dummy) bits representing two coordinates within the kernel, a 8-bit binary number representing the input filter, and

Table 1: The structure of g-network for MNIST dataset

g-network name g-network Bias net g-network MNIST Compressionstructure structure parameters parameters
GN5 (20− 10− 5− 1)× 2

10− 5− 1
613

636,010
1038x

GN20 (20− 20− 10− 1)× 2 1,353 470x
GN30 (20− 30− 10− 1)× 2 1,973 322x
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Table 2: The structure of g-network for CIFAR10 dataset

g-network name g-network Bias net g-network CIFAR10 Compressionstructure structure parameters parameters
GN10 (20− 10− 10− 1)× 9

8− 10− 1
3,798

1,369,738
361x

GN30 (20− 30− 10− 1)× 9 9,378 146x
GN50 (20− 50− 10− 1)× 9 14,958 92x

a 10-bit one-hot vector encoding the output class. The bias networks for the first eight layers received an 8-bit label
encoding the output filter. The bias network for the last layer received the one-hot vector encoding one of the ten output
classes. The structures of different g-networks used are summarized in Table 2.

To train the 18 g-networks described above, we used the intermittent training strategy described for the MNIST network.
We used minibatch sizes of 10, 100, and 1000 for bias g-networks for layers 1-3, 9, bias g-networks 4-8, and all weight
matrix g-networks, respectively. We used the minibatch size of 128 to train the CIFAR10 network. We used SGD
optimizer for CIFAR network with the learning rate of 0.05 and momentum of 0.9 for stability. We used Adam optimizer
for all g-networks. In each iteration, we first trained CIFAR10 network using 10 complete epochs, i.e. 10 complete
sweeps through the entire training set of images. In the second step, we trained weight and bias g-networks using 2 and
10 epochs respectively (we trained g-network weight networks for layer 1 and 9 using 12 epochs in each iteration) to
match the CIFAR network adjusted weights resulting from the first step. This sequence of two steps was repeated 500
times.

Because our network was relatively deep (9 layers), we encountered a problem with initialization of g-networks. Indeed,
if g-networks are initialized randomly, they produce p-nets that are far from the optimal fixed point. We found that such
p-nets are impossible to train. This problem is exacerbated in moderately deep p-nets due to the exponential divergence
of initialization errors from layer to layer. In practice, such p-nets return zero activations, which yield no gradients
of weights. To solve this problem, we implemented the weight annealing strategy. In each iteration of our algorithm
(out of 500), before the p-net was trained, the weight matrices and biases of the p-net were combined from the results
of GIFAR training in the previous iteration, Wn−1, and the weights generated by g-network in the previous iteration,
W̃n−1(G):

Wn = ε(n)Wn−1 + W̃n−1(G)[1− ε(n)] (3)

The coefficient ε(n) determined the degree to which the inputs from g-networks affect the p-net’s weight matrix. If
ε(n) = 1, the weight matrix of p-network is entirely determined by the result of previous iteration of CIFAR training
and is not sensitive to the inputs from g-net. In the other extreme, when ε(n) = 0, the values of p-net weights and
biases are entirely generated by the g-networks. We therefore assumed that ε(n) ≈ 1 in the beginning of training,
when g-networks are naive, and ε(n)→ 0 in the end of training. We adopted an exponential annealing schedule with
ε(n) = exp(−n/λ), where parameter λ = 20 determined the number of iterations in the intermittent training over
which the g-networks are assumed to be naive and irrelevant, and initialization using g-networks is assumed to be
detrimental. Since, in our approach, the total number of iterations is 500, the initialization period is negligibly short
compared to the whole training (λ� 500).
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Figure S.1: The structure of g-networks for MNIST (A) and CIFAR10 (B) datasets.
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Figure S.2: Training strategies of g-networks. (A) End-to-end backpropagation of errors from the output of the
p-network to g-networks. This implementation is slow since it involves generating a complete set of p-network weights
and biases for each p-network minibatch. (B) The intermittent training strategy. G-network of generation n-1 is used
to generate the p-network (down arrow, generation n). The p-network is trained using several minibatches without
backpropagation of the gradients into g-network. Then, the g-network is trained to match the adjusted p-network (up
arrow in generation n). The resulting g-network in generation n is used to generate the p-networks in the next step (n+1).
(C) The dynamics of training of g-network for the MNIST dataset. (D) The dynamics of training for CIFAR10 dataset.
The small bump in performance at generations 2-7 is due to the annealing strategy used to initialize g-networks in this
case [Eq. (3)].
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