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SUMMARY
Comprehensive analysis of neuronal networks requires brain-wide measurement of connectivity, activity,
and gene expression. Although high-throughput methods are available for mapping brain-wide activity
and transcriptomes, comparable methods for mapping region-to-region connectivity remain slow and
expensive because they require averaging across hundreds of brains. Here we describe BRICseq (brain-
wide individual animal connectome sequencing), which leverages DNA barcoding and sequencing to map
connectivity from single individuals in a few weeks and at low cost. Applying BRICseq to the mouse
neocortex, we find that region-to-region connectivity provides a simple bridge relating transcriptome to ac-
tivity: the spatial expression patterns of a few genes predict region-to-region connectivity, and connectivity
predicts activity correlations. We also exploited BRICseq to map the mutant BTBRmouse brain, which lacks
a corpus callosum, and recapitulated its known connectopathies. BRICseq allows individual laboratories to
compare how age, sex, environment, genetics, and species affect neuronal wiring and to integrate these with
functional activity and gene expression.
INTRODUCTION

A central problem in neuroscience is to understand how activity

arises from neural circuits, how these circuits arise from genes,

and how they drive animal behaviors. A powerful approach to

solving this problem is to integrate information from multiple

experimental modalities. Over the last decade, high-throughput

approaches have enabled gene expression (Rodriques et al.,

2019; Ståhl et al., 2016; Vickovic et al., 2019) and functional neu-

ral activity (Macé et al., 2011, 2018; Musall et al., 2019; Prevedel

et al., 2014; Sofroniew et al., 2016; Stirman et al., 2016; Vanni

and Murphy, 2014) to be assessed at whole-brain scale in indi-

vidual subjects. Unfortunately, it remains challenging to assess

long-range connectivity as rapidly and precisely. So the answers

to fundamental questions of how connectivity is related to gene

expression and neural activity and how this relationship varies in

different species, genotypes and sexes and across develop-

mental stages as well as in animal models of neuropsychiatric

disorders remain elusive.

Historically, long-range connectivity maps were compiled

manually from results generated bymany individual laboratories,
each using somewhat different approaches and methods and

each presenting data relating to one or a few brain areas of inter-

est in idiosyncratic formats (Bota et al., 2015; Felleman and Van

Essen, 1991; Scannell et al., 1995). Recent studies avoid the

confounds inherent in inferring connectivity across techniques

and laboratories by relying on a standardized set of tracing tech-

niques (Bohland et al., 2009; Harris et al., 2019; Markov et al.,

2014; Oh et al., 2014; Zingg et al., 2014). Even with improved

methods, however, such maps remain expensive and labor-

intensive to generate, so region-to-region connectivity has

been studied only for a small number of model organisms, typi-

cally of a single sex, age, and genetic background (Markov et al.,

2014; Oh et al., 2014; Zingg et al., 2014).

The major bottleneck in conventional tracing methods arises

from the difficulty in multiplexing tracing experiments. In clas-

sical connectivity mapping, a single tracer—for example, a virus

encoding green fluorescent protein (GFP)—is injected into a

‘‘source’’ brain area (Harris et al., 2019; Oh et al., 2014; Zingg

et al., 2014). The brain is then dissected and imaged, and

any region in which GFP-labeled axonal projections are

observed is a projection ‘‘target.’’ Fluorescence intensity at the
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Figure 1. Mapping Brain-wide Corticocortical Projections with BRICseq

(A) In conventional fluorophore-based tracing, a separate brain is needed for each source area.

(B) In MAPseq, barcoded Sindbis virus is injected into a single source, and RNA barcodes from target areas of interest are extracted and sequenced. MAPseq

multiplexes single-neuron projections from a single source area. BC, barcode.

(C) In BRICseq, barcoded Sindbis virus is injected into multiple source areas. BRICseq multiplexes projections frommultiple source areas, each at single-neuron

resolution.

(D) In the soma-max strategy for soma calling, the cubelet with the highest abundance of a particular BC is posited to be the cubelet that contains the source of

that BC.

(E) Distributions of BC abundance in source cubelets and target cubelets.

(F) Experimental validation of the soma-max strategy reveals an error rate of less than 0.5%.

(G) BRICseq pipeline.
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target is interpreted as the strength of the projection. This pro-

cedure must be performed in a separate specimen for each

source region of interest becausemultiple injections within a sin-

gle specimen would lead to ambiguity about which injection was

the source of the observed fluorescence (Figure 1A). Although

multi-color tract tracing methods can achieve somemultiplexing

by increasing the number of fluorophores (Abdeladim et al.,

2019; Zingg et al., 2014), the increase in throughput is modest

because only a small number of colors can be reliably distin-

guished. To obtain a region-to-region connectivity map, data

must be pooled across hundreds of animals, and the associated

labor and costs limit the ability to generate the region-to-region

connectivity maps from distinct model systems.

To achieve higher throughput at lower cost for mapping long-

range, region-to-region connectivity in single animals, we sought

to develop a method to enable multiplexing tracers for multiple

source areas. Herewepresent BRICseq (brain-wide individual an-

imal connectome sequencing), which leverages barcoding and
2 Cell 182, 1–12, July 9, 2020
high-throughput sequencing to multiplex tracing experiments

frommultiple source areas and allowsmapping of brain-wide cor-

ticocortical connectivity from individualmice in a fewweeks and at

low cost. Using the map of mouse neocortex connectivity derived

fromBRICseq,we find that region-to-region connectivity provides

a simple bridge for understanding the relationship between gene

expression and neuronal activity. Applying BRICseq to themutant

BTBRmouse strain (BTBRT+ Itpr3tf/J), we recapitulated its known

connectopathies. The ability of BRICseq to map brain-wide con-

nectivity from single animals in individual laboratories will foster

comparative and integrative analysis of connectivity, neural activ-

ity, and gene expression across individuals, animal models of dis-

eases, and novel model species.

RESULTS

We first describe the development of BRICseq, which allows

mapping brain-wide projections from multiple sources in single
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animals. Next, we show that BRICseq is highly accurate and

reproducible. We then show that BRICseq accurately predicts

neural activity obtained by functional brain-wide calcium imag-

ing in behaving mice, and that brain-wide gene expression pre-

dicts region-to-region connectivity. Finally, we show that BRIC-

seq applied to the mutant BTBR mouse strain (which lacks a

corpus callosum) can recapitulate its known connectopathies.

BRICseq Allows Multiplexing Connectivity Tracing from
Multiple Source Areas
The multi-site mapping strategy we developed, BRICseq, builds

on multiplexed analysis of projections by sequencing (MAPseq)

(Kebschull et al., 2016a). In MAPseq (Figure 1B), multiplexed sin-

gle neuron tracing from a single source was achieved by labeling

individual neurons with easily distinguishable nucleotide se-

quences, or ‘‘barcodes,’’ which are expressed as mRNA and

trafficked into axonal processes (Figure S1A). Because the num-

ber of nucleotide sequences, and therefore distinct barcodes, is

effectively infinite—a short (30-base) random oligonucleotide

has a potential diversity of 430z1018—MAPseq can be thought

of as a kind of ‘‘infinite-color brainbow’’ (Livet et al., 2007). Brain

regions representing potential projection targets are microdis-

sected into ‘‘cubelets’’ and homogenized, and the barcodes

within each cubelet are sequenced, permitting readout of sin-

gle-cell projection patterns. MAPseq has now been validated us-

ing several different methods, including single-neuron recon-

struction, in multiple brain circuits (Chen et al., 2019; Han

et al., 2018; Kebschull et al., 2016a). In particular, single cells

traced by MAPseq are statistically indistinguishable from tradi-

tional single-cell reconstructions (Han et al., 2018), and MAPseq

tracing efficiencies are comparable with that of traditional retro-

grade tracers (Chen et al., 2019; Kebschull et al., 2016a). The

contribution of potential artifacts, including those resulting

from degenerate labeling, fibers of passage, or non-uniform bar-

code transport, have been extensively quantified in previous

work and shown to be minimal (Chen et al., 2019; Han et al.,

2018; Kebschull et al., 2016a).

MAPseq was originally developed to study projections from a

single source. Conceptually, a straightforward generalization of

MAPseq to determine the projections from many source areas

in the same experiment would be to tag neurons with an addi-

tional area-specific barcode sequence—a ‘‘zip code’’—that

could be used to identify the source (somatic origin) of each pro-

jection. In this approach, the overall strength of the projection

from area 1 to area 2 would be determined by averaging the

number of single-neuron projections between those areas. In

practice, however, such an approach would still be very labor

intensive because it would require production, standardization,

and injection of hundreds of uniquely zip-coded batches of virus.

We therefore pursued a more convenient strategy that re-

quires only a single batch of virus (Figure 1C). We hypothesized

that we could reliably determine the source of each projection

using only sequencing by exploiting the higher abundance of

RNA barcodes in the soma-proximal compartments (including

somata and proximal dendrites) compared with the axon termi-

nals. According to this ‘‘soma-max’’ strategy, the cubelet with

the highest abundance of a given barcode of interest is assumed

to be the source of the projection (Figure 1D). To validate this
soma-max strategy, we injected two distinct viral barcode li-

braries, each identifiable by a known zip code sequence, into

two separate but densely connected cortical areas (the primary

motor area and secondary motor area). We dissected both injec-

tion sites and sequenced the barcodes present in each (Fig-

ure 1E). Compared with the ground truth determined by the zip

code, the soma-max strategy correctly identified the soma loca-

tion for 99.2% ± 0.2% (mean ± SD) of all cells (Figure 1F). These

results indicate that the soma-max strategy would allow accu-

rate reconstruction of connectivity even when only a single viral

library is injected.

Mapping the Brain-wide Corticocortical Region-to-
Region Connectome with BRICseq
We first applied BRICseq to determine the region-to-region con-

nectivity of the cortex of the adult male C57BL/6J mouse, for

which reference datasets exist (Oh et al., 2014; Zingg et al.,

2014). To do so, we tiled the entire right hemicortex of each

mouse with barcoded virus by making over 100 penetrations

(3–6 injections/penetration at different depths) in a grid pattern

with a 500-mm edge length (Figure S1B; Table S1). Forty-four

hours after viral injection, we cryosectioned the brain into 300-

mm coronal slices and used laser dissection to generate cortical

(arc length,�1 mm) and subcortical cubelets (Figure 1G; Figures

S1C and S1D). The locations of all cortical cubelets were regis-

tered to the Allen Reference Atlas (2011 version; Figure 1G; Table

S3; Fürth et al., 2018; Sunkin et al., 2013). We then quantified

the number of each barcode sequence in each cubelet by

sequencing (Figure 1G; Figure S1D).

In six adult male C57BL/6J mice (BL6-1, BL6-2, BL6-3, BL6-

4, BL6-5, and BL6-6), wemapped the connections from 98 ± 11

(mean ± SD) source cubelets to 246 ± 17 target cubelets (225 ±

10 cortical, 22 ± 7 subcortical). All dissected cubelets were po-

tential targets; source cubelets were defined as the subset of all

cubelets containing barcoded somata. Although, in principle,

the soma-max strategy was able to correctly define the source

cubelet for each barcode (Figure 1F), in practice we required a

barcode to have a count of more than 250 in its source cubelet

to further reduce errors (such as errors caused by re-used barc-

odes; STARMethods). With this criterion, from each source cu-

belet we obtained the sequences of several hundred somata

(671 ± 1.3 3 103) located therein as well of projections from

several thousand (1.3 3 103 ± 2.3 3 103) neurons with somata

located elsewhere. The variation of the number of infected cells

mainly resulted from various injection difficulties in different

brain areas (e.g., lateral brain areas, such as insular areas,

are more difficult to target than dorsal areas) as well as titer var-

iations of different viral batches for different animals. We aggre-

gated these single-neuron data (Figures S2A–S2C) to calculate

region-to-region axonal projection strengths (Figures 2A and

2B; Figure S3A; Video S1; Table S2). Thus, the strength of the

projection from source cubelet X to target cubelet Y was

defined as the number of barcodes in target Y originating

from somata in source region X divided by the number of

somata in X (quantified as counts of unique molecular identi-

fiers, or UMIs, per neuron; STAR Methods) . We also estimated

a confidence bound on our estimate of the strength of each

connection (Figures S2R and S2S; STARMethods) bymodeling
Cell 182, 1–12, July 9, 2020 3
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Figure 2. Brain-wide Corticocortical Projectome Mapped by BRICseq and Its Validation

(A and B) Cubelet-to-cubelet connectivity of mouse BL6-1.

(B) Each row is a source cubelet, and each column is a target cubelet. Cubelets are assigned to their primary brain area. FR, frontal area; MO, motor area; SS,

somatosensory area; VIS, visual area; AUD, auditory area; STR, striatum; TH, thalamus; AMY, amygdala; TEC, tectum; P/M/SC, pons/medulla/spinal cord; OB,

olfactory bulb.
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two major error sources of false positives: PCR template

switching (Figures S2D–S2G; STAR Methods) and re-used

barcodes by multiple neurons (Figures S2H–S2N; STAR

Methods). All self-self projection strengths were set to 0. In

addition, we focused on mapping long-distance connections

here by setting all neighbor projection strengths to 0 to avoid

potential false positive local connectivity because of dendritic

innervation of neighboring cubelets. Although, in principle,

BRICseq data can be used to determine single-neuron projec-

tion patterns, in practice, sequencing depth and template

sequencing precluded such an analysis for this dataset.

BRICseq Is Reproducible and Accurate
To fulfill its potential as a high-throughput method for deter-

mining connectivity, BRICseq must be reproducible and accu-

rate. To assess reproducibility, we compared connection data

resulting from different BRICseq experiments. We first devel-

oped a computational pre-processing method to correct for var-

iable experimental yields and/or sequencing depths across indi-

vidual experiments (Figures S2W and S2X; STAR Methods). We

next compared pairs of C57BL/6J connection maps and found

that the reproducibility of BRICseq was high. Estimated connec-

tion strengths were similar between tested brains (Pearson cor-

relation [r] = 0.83 ± 0.04, n = 15 pairs; Figures 3A and 3B; Fig-

ure S3C; STAR Methods; Table S4). Differences between the

measured connections across individuals arose from some

unknown combination of technical and biological variability.

Major sources of technical variability likely include differences

in injections and in dissection borders. We minimized biological

variability by comparing subjects of the same age, sex, and ge-

netic background, but because the actual degree of animal-to-

animal variability in cortical connections is unknown, these re-

sults represent an upper bound on the technical variability of

BRICseq.

To assess the accuracy of BRICseq, we compared our results

with the Allen Connectivity Atlas (Table S2 in Oh et al., 2014),

which was generated using conventional fluorophore-based

techniques. The relationship between the�100 cortical BRICseq
4 Cell 182, 1–12, July 9, 2020
cubelets (defined by dissection) and cortical ‘‘areas’’ (defined by

the Atlas) was not one-to-one; each area typically spanned

several cubelets, and each cubelet contributed to several areas.

We therefore limited the comparison to the subset of cubelets

that resided primarily (>70%) in a single source area. The agree-

ment between BRICseq and the Allen Atlas was good (P = 0.60 ±

0.11, n = 52 source brain areas in 6 animals; Figures 3C and 3D;

Figures S3H–S3J); indeed, the agreement was comparable

with inter-experiment variability within the Allen Atlas (R =

0.70 ± 0.15, n = 12 source brain areas; Figure 3D). This confirms

that potential MAPseq artifacts (e.g., from degenerate labeling,

fibers of passage [Figure 2V], or non-uniform barcode trafficking)

are minimal in BRICseq, as expected from previous work (Chen

et al., 2019; Han et al., 2018; Kebschull et al., 2016a) and, thus,

that BRICseq is a reliable method mapping region-to-region

connectivity.

Connectivity Determined by BRICseq Predicted Neural
Activity during an Auditory Decision-Making Task
Every neuron in the cortex receives input from thousands of

other neurons in other cortical and subcortical areas. Full knowl-

edge of the detailed connections and activities of all the inputs

would provide a foundation for precise prediction of the activity

of any given neuron (Bock et al., 2011; Kim et al., 2014; Seung

and Sümbül, 2014; Takemura et al., 2013; Yan et al., 2017). How-

ever, BRICseq provides only region-to-region connectivity, a

much lower dimensional measure. We therefore assessed

whether BRICseq could predict neural activity.

We hypothesized that region-to-region anatomical connec-

tions would predict region-to-region ‘‘functional connectivity’’;

i.e., the statistical relationship between neural activity in distinct

brain regions (Friston, 2011). Tomeasure functional connectivity,

we performed cortex-wide wide-field calcium imaging in awake

transgenic (Emx-Cre; Ai93; LSL-tTA) well-trained mice engaged

in an auditory decision task (Figures 4A–4C; Musall et al., 2019).

In these mice, the calcium indicator GCaMP6f is expressed in

excitatory cortical neurons. After registering calcium signals

into the cubelet reference frame, the activity of each cubelet
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Figure 3. Validation of BRICseq

(A) Reproducibility of brain area-to-brain area connectionmaps between twomice, BL6-1 and BL6-2. The unity line is shown in black. Blue bars showmean ±SD.

r, Pearson correlation; p, p value for r.

(B) A histogram of Pearson correlations between all pairs of C57BL/6J brains.

(C and D) Connectivity determined by BRICseq agrees with the Allen Connectome Atlas.

(C) An example comparison of PTLp between the Allen Atlas and BRICseq of mouse BL6-1.

(D) Comparison of the Allen Connectome with the Allen Connectome or the whole network determined by BRICseq of mouse BL6-1. Connection strengths were

quantified in log scale (connections lower than 10�7 were set to 10�7) and then Z scored. The unity line is shown in black.
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was calculated as themean activity over all its pixels. In principle,

wide-field calcium signals reflect population neural activity

pooled across somata, dendrites, and axons in a given brain

area. However, because most neuropil in any region is associ-

ated with somata and dendrites within that region, most of the

calcium signal reflects locally generated activity rather than

long-range inputs (Makino et al., 2017). Thus, here we interpret

the calcium activity of each cubelet as the population activity

of neurons residing in it.

Figure 4 shows the relationship between anatomical connec-

tivity measured by BRICseq and functional connectivity

measured by wide-field calcium imaging, considering only cu-

belets in the right hemisphere for analysis. We used activity

correlation between pairs of cubelets as a measure of func-

tional connectivity. Anatomical connectivity between cortical

areas alone (subcortical inputs to the cortex were not included

for analysis here) predicted functional connectivity remarkably

well, as shown by example pairs of cubelets and by the popu-

lation level (Figures 4D–4F; see more analyses in Figures S4A

and S4D–S4H). Because the distance between cubelets had

a large effect on the connection strength (Figure S6F) and ac-

tivity correlation, we further removed distance-dependent com-

ponents and found that the residual connection strengths and

activity correlations showed weaker but still significant correla-

tions (Figure 4G; see more analyses in Figures S4B and S4E–

S4H). Moreover, we performed the same analyses from the

same animals in the early training stages (the first 4–6 days

of training, when the task performance was at the chance

level), and found a similar relationship between neural activity

and connectivity (Figure S4C). The agreement between these

two very different measurements suggests that much of the

ongoing activity in the cortex during the auditory decision

task can be explained by surprisingly simple interactions be-

tween connected cortical areas.
Connectivity Determined by BRICseq Can Be Predicted
by Low-Dimensional Gene Expression Data
We next set out to test whether gene expression could be used

to predict connectivity (Fakhry and Ji, 2015; Fornito et al., 2019).

We hypothesized that, even though the patterns of gene expres-

sion that established wiring during development might have van-

ished at the time point we were examining, correlates of those

patterns might persist into adulthood. We thus applied mathe-

matical methods to search for gene expression patterns in the

adult that could be used to predict the strengths of region-to-re-

gion connections (Figure S5A).

We first calculated cubelet-to-brain area connectivity based

on BRICseq data, and used principal-component analysis

(PCA) to identify connectivity motifs shared between the two

brains. In this analysis, the interpretation of each PC is a subset

of correlated projection targets. Interestingly, a small number of

the principal components (PCs) captured most of the variance in

the connectivity data (Figure 5A; Figures S5B and S5C). Indeed,

the reconstruction of brain connectivity based on just the first 10

PCs of brain BL6-1 was strongly correlated with brain BL6-1 (r =

0.93) and brain BL6-2 (r = 0.72). PCA can be thought of as a way

of ‘‘de-noising’’ the brain connectivity in the same way that low-

pass filtering is a way of de-noising a periodic signal (exploiting

the fact that sinusoids are the eigenvectors of a periodic signal).

Themotifs described by these first 10 PCs represent the compo-

nents of the connectivity common to the two brains and, thus,

the components that could potentially be explained by gene

expression data from an independent dataset. We therefore

used connectivity reconstructed by the top 10 PCs for predicting

analysis.

We next sought to predict the region-to-region connectivity

from the gene expression in each cubelet. We first registered Al-

len in situ hybridization data, which depict the expression pat-

terns of �20,000 genes in brains of male 8-week-old C57BL/6J
Cell 182, 1–12, July 9, 2020 5
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Figure 4. BRICseq Predicts Functional Connectivity
(A) BRICseq connectivity compared with cortex-wide Ca2+ imaging.

(B) The auditory decision-making task.

(C) A single frame example of cortex-wide wide-field calcium imaging in a behaving animal.

(D) The activity traces of two example pairs of cubelets. c, connection strength (UMI/neuron); r, Pearson correlation. The shaded boxes represent the duration of

stimulation. The two vertical lines represent the time of trial initialization (left) and licking spout availability (right).

(E) Activity correlation between pairs of cubelets (mouse mSM64 on embryonic day 2 [E2]) versus reciprocal connection strengths between them (BL6-1). The

median line is shown in red. r, Pearson correlation; p, p value for r.

(F) Similar as in (E), but the activity-connectivity correlation (x axis) was quantified for all pairs of imaging experiments and BRICseq experiments.

(G) Residual activity correlation versus residual reciprocal connection strengths after removing distance-dependent components. r, Pearson correlation; p, p

value for r.
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mice (Lein et al., 2007), into the coordinates of BRICseq cube-

lets. We pre-filtered genes to only include high-quality expres-

sion data (genes with robust expression patterns in multiple as-

says; Table S5) and then used a greedy feature selection

algorithm to identify 25 genes most effective for predicting con-

nectivity using a linear model (STARMethods). Interestingly, pre-

diction accuracy plateaued after only about 10 gene predictors

to a high level (BL6-1 testing set, Pearson r = 0.72 ± 0.04; BL6-

2, Pearson r = 0.62 ± 0.008; Figures 5B–5D; Figures S5D and

S5E). Because of the highly correlated nature of gene expres-

sion, the identities of these predictive genes were not unique;

other sets of predictive genes performed about as well, consis-

tent with the idea that these genes represent signatures of the

genetic programs that established wiring during development.

To address the possible concern that the finding of the low-

dimensional genetic program is due to low spatial resolution of

BRICseq, we also performed a similar analysis with the Allen

Connectivity Atlas with higher spatial resolution (Oh et al.,

2014) and found similar trends (Figures S5F and S5G). The ability

of even a small number of marker genes to predict wiring agree-

ment suggests that a substantial fraction of region-to-region
6 Cell 182, 1–12, July 9, 2020
connectivity patterns arises from low-dimensional genetic

programs.
BRICseq Recapitulated Known Connectopathies in the
BTBR Mouse Brain
A key advantage of BRICseq is that it allows rapid and system-

atic comparison of brain connectivity between model systems.

We applied BRICseq to compare the cortical connectome of

C57BL/6J (Figure 2B) with that of two BTBR mice (BTBR-1 and

BTBR-2), an inbred strain lacking the corpus callosum and dis-

playing social deficits (Fenlon et al., 2015; McFarlane et al.,

2008; Wahlsten et al., 2003; Figure 6A; Figure S6A). Most strik-

ingly, and as expected, BRICseq revealed a nearly complete

absence of commissural cortical connections (Figures 6B and

6C; Figure S6B). In C57BL/6J, commissural connections consti-

tute 37.9% ± 4.6% of total connections, whereas in BTBR, the

percentage is 1.8% ± 0.3% (Figure 6D; the few remaining

nonzero commissural connections in BTBR mice were found

exclusively in target cubelets close to the midline and likely rep-

resented dissection error and contamination from the ipsilateral
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Figure 5. Gene Expression Patterns Predict

Connectivity Determined by BRICseq

(A) PCA-based reconstruction of connectivity, using

PCs and coefficients obtained from mouse BL6-1.

The correlation coefficient is plotted between the

connectivity reconstructed from first n PCs and

mouse BL6-1 (red) or BL6-2 (green).

(B and C). Performance of linear regression models

using selected gene predictors. The linear models

were trained using a training set in BL6-1 and then

tested using the remaining testing set in BL6-1 as

well as in BL6-2.

(B) The Pearson correlation between observed and

predicted connectivity increases with the number of

predictor genes. Red, the performance in the testing

set in BL6-1; green, the performance in BL6-2;

black, the null performance with the gene expres-

sion data shuffled before feature selection and linear

regression. Error bars in red and green represent

SEM; error bars in black represent 95% confidence

intervals.

(C) Scatterplot of observed versus predicted con-

nectivity, using 10 gene predictors. Red, the testing

set in BL6-1; green, BL6-2.

(D) The fitting coefficients of the top 10 gene pre-

dictors for the top 10 connectivity PCs.
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hemisphere; see Figure S6C). Thus, the known connectopathies

of the BTBR strain are recapitulated using BRICseq.

We next systematically compared the topological properties

of the ipsilateral cortical networks of C57BL/6J and BTBR mice

in the cubelet coordinate system (Bullmore and Sporns, 2009).

Network analyses of BRICseq-derived region-to-region connec-

tivity differ from previous studies (Oh et al., 2014; Swanson et al.,

2017; Zingg et al., 2014) because the natural coordinate frame is

given by regularly spaced cubelets, and all data were obtained

from a single individual.

Consistent with previous reports (Oh et al., 2014), in C57BL/

6J, connection strengths were well fit by a log-normal distribu-

tion (Figure 6E, left; see more analyses in Figures S6D and

S6E). The decay of connection strength with distance (Fig-

ure S6F) was fit with a double exponential (BL6-1: scale param-

eter b1 = 0.32 ± 0.13mm, b2 = 3.96 ± 3.25mm,mean ± 95% con-

fidence intervals) and connection probability (Figure S6F) with a

single exponential (BL6-1: b = 1.42 ± 0.23mm,mean ± 95% con-

fidence interval). The input correlations and output correlations

between pairs of cubelets showed positively biased distributions

(Figure S6G) and decayed with distance (Figure S6H). Interest-

ingly, the distribution of ipsilateral connection strengths in

BTBR was similarly fit by a log-normal distribution (Figure 6E,

right), and the inferred ipsilateral area-to-area connections

were not grossly disrupted (Figures S6I–S6L).

We next analyzed the topological properties of the ipsilateral

cortical networks. By decomposing the network into small motifs

containing 2 or 3 cubelets and quantitatively comparing the

abundance of these motifs with randomly generated networks,

we found that, in C57BL/6J, the fraction of 2-cubelet motifs
with a reciprocally connected pair was greater than the null

model, and densely connected 3-cubelet motifs were also signif-

icantly overrepresented (Figures 7A and 7B; Figures S7A, S7B,

and S7E). Interestingly, the distribution of 3-cubelet motifs was

strikingly similar to statistics of connections among single neu-

rons in the rat visual cortex (Song et al., 2005), suggesting that

a common rule might govern the organization of neural circuits

at microscale (inter-neuronal) and mesoscale (inter-regional)

levels. Furthermore, four network modules—regions of the brain

in which connections are dense and that may reflect functional

units—were revealed by connection-based clustering of cube-

lets in C57BL/6J (Figures 7C and 7D; Figures S7G–S7K). These

modules were not only similar to previously described connec-

tional networks (Harris et al., 2019; Zingg et al., 2014), but also

roughly matched the cytoarchitectonic map; approximately

module 1 belonged to visual-auditory areas,modules 2 and 3 be-

longed to somatosensory and somatomotor areas, and module

4 belonged to the anterior cingulate and retrosplenial areas.

Moreover, modules 2 and 3 were not clustered according to

the hierarchy in the Allen Atlas (where the somatosensory and

somatomotor areas are two modules in the highest hierarchy)

but more reflected the represented body parts (roughly, module

2 corresponded to somatosensory and somatomotor areas

associated with limbs, trunk, and whiskers, and module 3 corre-

sponded to areas associated with mouth and nose) and showed

similar patterns, as revealed by functional imaging (Figure 5 in

Vanni et al., 2017). Similar results were found in BTBR (Figures

S7C, S7D, S7F, and S7L–S7N), suggesting that these high-order

topological properties were largely maintained in the BTBR

strain. Thus, although the commissural corticocortical
Cell 182, 1–12, July 9, 2020 7
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Figure 6. Comparison of BTBR and C57BL/6J Cortical Connectivity

(A) Bright-field images of a C57BL/6J brain slice and a BTBR brain slice. Blue arrows indicate absence of the corpus callosum.

(B) Cubelet-to-cubelet connection matrix showing connection strengths in the BTBR mouse (BTBR-1).

(C) Quantification of contralateral connection strengths in C57BL/6J and BTBR. Mann-Whitney test, *p < 10�30, n = 456 source cubelets from 6 C57BL/6J mice, n

= 77 source cubelets from 2 BTBR mice. Error bars represent SEM.

(D) Non-zero connections in C57BL/6J (BL6-1) and BTBR (BTBR-1). Numbers in parentheses indicate total counts of possible connections. Numbers outside of

parentheses indicate total counts of non-zero connections.

(E) Distributions of ipsilateral and contralateral corticocortical connection strengths in C57BL/6J (BL6-1) and BTBR (BTBR-1). *p < 10�69, Kolmogorov-Smir-

nov test.
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connections are completely missing, the ipsilateral network re-

mained largely intact in the BTBR mouse (Figures S6K and

S6L). The failure to uncover differences, combined with the

high sensitivity of BRICseq, provides a lower bound on the differ-

ences between BTBR and BL6 ipsilateral cortical networks.

DISCUSSION

This study describes BRICseq, a high-throughput and low-cost

method that exploits sequencing of nucleic acid barcodes for

determining region-to-region connectivity in individual animals.

BRICseq of the neocortex of the C57BL/6J mouse revealed

that region-to-region gene expression, connectivity, and activity

are related in a simple fashion. Spatial variations in as few as ten

genes predict connectivity, and this connectivity, in turn, pre-

dicts correlations in neuronal activity. BRICseq of the BTBR

mouse strain recapitulated the known deficits of commissural

corticocortical connections. By virtue of its relatively low cost

and high throughput, BRICseq enables individual laboratories

to study how age, sex, environment, genetics, and species affect

neuronal wiring and how these are disrupted in animal models of

disease or modified after manipulations and to integrate them

with functional activity, gene expression, and behavioral pheno-

types in individual animals.

Comparison with Other Methods
BRICseq is high throughput and low cost in comparisonwith cur-

rent methods for obtaining a comparable dataset. Conceptually,
8 Cell 182, 1–12, July 9, 2020
BRICseq is closest to conventional fluorophore-based tracing

techniques (Oh et al., 2014; Zingg et al., 2014). However,

although conventional fluorophore-based approaches require

pooling across hundreds of brains to map brain-wide connectiv-

ity, BRICseq multiplexes injections and is therefore able to map

connectivity from individual subjects. This multiplexing reduces

costs, labor, and animal-to-animal variability. Currently it takes

less than 4 weeks for a single person to perform one BRICseq

experiment at a total cost of less than $10,000 (including the

sequencing cost). The ability to generate maps from single sub-

jects eliminates the need to register anatomical coordinate sys-

tems across animals, which increases reproducibility and accu-

racy. Reducing the number of subjects also leads to a substantial

decrease in total cost in terms of money and labor. The reduction

in the number of subjects is particularly appealing for study of

non-human primates (Izpisua Belmonte et al., 2015) as well as

of relatively new model systems for which connectivity maps

are not yet available or individual subjects are particularly valu-

able, such as Alston’s singing mouse (Banerjee et al., 2019;

Okobi et al., 2019) and Peromyscus (Bedford and Hoekstra,

2015; Metz et al., 2017; Weber et al., 2013).

Connectivity can also be mapped using diffusion tractogra-

phy imaging (DTI), which uses 3D tracing of water diffusion

pathways measured by MRI to infer the orientation of white

matter tracts in the brain (Calabrese et al., 2015). Because

DTI is rapid and non-invasive, it is widely used in the study of

human brain connectivity. However, conventional DTI has low

spatial resolution and a low signal-to-noise ratio and has
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Figure 7. Topological Properties of the Ipsi-

lateral Cortical Network

(A and B) Abundance of 2-node (A) and 3-node (B)

motifs in the cortical network in C57BL/6J (BL6-1)

compared with randomly generated networks. *p <

0.001.

(C) Sorted cubelet-to-cubelet connection matrix

based on modules in BL6-1.

(D) Connection-based modules in C57BL/6J

(BL6-1).

The same colors denote the same modules in (C)

and (D). The outlines of gross brain areas defined in

the Allen Atlas are overlaid on top of (D). The names

of cortical areas based on the Allen Atlas are shown

in Figure S7O.
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difficulty resolving subvoxel fiber complexity, so it has been

much less useful in the study of small animal connectivity.

Moreover, DTI requires access to specialized small animal

MRI scanners, which remain relatively uncommon. Thus,

despite recent advances in small animal DTI, this approach

has not become widely adopted.

BRICseq differs from conventional fluorophore tracing in that

the spatial resolution is determined at the time of dissection

(for sources and targets) rather than, as with fluorophore tracing,

at the time of injection (for sources) and imaging (for targets). In

the present study, we dissected rather large cubelets, and the

cubelet size we chose currently may limit the mapping of small

brain regions, particularly when BRICseq is applied to subcor-

tical nuclei in the future. However, laser capture microdissection

permits much smaller cubelets, even approaching single-neuron

resolution, allowing BRICseq experimenters to dynamically

adjust the dissection size according to experiment needs or

even perform nucleus-specific dissection following online regis-

tration of brain slices. Moreover, spatial transcriptomic methods

(Rodriques et al., 2019; Ståhl et al., 2016; Vickovic et al., 2019),

including in situ sequencing (Chen et al., 2019), raise the possi-

bility of achieving single-cell and, indeed, single-axon or even

synaptic resolution.

The sensitivity of BRICseq depends on a number of factors,

including the number of infected cells per cubelet, the false pos-

itive error rate, and the sequencing depth. Although, as shown in

the current manuscript, corticocortical connectivity maps deter-

mined by the current BRICseq protocol are overall highly repro-

ducible and accurate compared with the Allen Connectivity
Atlas, it could be further improved to

detect and compare relatively weak con-

nections even at single-neuron resolution.

For instance, the viral injection protocol

can be further optimized to make the num-

ber of infected cells per cubelet and, thus,

the sensitivity (Figure S2U) more uniform

across all cubelets. In addition, develop-

ment of non-invasive viral delivery tech-

niques may also provide alternative ap-

proaches for efficient brain-wide

barcoding of neurons for BRICseq (Chan

et al., 2017; Wang et al., 2019). To further
reduce the template switching error rate (Figures S2D–S2G),

we could perform PCR separately for each cubelet or implement

droplet PCR (Hindson et al., 2011). To reduce the re-used

barcode rate (Figures S2H–S2N), we are able to make viral li-

braries with much higher barcode diversity (indeed, we already

attempted to make one and used it in BL6-6 and BTBR-2).

Moreover, we envision rapid progress of high-throughput

DNA sequencing methods, allowing much higher sequencing

depth and lower costs in the near future. We expect that, with

further improvement, BRICseq will enable us to map brain-

wide connectivity with much higher throughput and sensitivity.

Moreover, because the technical variability of BRICseq

mainly results from the variability of viral injection, cubelet

dissection, sequencing depth, and false positive errors, such

improvement will also allow further reduction of BRICseq

variability.

Compared with conventional fluorophore-based ap-

proaches, BRICseq is currently not able to map connectivity

in a presynaptic cell-type-specific manner. Although the

expression of the RNA virus Sindbis cannot be controlled by

the DNA recombinase Cre or Flp, it is possible to pseudotype

Sindbis by replacing its glycoprotein to restrict its tropism to

a specific cell type, achieving presynaptic cell specificity in a

way similar to the pseudotyped rabies (Wickersham et al.,

2007). In addition, development of in situ sequencing (Chen

et al., 2019; Lee et al., 2015; Wang et al., 2018) may also allow

brain-wide assessment of connection and gene simulta-

neously, relating transcriptome to connectome at even single-

synapse resolution.
Cell 182, 1–12, July 9, 2020 9
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A Simple Relationship among Gene Expression,
Connectivity, and Activity
At one level, our finding that there is a simple relationship (Fig-

ures 4 and 5) among gene expression, connectivity, and func-

tional activity may not seem unexpected. The genome encodes

the developmental rules for wiring up a brain—rules that are im-

plemented in part by spatial patterns of gene expression—and

this wiring, in turn, provides the scaffolding for resting-state or

‘‘default’’ neuronal activity (Buckner et al., 2008). So the fact

that gene expression, connectivity, and functional activity are

related is a direct consequence of development and brain

architecture.

However, what is surprising is not that a relation exists among

gene expression, connectivity, and functional activity but that

this relationship is simple. Wiring could depend, in complex

and nearly indecipherable ways, on dozens or even thousands

of gene-gene interactions. Thus, the fact that region-to-region

connectivity of the neocortex could be predicted by the spatial

expression pattern of just a small number (�10) of genes raises

the possibility that low-dimensional genetic programs determine

the interregional wiring of the cortex. However, despite the pre-

dictive power of these 10 genes (Figure 5), there is no reason to

expect that these predictive genes were causal in establishing

wiring; they might merely be correlated with the causal genes.

To establish the causal effect of genes on connectivity will likely

require experiments in which gene expression is perturbed.

Fortunately, BRICseq is sufficiently high-throughput that such

an experimental program might not be prohibitively expensive.

We also observed that the corticocortical connectivity be-

tween two regions could predict correlations in cortical activity

between them (Figure 4). Interestingly, a previous study (Honey

et al., 2009) in humans found only a weak relationship between

structural connectivity (assessed by DTI) and functional connec-

tivity (inferred from resting state correlations). Whether these

different results arise from methodological considerations (e.g.,

wide-field calcium imaging and BRICseq versus fMRI and DTI,

task engagement versus resting state) or whether they reflect

fundamental differences between mice and humans remains to

be determined.

In the present experiments, gene expression, connectivity,

and activity were assessed separately in different individuals.

The data from these different experiments were then aligned

to a shared coordinate system. However, because the

techniques used in these experiments—wide-field imaging,

RNA sequencing (RNA-seq) of endogenous transcripts, and

sequencing of barcodes—are mutually compatible, it is feasible

to combine them in single individuals. Not only would this elimi-

nate variability arising from combining data across individuals,

but it would also allow connectivity and gene expression to be

determined in the same coordinate system. Because the align-

ment to a common coordinate system represents a significant

source of animal-to-animal variability, we expect that the

simplicity of the relationships reported here represent a lower

bound on the actual variability.

BRICseq in the Era of Comparative Connectomics
Growing evidence suggests that disruption of interregional con-

nectivity leads to a variety of neuropsychiatric disorders, such as
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autism and schizophrenia (Geschwind and Levitt, 2007; Kubicki

et al., 2007). Deciphering the circuit mechanisms underlying

brain disorders requires systematic characterization of connec-

topathies, how they disrupt brain activity, and how they result

from genetic mutations. Investigation of diverse animal models

can reveal the neural mechanisms underlying species-specific

behaviors and provide a path toward discovering general brain

principles (Yartsev, 2017). However, brain-wide interregional

connectivity in animal models of diseases and new species

remain largely unavailable, in part because of the lack of a

high-throughput, inexpensive, and accurate techniques. Thus,

we expect that BRICseq, combined with other brain-wide indi-

vidual animal imaging or RNA-seq techniques, will facilitate the

creation of a systematic foundation for studying circuits in

diverse animal models, opening up the possibility of a new era

of quantitative comparative connectomics.
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STAR+METHODS
KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Bacterial and Virus Strains

Sindbis virus This paper N/A

AAV CAG-tdTomato Penn Vector Core AV-1-ALL864

Deposited Data

Sequencing data Sequence Read Archive PRJNA541990

Experimental Models: Organisms/Strains

C57BL/6J mouse The Jackson Laboratory RRID:IMSR_JAX:000664

BTBR mouse The Jackson Laboratory RRID:IMSR_JAX:002282

Emx-Cre mouse The Jackson Laboratory RRID:IMSR_JAX:005628

Ai93 mouse The Jackson Laboratory RRID:IMSR_JAX:024103

LSL-tTA mouse The Jackson Laboratory RRID:IMSR_JAX:008600

CamKII-tTA mouse The Jackson Laboratory RRID:IMSR_JAX:003010

Oligonucleotides

Reverse transcription primers: (50)CTT GGC ACC CGA GAA

TTC CAX XXX XXX XXX XXZ ZZZ ZZZ ZTG TAC AGC TAG

CGG TGG TCG(30)

Integrated DNA Technologies N/A

X12: barcoded unique molecular identifiers; Z8: barcoded

cubelet-specific identifiers.

Reverse transcription primers: (50)CTT GGC ACC CGA GAA

TTC CAX XXX XXX XXX XXX XZZ ZZZ ZZZ ZZZ ZZZ ZZT

GTA CAG CTA GCG GTG GTC G(30)

Integrated DNA Technologies N/A

X14: barcoded unique molecular identifiers; Z16: barcoded

cubelet-specific identifiers.

Spike-in RNAs: (50)GUC AUG AUC AUA AUA CGA CUC ACU

AUA GGG GAC GAG CUG UAC AAG UAA ACG CGU AAU

GAU ACG GCG ACC ACC GAG AUC UAC ACU CUU UCC

CUA CAC GAC GCU CUU CCG AUC UNN NNN NNN NNN

NNN NNN NNN NNN NAU CAG UCA UCG GAG CGG CCG

CUA CCU AAU UGC CGU CGU GAG GUA CGA CCA CCG

CUA GCU GUA CA(30)

Kebschull et al., 2016a N/A

Nested PCR primer: first PCR forward: (50)GGA CGA GCT G(30) Integrated DNA Technologies N/A

Nested PCR primer: first PCR reverse: (50) CAA GCA GAA

GAC GGC ATA CGA GAT CGT GAT GTG ACT GGA GTT CCT

TGG CAC CCG AGA ATT CCA(30)

Integrated DNA Technologies N/A

Nested PCR primer: second PCR forward: (50)AAT GAT

ACG GCG ACC ACC GA(30)
Integrated DNA Technologies N/A

Nested PCR primer: second PCR reverse: (50) CAA GCA

GAA GAC GGC ATA CGA(30)
Integrated DNA Technologies N/A

Software and Algorithms

Bowtie: Langmead et al., 2009 http://bowtie-bio.sourceforge.

net/index.shtml

Brain connectivity toolbox Rubinov and Sporns, 2010 https://sites.google.com/site/bctnet/

MATLAB Mathworks https://www.mathworks.com/

products/matlab.html?s_tid=hp_

products_matlab

Other

Allen connectivity atlas Oh et al., 2014 https://connectivity.brain-map.org/

static/brainexplorer

Allen in situ hybridization database Lein et al., 2007 https://mouse.brain-map.org
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RESOURCE AVAILABILITY

Lead Contact
Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, Anthony

M Zador (zador@cshl.edu).

Materials Availability
The genomic construct and the helper construct for Sindbis virus production are available from Addgene under accessions 73074

and 72309. Sindbis virus and BRICseq services are available from theMAPseq core (hzhan@cshl.edu) in the Cold Spring Harbor Lab-

oratory upon reasonable request.

Data and Code Availability
All sequencing datasets are publicly available under SRA accession codes SRA: PRJNA541990. Further information and requests for

data and code should be directed to and will be fulfilled by the Lead Contact.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Animal models used in the paper include: (model organism: name used in paper: genotype) Mouse: C57BL/6J: C57BL/6J; Mouse:

BTBR: BTBR T+ Itpr3tf/J; Mouse: Emx-Cre: Emx1tm1(cre)Krj/J; Mouse: Ai93: Igs7tm93.1(tetO-GCaMP6f)Hze/J; Mouse: LSL-tTA: Gt(ROSA)

26Sortm1(tTA)Roos/J; Mouse: CamKII-tTA: CBA-Tg(Camk2a-tTA)1Mmay/J.

Animal procedures were approved by the Cold Spring Harbor Laboratory Animal Care and Use Committee and carried out in

accordance with National Institutes of Health standards. For BRICseq, experimental subjects were 8-week-old male C57BL/6J

mice or BTBR T+ Itpr3tf/J mice from the Jackson Laboratory. For functional imaging, triple transgenic mice Emx-Cre; Ai93; LSL-

tTAwere generated. A small fraction ofmice used for functional imaging also harbored a CamKII-tTA allele to enhance the expression

of GCaMP6f.

METHOD DETAILS

Sindbis virus barcode libraries
The Sindbis virus used in BRICseq was made as described previously (Kebschull et al., 2016a, 2016b). Briefly, based on a dual pro-

moter pSinEGdsp construct, we inserted MAPP-nl after the first subgenomic promoter, and GFP-BC(barcode)-4 3 boxB after the

second subgenomic promoter. Sequences (50)AAG TAA ACGCGT AAT GAT ACGGCGACC ACCGAGATC TAC ACT CTT TCCCTA

CAC GAC GCT CTT CCG ATC TNN NNN NNN NNN NNN NNN NNN NNN NNN NNN NNN GTA CTG CGG CCG CTA CCT A(30) were

inserted betweenMluI andNotI sites whichwere betweenGFP and 43 boxB. In barcode library 1, the 32-nt BC endedwith 2 purines,

while in barcode library 2, the 32-nt BC ended with 2 pyrimidines. Sindbis virus was produced using the DH-BB(50SIN;TE12ORF)

helper plasmid (Kebschull et al., 2016b). One batch of library 1 viruses and two batches of library 2 viruses were used in the project.

The viral barcode library diversity was determined by Illumina sequencing. �23 106 barcodes were sequenced in the viral library 1,

�83 106 barcodes were sequenced in the first viral library 2 (used in BL6-1, BL6-2, BL6-3, BL6-4, BL6-5 BTBR-1, soma calling strat-

egy validation experiment and template switching volume test experiment), and > 2.73 108 barcodes were sequenced in the second

viral library 2 (used in BL6-6 and BTBR-2). Significantly higher barcode diversity was achieved in the seconds viral library 2 by

removing unligated DNA after barcode insertion between MluI and NotI using Plasmid Safe DNase (Epicenter) according to manu-

facture’s instructions. This dramatically increased bacterial electroporation efficiencies and thus plasmid library diversity. In addition,

virus was produced in Corning CELLStacks to increase the number of virus producing cells 30-fold over the first virus library 2, easing

this second diversity bottleneck.

Injections
For BRICseq, Sindbis virus of barcode library 2 was injected into the right cortical hemispheres of experimental animals. Anesthesia

was initially induced with isoflurane (4% mixed with oxygen, 0.5 L/min). Meloxican (2 mg/kg), dexamethasone (1 mg/kg) and baytril

(10 mg/kg) were then administered subcutanesouly. For Sindbis injections, the whole skull above the right cortical hemisphere was

removed. More than 100 injection pipette penetrations weremade to cover the entire exposed brain, each spaced by 0.5mm, both in

the AP axis and ML axis. Nanoject III (Drummond Scientific) was used to inject Sindbis virus (�2 3 1010 GC/mL), at 3-4 depths per

penetration site (Table S1). At each penetration site and depth, 23 nL virus was injected. The full injection surgery required about 8

hours, and constant isoflurane (1% mixed with oxygen, 0.5 L/min) was administered to maintain anesthesia. After injection, sterile

Kwik-Cast (World Precision Instruments) was gently applied to cover the exposed brain region, and the skin was closed with sutures.

Meloxican (2 mg/kg), dexamethasone (1 mg/kg) and baytril (10 mg/kg) were then routinely administered to animals subcutaneously

every 12 hours post surgery, and animal condition was inspected every 6 – 12 hours. Similarly, we injected Sindbis virus of barcode

library 1 into control animals. In control animals, instead of injecting the virus into the whole right cortex, we only made �6 penetra-

tions covering a small cortical area.
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For control experiments testing the soma calling strategy (Figures 1E and 1F; Figure S2T), the same BRICseq protocol was fol-

lowed, but Sindbis virus of barcode library 1 was injected into the secondary motor areas, and Sindbis virus of barcode library 2

into the primary motor areas.

For control experiments testing template switches (Figures S2D–S2F), we followed the BRICseq protocol above, but injected Sind-

bis virus of barcode library 2 into two separate animals.

For AAV CAG-tdTomato tracing experiments (Figure S6A), we used coordinates AP = �4 mm, ML = 0.5 mm, 1 mm and 1.5 mm,

DV = 0.25mmand 0.5mm for retrosplenial cortex in C57BL/6J and coordinates AP =�4mm,ML = 0.75mm, 1mmand 1.5mm, DV =

0.25 mm and 0.5 mm for retrosplenial in BTBR. In BTBR, as two hemispheres began to separate at AP = �4 mm and there was no

cerebral cortex atML= 0.5mm,we usedML= 0.75mm instead. In each coordinate, 20 nL of AAV1CAG-tdTomato AAV (23 1013 GC/

mL Penn Vector Core) was injected.

Cryosectioning and laser microdissection (LMD)
In BRICseq, 44 hours after Sindbis viral injection, the brain was harvested and fresh frozen at�80�C. Olfactory bulbs and rostral spi-

nal cord/caudal medulla were cut from the brain and collected separately. We then cut 300 mm coronal sections using a Leica CM

3050S cryostat at �12�C chamber temperature and �10�C object temperature. Each slice was cut with a fresh part of a blade, and

the platform and brushes were carefully cleaned between slices. Each slice was immediately mounted onto a steel-framed PEN

(polyethylene naphthalate)-membrane slide (Leica). After mounting on the slide, the slice was fixed in 75% ethanol at 4�C for

3 min, washed in Milli-Q water (Millipore) briefly, stained in 0.5% toluidine blue (Sigma-Aldrich, MO) Milli-Q solution at room temper-

ature for 30 s, washed in Milli-Q water at room temperature for 3 times (15 s each time), and fixed again in 75% ethanol at room tem-

perature twice (2min each time). The slidewas then left in a vacuumdesiccator for 30min. Next, another fresh frame slidewas used to

sandwich the brain slice, and the two slides tightly taped to prevent the slice from falling. The sandwiched slice was stored in the

vacuum desiccator at room temperature until LMD. If LMD was performed more than 1 week after cryosectioning, the sandwiched

slices were stored at �80�C in a desiccated container.

Cubelet dissectionwas performedwith Leica LMD7000. During LMD, cortical cubelets with�1mmarc lengthwere dissected from

each coronal slice, from the surface to the deepest layer above the white matter. Orbitofrontal cortical cubelets (in rostral slices),

anterior cingulate cortical cubelets, and retrosplenial cortical cubelets were also collected separately. For subcortical areas including

striatum, thalamus, amygdala, tectum and pons/medulla, tissue belonging to each brain area was pooled every 1-3 consecutive sli-

ces. About 12�21 cubelets were also collected from injection sites and contralateral homotopic areas of the injection sites in the

barcode library 1 control animal, and 2 cortical cubelets in the uninjected control animal. Pictures were taken before and after every

cubelet was dissected. After dissecting every 4 cubelets, we transferred them into homogenizing tubes with homogenizing beads,

and added 100 mL lysis solution (RNAqueous-Micro Total RNA Isolation Kit, Thermo Fisher) into each cubelet. The collected tissues

were stored temporally on dry ice and then at �80�C.

Sequencing library preparation
After LMD, each cubelet was homogenized in lysis solution with a tissue lyser (QIAGEN) at 20 Hz for 6 min. Then we extracted RNA

molecules from each cubelet with RNAqueous-Micro Total RNA Isolation Kit (Thermo Fisher). We did not treat products with DNase I

as DNA did not influence following experiments. The final product was eluted in 20 mL elution solution.

After RNA extraction, we performed reverse transcription (RT) with barcoded RT primers using SuperScript IV (Thermo Fisher).

Barcoded RT primers were in the form of (50)CTT GGC ACC CGA GAA TTC CAX XXX XXX XXX XXZ ZZZ ZZZ ZTG TAC AGC TAG

CGG TGG TCG(30) (for BL6-1, BL6-2, BTBR-1 and BTBR-2), or (50)CTT GGC ACC CGA GAA TTC CAX XXX XXX XXX XXX XZZ

ZZZ ZZZ ZZZ ZZZ ZZT GTA CAG CTA GCG GTG GTC G(30) (for BL6-3, BL6-4, BL6-5 and BL6-6), where Z8/Z16 is one of 288

CSIs (cubelet-specific identifiers) and X12/X14 is the UMI (unique molecular identifier). 1 mL of 1 3 10�9 mg/mL spike-in RNAs were

also added. The sequence of spike-in RNAs were (50)GUC AUG AUC AUA AUA CGA CUC ACU AUA GGG GAC GAG CUG UAC

AAG UAA ACG CGU AAU GAU ACG GCG ACC ACC GAG AUC UAC ACU CUU UCC CUA CAC GAC GCU CUU CCG AUC UNN

NNN NNN NNN NNN NNN NNN NNN NAU CAG UCA UCG GAG CGG CCG CUA CCU AAU UGC CGU CGU GAG GUA CGA

CCA CCG CUA GCU GUA CA(30).
We then cleaned up RT products with 1.8 3 SPRI select beads (Beckman Coulter), synthesized double-stranded cDNA with pre-

viously described methods (Morris et al., 2011), cleaned up 2nd strand synthesis products again with 1.8 3 SPRI select beads, and

treated the eluted ds cDNA with Exonuclease I (New England Biolabs) (incubated the mix at 37�C for 1 hr and inactivated the enzyme

at 80�C for 20min). As cDNAmolecules from different cubelets were already CSI-barcoded after RT, we pooled every 12 RT products

for 1st bead purification and 2nd strand synthesis, and pooled all the products for 2nd bead purification and Exonuclease I treatment.

We next amplified the cDNA library by nested PCR using primers (50)GGA CGA GCT G(30) and (50) CAA GCA GAA GAC GGC ATA

CGAGAT CGT GAT GTG ACT GGA GTT CCT TGGCAC CCG AGA ATT CCA(30) for the first PCR and primers (50)AAT GAT ACGGCG

ACC ACC GA(30) and (50) CAA GCA GAA GAC GGC ATA CGA(30) for the second PCR in Accuprime Pfx Supermix (Thermo Fisher).

First PCR was performed for 5 cycles in 720 mL; after Exonuclease I treatment (incubated the mix at 37�C for 30 min and inactivated

the enzyme at 80�C for 20min), one-fourth of the first PCR products were used for second PCR. Second PCRwas performed for 5-10

cycles in 12 mL. Standard Accuprime protocol was used for PCR except that the extension time in each cycle was set to 2 min to

reduce incomplete elongation and template switches.
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Nested PCR products were then purified and eluted in 600 mL with a Wizard SV Gel and PCR Clean-Up System (Promega), and

further concentrated with Ampure XP beads (Beckman Coulter) in 25 mL Milli-Q H2O. After running in a 2% agarose gel, the

230 bp band was cut out and cleaned up with the QIAGEN MinElute Gel Extraction Kit (QIAGEN). We sequenced the library on an

Illumina Nextseq500 high output run at paired end 36 using the SBS3T sequencing primer for paired end 1 and the Illumina small

RNA sequencing primer 2 for paired end 2.

Most of the molecular experiments were performed according to the reagent manufacturer’s protocol unless otherwise stated.

Sequencing
We sequenced the pooled libraries prepared as above on an Illumina Nextseq500 high output run at paired end 36 using the SBS3T

sequencing primer for paired end 1 and the Illumina small RNA sequencing primer 2 for paired end 2.

Confocal imaging
In AAV tracing experiments, brains were harvested 14 days after viral injection, fixed in 4%paraformaldehyde, washed in phosphate-

buffered saline, and cut into 100 mm slices with a vibrotome (LeicaVT1000S, Leica). Slices were then mounted onto slides in Fluo-

roshield (Sigma-Aldrich), and imaged in a Laser Scanning Microscope 710 system (Leica).

Wide-field calcium imaging
Wide-field calcium imaging experiments in Figures 4 and S4 are as described in Musall et al. (2019). All surgeries were performed

under 1%–2% isoflurane in oxygen anesthesia. After induction of anesthesia, 1.2 mg/kg of meloxicam was injected subcutaneously

and lidocaine ointment was topically applied to the skin. After making a medial incision, the skin was pushed to the side and fixed in

position with tissue adhesive (Vetbond, 3M).We then created an outer wall using dental cement (Ortho-Jet, LangDental) while leaving

as much of the skull exposed as possible, then a circular headbar was attached to the dental cement. After carefully cleaning the

exposed skull we applied a layer of cyanoacrylate (Zap-A-Gap CA+, Pacer technology) to clear the bone. After the cyanoacrylate

was cured, cortical blood vessels were clearly visible.

Widefield imaging was done using an inverted tandem-lens macroscope in combination with an sCMOS camera (Edge 5.5, PCO)

running at 60 fps. The top lens had a focal length of 105 mm (DC-Nikkor, Nikon) and the bottom lens 85 mm (85M-S, Rokinon), re-

sulting in amagnification of 1.24x. The total field of viewwas 12.43 10.5mmand the spatial resolution was�20 mm/pixel. To capture

GCaMP fluorescence, a 500 nm long-pass filter was placed in front of the camera. Excitation light was coupled in using a 495 nm

long-pass dichroic mirror, placed between the two macro lenses. The excitation light was generated by a collimated blue LED

(470 nm, M470L3, Thorlabs) and a collimated violet LED (405 nm, M405L3, Thorlabs) that were coupled into the same excitation

path using a dichroic mirror (#87-063, Edmund optics). From frame to frame, we alternated between the two LEDs, resulting in

one set of frames with blue and the other with violet excitation at 30 fps each. Excitation of GCaMP at 405 nm results in non-calcium

dependent fluorescence, and we could therefore isolate the true calcium-dependent signal by rescaling and subtracting frames with

violet illumination from the preceding frames with blue illumination. All subsequent analysis was based on this differential signal at

30 fps.

Behavior task
For Figures 4 and S4, four mice were trained on a delayed 2-alternative forced-choice (2AFC), spatial discrimination task. Mice initi-

ated trials by touching two handles. After 0.25–1 s of holding the handles, mice were presented with a sequence of auditory clicks for

a duration of 1–1.5 s. In each trial, click sequenceswere presented either on the left or right side of the animal. A variable delay of 0–1 s

was then imposed, after which servo motors moved two lick spouts into close proximity of the animal’s mouth. Licks to the spout

corresponding to the stimulus presentation side were rewarded with water. After one spout was contacted, the opposite spout

was moved out of reach to force the animal to commit to its initial decision. Animals were trained over the course of approximately

30 days and reached stable detection performance levels of 80% or higher.

QUANTIFICATION AND STATISTICAL ANALYSIS

LMD (laser microdissection) Image processing
Wholebrain toolbox (by Daniel Fürth; http://www.wholebrainsoftware.org) was used to register Toluidine Blue-stained coronal slices

into Allen Reference Atlas semi-automatically. Using MATLAB, we determined the coordinates of each cubelet by processing pic-

tures taken before and after each cubelet was dissected. Combining image registration results and cubelet coordinates, we mapped

each cubelet into one or multiple brain areas.

BRICseq data analysis
In what follows, we will describe methods to determine brain-wide connectivity maps from BRICseq data. For clarity of methodolog-

ical details, we define the following terms first. 1) Barcode: a barcode is a unique 32nt sequence delivered by the Sindbis virus. One

barcode theoretically corresponds to a neuron. 2) Molecule: here a molecule is defined as a unique BC-CSI-UMI (32nt + 8nt + 12nt)

sequence. Amolecule should correspond to a single RT product. Due to barcode amplification in a neuron, one barcode has multiple
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molecules. 3) Molecule copy: a molecule copy is defined as a final product after PCR. A large number of molecule copies are gener-

ated from one molecule during PCR. 4) Read: reads are the sequencing product. PCR products are sent for high-throughput

sequencing, so reads can be considered as undersampled molecule copies.

Processing of raw sequencing data

Raw Illumina sequencing results consisted of two .fastq files: 32-nt BC sequences were in paired end 1, and 12-nt UMI and 8-nt CSI

sequences (BL6-1, BL6-2, BTBR-1, BTBR-2) or 14-nt UMI and 16-nt CSI sequences (BL6-3, BL6-4, BL6-5, BL6-6) were in paired end

2. The full BC-UMI-CSI sequences were merged and then de-multiplexed based on CSIs (cubelets). All the sequences with ambig-

uous bases (shown asN in the sequencing results) were removed.We then collapsed all the identical reads. Based on the sequencing

depth (Kebschull and Zador, 2015), we set the read threshold as 0 (including all reads) for BL6-1, BL6-2, BL6-3, BL6-4, BL6-6 and

BTBR-1, and set the read threshold as 1 (only include molecules with > 1 reads) for BL6-5 and BTBR-2. Unique sequences were next

sorted into barcode library 1 (BC ended with 2 purines), barcode library 2 (BC ended with 2 pyrimidines), and spike-in (BC ended with

ATCAGTCA). We then counted the number of unique UMIs for each BC-CSI, which represented the molecule count of a given bar-

code in a given cubelet.

Substitution error correction

Base substitution is one of the major error sources. As the theoretical diversity of a random barcode of N30YY or N30RR is 430 3 22

z1018, an error barcode due to substitution should be very similar to one of the real barcodes, while any two real barcodes should be

very different. To correct substitution errors, we first found all the barcode pairs with up to 3 mismatches using the short read aligner

bowtie (http://bowtie-bio.sourceforge.net/index.shtml; Langmead et al., 2009). We next collapsed all the barcodes into a large num-

ber of clusters, such that for any barcode (BC1) in a given cluster, there existed another barcode (BC2) in the same cluster with less

than 3 mismatches. As a simple algorithm, theoretically it could cause very different barcodes to be collapsed into the same cluster;

however, this did not happen in the real scenario due to the high hamming distances between used barcodes (Kebschull and Zador,

2015). The barcode with the highest UMI counts in each cluster was used to represent the cluster, and the summed UMI count of all

the barcodes in the cluster was calculated as the corrected UMI count of the barcode. After substitution correction, we generated a

barcode-cubelet matrix, where each element represented the molecule count of a given barcode in a given cubelet after collapsing.

Reconstruction of single cell projections

With following steps, we determined each cell’s location and its projection pattern.

Step 1: viral abundance thresholding. For viral library 2, batch 1 experiments (BL6-1, BL6-2, BL6-3, BL6-4, BL6-5, BTBR-1), as the

barcode counts in the viral library were not perfectly uniform (Figure S2J), to reduce re-used barcode errors, barcodes whose

counts were greater than 5 in the viral library sequencing result were excluded for analysis in the barcode-cubelet matrix (for de-

tails on how the viral abundance threshold affects re-used barcodes, please see section ‘correction of re-used barcodes’). For

viral library 2, batch 2 experiments (BL6-6, BTBR-2), due to the high barcode diversity, no viral abundance threshold was used.

Step 2: UMI thresholding. To remove noises, we set all the no-greater-than-1 (UMI threshold) elements in the matrix to 0.

Step 3: soma/axon thresholding. After barcode abundance thresholding and UMI thresholding, we determined the soma location

of each barcode using the ‘soma-max’ strategy. To exclude local dendritic innervations, for each barcode, the UMI counts of all

the cubelets neighboring to the soma cubelet were set to 0. Firstmax and secondmax were then calculated as the highest and

second highest UMI counts for each barcode.We chose soma threshold to be 250 and axon threshold to be 20, and only analyzed

barcodes whose firstmax was greater than soma threshold and secondmax was between UMI threshold and axon threshold. The

purpose of soma/axon thresholding was to correctly identify source cubelets for each barcode, and to reduce the number of re-

used barcodes. For details on how the thresholds affect the ratio of re-used barcodes, please see section ‘correction of re-used

barcodes’.

Step 4: filter right cortical neurons.We remove the barcodeswhose somas did not reside in the right cortical hemisphere. Cells not

in the right cortex were extremely rare, and they were likely due to virus spread.

Calculating bulk projections and confidence bounds

To calculate bulk projection patterns, we pooled all the projection cells that resided in the same cubelets together, and calculated

their average projection patterns. As some error sources including PCR template switching and re-used barcodes contributed to

false positive connections, we also estimated false positive connection strengths, subtracted them from raw connection strengths,

and calculated p values for each connection. The details are as follow:

Step 1. Correct raw connection strengths

The raw projection strength from a source cubelet to a target cubelet was defined as the total count of UMIs in the target cubelet from

all the neurons residing in the source cubelet divided by total number of projection neurons in the source cubelet. Considering the

projection from cubelet io cubelet klet NðiÞ enote number of projection neurons in cubelet i nd UMIði; j; kÞ enote the UMI count in cu-

belet k rom j neuron in cubelet ithen the UMI count in cubelet krom an average neuron in cubelet iUMIði; �; kÞ ould be written as:

UMIði; � ; kÞ =
PNðiÞ

j = 1UMIði; j; kÞ
NðiÞ (1)
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However, noise caused by template switching, re-used barcodes, and baseline contaminations could also contribute to UMIði; �; kÞ
The noise level of the iok- ojection Noiseði;kÞ, as calculated as:

Noiseði; kÞ = UMItsði; � ; kÞ+UMIreði; � ; kÞ+UMIba (2)
where UMI ði; �;kÞs the expected UMI count in cubelet k rom an
ts average neuron in cubelet i ue to template switching (for details on

template switching, please read section ‘correction of template switching’),UMIreði; �;kÞs the expected UMI count in cubelet k rom an

average neuron in cubelet iue to re-used barcode (for details on re-used barcodes, please read section ‘correction of re-used bar-

code’),UMIba s the expected UMI count in cubelet k rom an average neuron in cubelet i ue to baseline contamination (estimated from

non-injected control cubelets). These three terms corresponded to the template switching noise, re-used barcode noise, and base-

line contamination noise. The projection strength from cubelet i o cubelet j Cði;kÞas then calculated with:

Cði; kÞ = maxfUMIði; � ; kÞ�Noiseði; kÞ; 0g (3)

Step 2. Calculate p values

In addition to removing the noise estimate from the projection strength, we also calculated the p value for each cubelet-to-cubelet

projection. For a source cubelet ind a target cubelet k we calculated the probability that a neuron in cubelet i alsely projected to cu-

belet k ue to template switching, rtsði; kÞ for details on template switching, please read section ‘correction of template switching’), the

probability that a neuron in cubelet ialsely projected to cubelet k ue to re-used barcodes, rreði; kÞ for details on re-used barcodes,

please read section ‘correction of re-used barcode’), and the probability that a neuron in cubelet ialsely projected to cubelet kue

to baseline contaminations, rbaði;kÞNote that rtsði;kÞrreði;kÞand rbaði; kÞ ere all very small, so we calculated the overall false-positive

probability additively. If there were NðiÞ eurons in cubelet iand Nproði; kÞ eurons in cubelet i ere found to project to cubelet kthen the p

value of i o k- nnection, vik as calculated with:

vik = 1� fðNproði; kÞ;Ni; rtsði; kÞ + rreði; kÞ + rbaði; kÞÞ (4)
where f as the binomial cumulative distribution function:
fðn;N;pÞ =
Xn
l =0

�
N
l

�
plð1� pÞN�l (5)
With p values, we were able to determine whether a given cubelet
-to-cubelet connection was significant. Volcano plots of ipsilateral

connections and contralateral connections in BL6-1 are shown in Figures S2R and S2S.

In the manuscript, ‘(non-)significant connections (no multiple comparison)’ refer to connections with p value (R) < 0.05; ‘(non-)sig-

nificant connections (multiple comparison)’ refer to connections with p value (R) < 0.05/N, where N is total number of possible

connection (the number of right cortical cubelets times the number of all the cortical and subcortical cubelets). All the analyses in

the manuscript only included significant projections after multiple comparison correction unless otherwise stated.

Some of the RT primers were found to be cross-contaminated at low levels post hoc. Thus, we didn’t analyze the projections

between these contaminated cubelets. These projections include: BL6-1, cubelet 97-to-cubelet 68, cubelet 115-to-cubelet 130, cu-

belet 21-to-cubelet 268; BL6-2, cubelet 75-to-cubelet 13, cubelet 13-to-cubelet 75; BL6-3, cubelet 30-to-cubelet 197, cubelet 197-

to-cubelet 30, cubelet 103-to-cubelet 134, cubelet 134-to-cubelet-103, cubelet 97-to-cubelet 113, cubelet 113-to-cubelet 97; BL6-

4, cubelet 31-to-cubelet 99, cubelet 99-to-cubelet 31, cubelet 92-to-cubelet 26, cubelet 26-to-cubelet-92, cubelet 48-to-cubelet

219, cubelet 219-to-cubelet 48; BL6-5, cubelet 30-to-cubelet 112, cubelet 112-to-cubelet 30, cubelet 99-to-cubelet 45, cubelet

45-to-cubelet-99, cubelet 72-to-cubelet 117, cubelet 117-to-cubelet 72; BTBR-1, cubelet 60-to-cubelet 81, cubelet 81-to-cube-

let 60.

Correction of template switching

Template switching during PCR is one of the major false positive error sources of BRICseq. We first explain what template switching

is, how it may affect BRICseq data, and how it was overcame in BRICseq, and then explain details on the computational models of

template switching.

Template switching may occur when DNA templates share a common sequence during PCR (Figure S2D). In BRICseq, cDNA from

all the cubelets was pooled together for PCR, and they all shared a common RT primer annealing sequence. The hybrid products of

template switching caused barcode molecules to appear in erroneous cubelets (in Figure S2D, BC2 is detected in cubelet 1 due to

template switching). Template switching is usually considered to be rare, andmight be corrected by setting a read threshold for mol-

ecules (Kebschull and Zador, 2015). However, low sequencing depth disabled the use of read threshold to efficiently remove error

molecules. Moreover, as molecules of a barcode in a soma usually outnumbered molecules in axons by�100 fold, template switch-

ing molecules might constitute a large proportion in axon barcodes, albeit rare compared to total molecules. Thus, template switch-

ing had a significant influence in measuring projection strengths in BRICseq.

As DNA concentration is a major factor determining the template switching rate, we proposed we could reduce template switch

molecules by increasing the PCR volume. To systematically evaluate template switching and test our hypothesis, we designed an

experiment to perform BRICseq from two brains. We injected similar amounts of barcoded viruses into two animals, collected
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cubelets, and performed RT from individual cubelets. Then single-strand DNAmolecules were pooled (48 cubelets from each animal,

96 in total) for second-strand synthesis, PCR and sequencing. Thus ‘inter-brain’ projection molecules reflected template switching.

Tomeasure the effect of DNA concentration on template switching, the same sample was separated to perform PCR either in a 25 mL

volume or in a 2mL volume. In the 25 mL PCR experiment, a large number of molecules that were detected in both brains (‘inter-brain’

molecules) as well as stripe-like patterns in the barcode heatmap indicated a high rate of template switching (Figure S2E, left). By

increasing PCR volume to 2 mL, ‘inter-brain’ molecules were dramatically decreased (Figure S2E, right). The rate of template switch-

ing could be further reduced by raising the UMI threshold that was used to determine a real projection (Figure S2F). In addition to the

high reaction volume, we also set the PCR extension time in each cycle to 2min to reduce incompletely elongated products, another

possible source of template switching.

To reduce template switching, we chose to perform the final PCR in 12mL volume for BRICseq experiments. While Sindbis viruses

harboring barcode library 2 were used to label experimental animals, we also injected Sindbis viruses harboring barcode library 1 into

a few brain areas in a separate animal. After RT and second-strand synthesis, DNAmolecules from experimental animals weremixed

with DNA molecules from library 1 virus-injected control animals for PCR and sequencing (the ratio of the number of experimental

animal cubelets to the number of control animal cubelets is (10�20):1), so the number of ‘inter-brain’ projection molecules was an

internal measurement of template switching. In BL6-1, when we set UMI threshold to 1 (i.e., a projection was positive when its

UMI count was greater than 1), 2088 out of 63107 barcodes were detected in the control brain (21 cubelets from the control brain;

Figure S2G). Similar results were also found in other animals (data not shown).

With PCR volume = 12mL and UMI threshold = 1, the probability that a barcode was detected in a non-projecting cubelet due to

template switching on average was reasonably low ð2088=63107321Þ(<%). To further determine whether a bulk projection was sig-

nificant, we calculated the distribution of false positive projections caused by template switching, which provided a confidence

bound for each connection. The computational details are as follows:

Step 1. Determine the template switching coefficient by linear regression. First consider a general scenario. Let l1 enote the number

of molecules in cubelet 1, and l2 enote the number of molecules in cubelet 2. If we pool these molecules to perform PCR, we assume

the number of hybrid molecules after PCR h12 an be written as:

h12 = 2cl1l2 (6)
where c s called template switching rate constant, and should be d
ependent on the total number of initial molecules, PCR cycle num-

ber and PCR volume. As we pooled all the samples together for PCR, cas a constant in one BRICseq experiment.

Specifically, in BRICseq, letNðiÞ enote the number of neurons in cubelet i nði;jÞenote the number of molecules (including both soma

molecules and axon molecules) for the j neuron in cubelet i nsomaði; jÞ enote the number of soma molecules for the j th neuron in cu-

belet i, and naxonðiÞ denote the number of axon molecules detected in cubelet i. The probability that the j th neuron in cubelet i had a

false positive molecule in cubelet k, pði; j; kÞ was:

pði; j; kÞ = cnði; jÞ
 XNðkÞ

l = 1

nsomaðk; lÞ + naxonðkÞ
!

(7)
In order to estimate the template switching coefficient c in Equat
ion (7), we calculated the number of ‘inter-brain’ projection mole-

cules as the ground truth of template switching molecules. If we considered template switching across two brains, then the number

molecules that were from neurons residing in the experimental brain and found in the control brain cubelet k, mk was:

mk = c
X
i in

exp:

XNðiÞ
j =1

nði; jÞ
 XNðkÞ

l = 1

nsomaðk; lÞ + naxonðkÞ
!

(8)
, where i visited all the cubelets in the experimental brain and j v
isited all the neurons in each experimental brain cubelet.

In the real experiment, there was an extra baseline contamination term (this term can also be inferred frommolecules in additional

control cubelets from a brain without viral injection), so Equation (8) was modified as:

mk = c
X
i in

exp:

XNðiÞ
j = 1

nði; jÞ
 XNðkÞ

l = 1

nsomaðk; lÞ + naxonðkÞ
!
+b (9)
, where b was the baseline contamination constant.
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In Equation (9), the term
P
i in

exp:

PNðiÞ
j =1

nði; jÞ is equal to the total amount of barcode molecules in the experimental brain, the term

PNðkÞ
l =1

nsomaðk; lÞ+ naxonðkÞ is equal to the total amount of barcode molecules in the control brain cubelet k, and mk is equal to number

of library-2 barcode molecules in the control brain cubelet k. As all these numbers were known, we were able to use a linear regres-

sion model to fit Equation (9) to estimate b and c. As an example, in BL6-1, we got:

c = 1:123 10�11
b = 3:903 103
Step 2. Determine the probability that a neuron in source cubelet i
 had a false positive projection to target cubelet j. With estimated c

and b, we could predict intra-brain template switching probability, pði; j; kÞ with Equation (7) when i and k were both from the exper-

imental brain. However, as we further filtered the data by setting a UMI threshold q (Figure S2G), a false-positive projection was de-

tected only when at least ðq + 1Þ template switching molecules from a given neuron to a given cubelet were seen. Let Pqði; j; kÞ denote
the probability that the j th neuron in cubelet i falsely projected to cubelet k with UMI threshold = q, then according to Poisson dis-

tribution, we had

Pqði; j; kÞ =
XN
l = q+ 1

e�pði;j;kÞ pði; j; kÞl
l!

= 1�
Xq
l = 0

e�pði;j;kÞ pði; j; kÞl
l!

(10)
When q= 1, we got:
P1ði; j; kÞ = 1� e�pði;j;kÞ � e�pði;j;kÞpði; j; kÞ (11)
. With Equation (11), we were able to calculate the probability tha
t a given neuron in cubelet i falsely ‘projected’ to cubelet k.

Step 3. Determine the distribution of the number of neurons in source cubelet i that false positively ‘projected’ to target cubelet j. In

step 2, we were able to determine the probability that a given neuron in cubelet i that falsely ‘projected’ to cubelet k. As cubelet i

consisted of NðiÞ neurons, and each neuron had a different template switching probability (P1ði; j; kÞ is different for each j), the total

number of i-to-k false-positive neurons caused by template switching obeyed a Poisson binomial distribution. Note it was neither a

Poisson distribution nor a binomial distribution, but a distribution of the sum of Bernoulli trials with different probabilities.

To calculate the distribution of the number of false positive projection neurons, we sought to calculate the Poisson binomial cu-

mulative probability distribution. In BRICseq, there were over 30000 possible cubelet-to-cubelet projections, and for each of these

projections, there were 500�1000 cells in the source cubelet (corresponding to 500�1000 Bernoulli trials). To our knowledge, there

does not exist a fast and precise way to calculate the cumulative probability of the Poisson binomial distribution for each cubelet-to-

cubelet projection. Particularly, when multiple comparison correction was considered, the p value was as small as

0:05=36018 z1:66310�6; even for Monte-Carlo methods, a large number of simulation trials are required. Thus, we chose to use

binomial distributions to approximate Poisson binomial distributions, assuming the probability of any given neuron in cubelet i falsely

projected to cubelet k, rtsði;kÞ, was the mean probability over all the neurons in cubelet i:

rtsði; kÞ =

PNðiÞ
j =1

P1ði; j; kÞ

NðiÞ (12)
. Thus, the number of neurons in source cubelet i that false positi
vely ‘projected’ to target cubelet k due to template switching was

modeled as a binomial distribution withNðiÞ experimental trials and probability of rtsði;kÞ. Similarly,UMItsði; �;kÞ, which is the expected

UMI count in cubelet k from an average neuron in cubelet i due to template switching, can be calculated as:

UMItsði; � ; kÞ =
PNðiÞ

j = 1

PN
l = q+ 1le

�pði;j;kÞpði;j;kÞl
l!

NðiÞ =

PNðiÞ
j = 1

�
pði; j; kÞ �Pq

l = 0le
�pði;j;kÞpði;j;kÞl

l!

�
NðiÞ (13)
Note when the required p value was not too small (for example, p =
 0.05, without multiple comparison), we usedMonte-Carlo method

(10000 trials each) to estimate the cumulative probability of the Poisson binomial distribution for each cubelet-to-cubelet projection.

To summarize, template switching could be a detrimental error source when DNA concentration during PCR is high and

sequencing depth is low. By using a large volume of the reaction system for PCR, setting a UMI threshold, and rejecting false positive
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projections, we have greatly reduced template switching errors to a very low level. Future improvements can be made to further

reduce template switching by perform PCR separately for individual cubelet, or implementing droplet PCR (Hindson et al., 2011).

Correction of re-used barcodes

Re-using of barcodes is another major false positive error source of BRICseq, particularly when the barcode diversity was not high

enough. We first explain how re-used barcodes affect BRICseq, and then explain details on how the ratio of re-used barcodes was

reduced and determined computationally. This section only discusses experiments done with viral library 2, batch 1, with a barcode

diversity �8 3 106 (Figure S2J). The numbers and figures presented in this section are from BL6-1 as an example. The results are

similar for BL6-2, BL6-3, BL6-4, BL6-4 and BTBR-1. For viral library 2, batch 2, with a barcode diversity greater than 2 3 108 (Fig-

ure S2K), re-used barcodes were extremely rare and thus ignored.

To scale upMAPseq, it is crucial to use a barcode library with a sufficiently high diversity. Otherwise, the same barcodemight label

two (or more) different cells causing misinterpretation of the data (Figure S2H). The rate of re-used barcodes was determined by bar-

code diversity and the total number of infected neurons. In BRICseq for BL6-1, BL6-2, BL6-3, BL6-4, BL6-5 and BTBR-1, the

measured diversity of the barcode library was 8.263106, according to the viral library sequencing result (note the real diversity of

the library should be higher, as some of them are not sampled during sequecing). However, the total number of neurons expressing

barcodes was much higher than the number of recovered neurons (for instance, �60000 in BL6-1) due to a large number of ‘non-

projection’ neurons. For example, in BL6-1, over 600000 ‘non-projection neurons’ were recovered. Some of these ‘non-projection’

neuronsmight belong to local inhibitory or excitatory neurons, but a large number of them expressed RNA barcodes at very low levels

(Figure S2O). It was likely that due to variations of RNA expression levels, some projection neurons expressed very small amount of

RNA barcodes, which couldn’t be efficiently trafficked to axon terminals. These low expressed barcodes were almost all in the right

cortical cubelets (injection site), and usually fewer than 20 molecules were detected in somata (cubelets with the highest molecule

abundance), and no molecules above the UMI threshold ( = 1) were detected in axons (other cubelets). Moreover, these barcodes

were also found in the viral library, suggesting they were unlikely due to sequencing errors. Although these "non-projection" neurons

were not included for data analysis, they might harbor re-used barcodes shared with other projection neurons, resulting in false pro-

jections (Figures S2H and S2I).

To quantify errors caused by re-used barcodes and remove them from connection results, we followed 3 steps below:

Step 1. Exclude overrepresented barcodes in the barcode library. The distribution of barcode abundance in the barcode library

was not uniform (Figure S2J), so barcodes with higher abundance in the library were more likely to be re-used in multiple neurons.

Moreover, as we did not sequence the full viral barcode library, we also found barcodes present in the BRICseq result but absent

in the viral library sequencing result. We set a viral abundance threshold ( = 5), and classified barcodes according to their abun-

dance: overrepresented barcodes (present and over 5 counts in the library sequencing result), underrepresented barcodes (pre-

sent but no-greater-than 5 counts in the library sequencing result), and non-sequenced barcodes (absent in the library sequencing

result, but present in the BRICseq result). The chosen viral abundance threshold removed 35% of total barcodes in the BRICseq

result, and resulted in a re-used barcode rate of 4% (Figure S2L; see Step 3 for calculation of the re-used barcode rate). To reduce

the chance of re-used barcodes, we only included underrepresented barcodes and non-sequenced barcodes for neuronal pro-

jection analysis.

Step 2. Reduce re-used barcodes by thresholding. For each barcode, we defined its firstmax and secondmax as the highest and

second highest abundance among all the cubelets. If a barcode corresponded to one neuron, then its firstmax was the count of

molecules in its soma and proximal dendrites, and its secondmax was the count of molecules in its strongest axon. If a barcode

was used in two neurons, then firstmax and secondmax were the highest two of UMI counts in two somata and two strongest

axons. As the molecules in somata statistically outnumbered molecules in axons, secondmax of a re-used barcode was likely

to be the amount of molecules in one of the two somata. According to this, we reasoned that re-used barcodesmight have distinct

distribution in the (firstmax, secondmax) space from barcodes used only once. To quantify this, we simulated the barcode sam-

pling process (we modeled viral infection as a process where neurons randomly selected barcodes from the barcode library), and

calculated the number of re-used barcodes in the (firstmax, secondmax) space, given the observed joint distributions of (firstmax,

secondmax) and the known barcode library. The number of observed barcodes and the ratio of simulated re-used barcodes to the

total barcodes were plotted in the (firstmax, secondmax) space (Figures S2M and S2N). Not surprisingly, a higher ratio of re-used

barcode was present close the diagonal line in the (firstmax, secondmax) space.

We next set a soma threshold ( = 250) and an axon threshold ( = 20) (Figures S2M and S2N), and defined 4 types of barcodes ac-

cording to the thresholds:

Type 1 barcode: firstmax > soma threshold AND secondmax > UMI threshold AND secondmax < axon threshold.

Type 2 barcode: firstmax > soma threshold AND secondmax % UMI threshold.

Type 3 barcode: secondmax > axon threshold.

Type 4 barcode: firstmax < axon threshold AND firstmax > UMI threshold.

To reduce the effect of re-used barcodes, we only included type 1 barcode for projection pattern analysis. Based on simulation

results, in BL6-1, �8% of type 1 barcodes were re-used barcodes. As there were 115 cubelets in the injection site of BL6-1, if a
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source cubelet and a target cubelet were both in the injection site (right hemisphere), then the probability of a type 1 neuron in the

source cubelet that falsely projected to the target cubelet was on average 8%=115z0:035%, which was reasonably low. Further-

more, although the thresholding methods above excluded a large fraction of barcodes for further analysis (Figure S2P), most of

the excluded barcodes belonged to type 4, and thus only a very small fraction of molecules were excluded (Figure S2Q). In other

words, most of the sequencing reads were included for final analysis, and not wasted.

Importantly, the soma threshold we selected (250) also resulted in an extremely low rate of incorrect soma calling (i.e., the abun-

dance of the source cubelet should be the highest among all cubelets and greater than 250; Figures 1E and 1F; Figure S2T). As shown

in Figure S2T, in the control experiment with 2 zipcoded viruses, the error rate was 0.22% with soma threshold = 250. Note in Fig-

ure S2T, about 20 ipsilateral cubelets outside the injection site were dissected and analyzed, while in the real experiment, about 120

cubelets were dissected in the right hemisphere. Thus, in the real experiment, an estimate of the soma-calling error rate was 0.22%3

6 = 1.32%. Because some of these ‘incorrect’ soma callingmight be due to spread of the viruses (some cells far from the injection site

were infected by chance; thus the soma callingwas actually correct), and the observed error ratewas calculated based on axon barc-

odes from the strongest projection site, 1.32% was very likely to be an upper bound of the real error rate. The low error rate of soma

calling would have minimal effects on the BRICseq data.

Step 3. Determine the distribution of false positive projection neurons caused by re-used barcodes. To quantify false positive pro-

jection neurons caused by re-used barcodes for each cubelet-to-cubelet connection, we calculated rreði;kÞ, the probability that a type
1 neuron in cubelet i that falsely projected to cubelet k due to re-used barcodes. In BL6-1, for example, because a re-used type 1

barcode could only occur when a type 1 or type 2 neuron in the source cubelet and a type 4 neuron in a target cubelet shared the

same barcode, we could estimate rreði; kÞ with:

rreði; kÞ = 8% � N4ðkÞP
l in allN4ðlÞ (14)
, whereN4ðkÞ represents the number of type 4 barcodes in cubele
t k. Thus, the number of neurons in source cubelet i that false posi-

tively ‘projected’ to target cubelet k due to re-used barcodes wasmodeled as a binomial distribution withNðiÞ experimental trials and

probability of rreði;kÞ. Obviously,UMIreði; �;kÞ, which is the expected UMI count in cubelet k from an average neuron in cubelet i due to

re-used barcode, can be calculated as:

UMIreði; � ; kÞ = rreði; kÞ � UMItype4 (15)
, where UMItype4 is the average UMI count of type 4 neurons.
Here we summarize the error sources and solutions of BRICseq.
Error sources Effects Solutions

Barcode base substitution Generate barcodes with 1 or very few

counts in 1 or very few cubelets

Collapse barcodes with up to 3 mismatches.

Set UMI threshold.

Set soma threshold.

Barcode base insertion/deletion Generate barcodes with 1 or very few

counts in 1 or very few cubelets

Set UMI threshold.

Set soma threshold.

CSI sequencing errors Generate barcodes in ‘non-existing’

cubelets

CSIs that did not match any of the 288 used CSIs

were excluded for further analysis

UMI sequencing errors Cause overestimated barcode counts Not corrected (But errors should be rare and

uniformly randomly distributed)

Template switching False projections PCR with a large volume.

Set UMI threshold.

Calculate false-positive rates.

Re-used barcodes False projections Use a high diversity barcode library.

Exclude over-represented barcodes in the

barcode library.

Set axon/soma threshold.

Calculate false-positive rates

Non-collected soma Strongest projections were detected

as somata

Set soma threshold.
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Normalize connection maps between animals by undersampling sequencing results

Many experimental factors including RNA extraction efficiency and sequencing depth could vary between individual experiments.

For instance, due to variations of virus injections, the number of infected cellsmight vary between animals. A lower number of infected

cells resulted in a lower count of total molecules, and thus an increase in sequencing depth (read permolecule), given the fact that the

sequencing depth is generally low in BRICseq. In such cases, more barcodemolecules (UMIs) in the axon and somawere sequenced

per barcoded neuron, causing experimental biases. To compensate these variations and make different experimental results com-

parable, we sought a normalization method. We first assumed that the real distributions of molecule counts of barcode RNA at each

neuron’s soma (DOMCAS) were consistent between animals. We then reasoned that if we were able to undersample the sequencing

result of a given experiment so that its DOMCASmatched another experiment, the data from these two experiments would be com-

parable (i.e., the same net efficiency of barcode detection). As an example, we undersampled the sequencing result of BTBR-2 to

make it consistent with BL6-2. As shown in Figure S2W, the originally measured DOMCAS had a much longer tail in BTBR-2 (black)

than BL6-2 (blue), due to a lower count of infected neurons and higher sequencing depth. By downsampling the BTBR-2 result, the

DOMCASwas left-shifted (Figure S2W, gray lines). To find the optimal undersampling rate, weminimized the sumof squared errors of

DOMCAS between undersampled BTBR-2 and BL6-2 (Figure S2X, optimal rate = 0.31). The data were pre-processed to normalize

the net efficiency of barcode detection, and next used for further analyses. All the figures and calculations that compared connection

maps between experiments were generated based on pre-processed data, including Figures 3A, 3B, 6C, S3C, S3F, S3G, S6B, S6K,

and S6L.

List of variables in section ‘BRICseq data analysis’
l1 Number of molecules in cubelet 1

l2 Number of molecules in cubelet 2

c Template switching rate constant

h12 Number of cubelet 1-cubelet 2 hybrid molecules

NðiÞ or N1ðiÞ Number of projection neurons (type 1 neurons, section ‘correction

of re-used barcodes’) residing in cubelet i

N4ðiÞ Number of type 4 neurons (section ‘correction of re-used

barcodes’) residing in cubelet i

Nt Total number of barcodes in the BRICseq result (type 1-4, section

‘correction of re-used barcodes’)

Nre Total number of re-used barcodes

nði; jÞ Total number of molecules of j th neuron in i th cubelet (soma

molecules + all axon molecules)

nsomaði; jÞ The number of soma molecules of j th neuron in i th cubelet

naxonðkÞ The number of axon molecules detected in i th cubelet

pði; j;kÞ The probability that molecules of j th neuron in i th cubelet were

detected in k th cubelet due to template switching

mk Number of error molecules from neurons in experimental cubelets

that were detected in k th control cubelet due to template

switching

b Number of error molecules in each cubelet due to baseline

contamination

Pqði; j;kÞ The probability that > q error molecules of j th neuron in i th cubelet

were detected in k th cubelet due to template switching

rtsði;kÞ The average probability that a false projection from a neuron in i th

cubelet to k th cubelet was detected due to template switching

rreði;kÞ The average probability that a false projection from a neuron in i th

cubelet to k th cubelet was detected due to re-used barcodes

rbaði;kÞ The average probability that a false projection from a neuron in i th

cubelet to k th cubelet was detected due to baseline

contamination

vik p value (false positive probability) of cubelet i-to-cubelet k

projection

Nproði;kÞ Observed number of neurons in cubelet i that projected to

cubelet k

C Cubelet-to-cubelet connection matrix
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BRICseq data visualization
BRICseq data were visualized in a 3D brain in Figure 2A and Video S1. To reconstruct the cubelet-to-cubelet connection pathways,

the position in stereotactic coordinates for each registered cubelet source node was used to query Allen Mouse Brain Connectivity

Atlas (Oh et al., 2014) for injection sites within 500 mm from each source node. Out of all the injection sites the injection with largest

injection volume was used to download projection density volumes with 200 mm voxel resolution. 92 out of 99 cubelet source nodes

could be mapped to a unique projection density volume. Next, we used A* search algorithm (Sur and Taipale, 2016) implemented in

C/C++ to find the optimal path between BRICseq source and target cubelet nodes using binary projection density volume to repre-

sent graph nodes and blocked obstacles. The optimal path for 1677 out of 3015 non-zero connection could be determined (56%). The

remaining either didn’t have a corresponding projection density volume, alternatively target and source cubelets were not connected

in the projection density volume. Each projection path was then smoothed as a spline using a Generalized Additive Model (GAM)

(Chambers and Hastie, 2017). Each path was rendered in 3D with a unique color given by the position of the path’s target cubelet.

The color-coding of target cubelet locations was based on a red-green-blue (RGB) spatial color cube code where red represents

medio-lateral, green represents anterior-posterior, and blue represents dorso-ventral axis.

Compare BRICseq data from multiple brains and compare BRICseq data with Allen connectivity atlas
BRICseq allows for mapping of cubelet-to-cubelet connections from one individual brain. In order to compare between BRICseq

data and Allen data, or compare between multiple brains determined by BRICseq, we utilized brain registration results to infer cu-

belet-to-brain area connections and/or brain area-to-brain area connections from cubelet-to-cubelet connections. Here a ‘brain

area’ refers to an area defined by the atlas, such as MOp (primary motor cortex) or VISp (primary visual cortex). In the current manu-

script, we used 2 methods to make the inference: weighted averaging and constrained optimization. Briefly, in the weighted aver-

aging method, we considered the cubelets as building blocks of brain connectivity and assumed connections between brain areas

areweighted averages of cubelets contained. In the constrained optimizationmethod, we assumed that the input and output patterns

are homogeneous within each brain area, and used a constrained optimization algorithm to find area-to-area connections that best

predicted the observed cubelet-to-cubelet connections. The repeatability between BRICseq brains was quantified as the Pearson

correlation between connection matrices of a pair of brains. The connection matrices were in the log scale, and any connections

lower than 10�4 were set to 10�4. Both methods showed high reproducibility of BRICseq.

The following terms and variables are defined before further description of these methods:

Considering the connection from cubelet i to cubelet j, fCgij, we could quantify its strength by calculating the average counts of

UMIs (molecules) in cubelet j per neuron in cubelet i (See section ‘calculating bulk projection patterns’). This described the projection

strength (axon volume) from an average neuron in cubelet i to the whole cubelet j, and thus was called ‘unit-to-total’ connection here.

By considering the physical sizes of cubelet i and cubelet j, we could also define and calculate ‘unit-to-unit’ connection (connection

from a neuron in cubelet i to a unit area size in cubelet j), ‘total-to-unit’ connection (connection from the whole cubelet i to a unit area

size in cubelet j), and ‘total-to-total’ connection (connection from the whole cubelet i to the whole cubelet j), as summarized in the

table below (similar to Figure S2 in Oh et al., 2014).
Connection type Connection source Connection target Definition Formula

Type 1, C1 Cubelet Cubelet Unit neuron-to-unit area size C1

Type 2, C2 Cubelet Cubelet Unit neuron-to-total C2 =C1Sc

Type 3, C3 Cubelet Cubelet Total-to-unit area size C3 = rScC1

Type 4, C4 Cubelet Cubelet Total-to-total C4 = rScC1Sc
HereSc is a diagonal matrix, whose element fSgcii represents the physical size of cubelet i, and r represents the number of neurons

per unit area size, or neuron density. We assume that r is uniform, so the average connection strength from a unit area size in a source

cubelet to a target is r times the average connection strength from a neuron in the source cubelet to the target.

In conventional fluorescence tracing, projection strength is usually quantified as the normalized fluorescence intensity in the target

area to the fluorescence intensity in the injection area (Oh et al., 2014). This was analogous to the type 2 connection, as defined

above. Connections mentioned in this manuscript all referred to type 2 connections, unless otherwise stated.

Similar to cubelet-to-cubelet connections, Ck (k = 1,2,3,4), we also defined 4 types of brain area-to-brain area connections, Ak (k =

1,2,3,4), and cubelet-to-brain area connections, Pk (k = 1,2,3,4), as summarized below.
Connection type Connection source Connection target Definition Formula

Type 1, A1 Brain area Brain area Unit neuron-to-unit area size A1

Type 2, A2 Brain area Brain area Unit neuron-to-total A2 =A1Sa

Type 3, A3 Brain area Brain area Total-to-unit area size A3 = rSaA1

Type 4, A4 Brain area Brain area Total-to-total A4 = rScA1Sa
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Connection type Connection source Connection target Definition Formula

Type 1, P1 Cubelet Brain area Unit neuron-to-unit area size P1

Type 2, P2 Cubelet Brain area Unit neuron-to-total P2 =P1Sa

Type 3, P3 Cubelet Brain area Total-to-unit area size P3 = rScP1

Type 4, P4 Cubelet Brain area Total-to-total P4 = rScP1Sa
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Here Sa is a diagonal matrix, and its element fSgaii represents the physical size of brain area i.

We also calculated a cubelet-to-brain area mapping matrix,M, based on cubelet registration results. fMgij represents the physical

size of the intersection of cubelet i and brain area j. The mapping matrix M was also normalized to either the total size of each brain

area or to the total size of each cubelet:

Ma = MS�1
a (16)
Mc = S�1
c M (17)
. In Ma, the sum of each column is 1; in Mc, the sum of each row
 is 1.

Inferring cubelet-to-brain area connections/brain area-to-brain area connections by weighted averaging

While we have dissected the cortex into�230 cubelets, there are�70 brain cortical areas according to Allen atlas (2011 version). The

size of a cortical area was much larger than a cubelet, and an area on average consisted of 10 cubelets. Thus, we considered the

cubelets as building blocks of brain connectivity and assumed connections between brain areas were weighted averages of cubelets

contained (Figures S3B and S3D). With such an assumption, we had:

P2 = C1M (18)
A3 = rMTP1 (19)
, where MT denotes the transpose of M.
With Equations (17) and (18), we got

P2 = C1M=C2S
�1
c M=C2Mc (20)
. With Equations (16) and (19), we got
A2 = r�1S�1
a A3 Sa = r�1S�1

a rMTP1Sa =
�
MS�1

a

�T
P1Sa =MT

aP2 (21)
. With Equations (20) and (21), we got
A2 = MT
aP2 =MT

aC2Mc (22)
. We inferred cubelet-to-brain area connections with Equation (20
) in Figures 3C and 3D; and inferred brain area-to-brain area con-

nections with Equation (22) in Figures 3A, 3B, S6K, and S6L.

To reduce the variations brought by dissection and registration errors, we downsampled the cubelet-to-cubelet connection matrix

for analyses here. If a0 and b0 were two cubelets, a1;a2.am were neighbors of a0, and b1;b2.bn were neighbors of b0, then the

projection strength from a0 to b0, Ca0�b0 was downsampled as:

Ca0�b0 =

�
0:9

0:1

m
/

0:1

m

�0BB@
Ca0�b0 Ca0�b1 / Ca0�bn

Ca1�b0 Ca1�b1 / Ca1�bn

« « 1 «
Cam�b0 Cam�b1 / Cam�bn

1CCA
0BBBBBBB@

0:9

0:1

n

«

0:1

n

1CCCCCCCA : (23)
Plots in Figures 3, S3C, Figures S6K, and S6L are based on th
e method in this section. For the analysis in this section, all the

non-significant cubelet-to-cubelet connections were set to 0. As multiple comparison had a high false negative rate particularly

for weak projections, p value = 0.05 (no multiple comparison) was used for the criterion of significance here. For comparison

between cubelets and injections in the same source brain area (Figures 3C and 3D), we require the cubelets reside primarily (>

70%) in the brain area. When calculating brain area-to-brain area connections, only well-infected brain areas are included as source
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areas. A well-infected brain area is defined as an area where > 70% of the area’s size is covered by cubelets infected with > 50 pro-

jection neurons.

Inferring brain area-to-brain area connections by constrained optimization

In contrast to assuming cubelets, which were smaller in size, were building blocks of brain connections, connections of brain areas

could also be inferred assuming input and output per unit area size within each brain area were homogeneous (Figure S3E; Oh et al.,

2014). With this assumption, we had:

P3 = rMA1 (24)
C2 = P1M
T (25)
. The Equations (24) and (25) corresponded to output homogene
ity and input homogeneity, respectively.

With Equations (17) and (24), we got

P2 = r�1S�1
c P3Sa = r�1S�1

c rMA1Sa =McA2 (26)
. With Equations (16) and (25), we got
C2 = P1M
T =P2S

�1
a MT =P2M

T
a 27)
. With Equations (26) and (27), we got
C2 = McA2M
T
a (28)
According to Equation (28), we could estimate A2 (least-squares
 solution) with:fA2 = M+
c C2

�
M+

a

�T
(29)
, where fA2 is estimated A2, andM+ ðM+ Þ is the pseudo-inverse m
c a atrix ofMc ðMaÞ. However, this might result in negative connection

values. Thus, we determined to estimate A2 with constrained optimization:fA2 = argminA2

�kC2 �McA2M
T
a k
�

(30)
, with the constraint
A2R0 (31)
. With Equation (30) and formula (31), we inferred brain area-to-b
rain area connections in Figures S3F and S3G.

To reduce the variations brought by registration errors, downsampling was also performed here for the cubelet-to-cubelet connec-

tion matrix with Equation (23).

Plots in Figures S3F and S3G are based on the method in this section. For the analysis in this section, all the non-significant cubelet-

to-cubelet connections were set to 0. As multiple comparison had a high false negative rate particularly for weak projections, p value =

0.05 (no multiple comparison) was used for the criterion of significance here. Only well-infected brain areas are included as source

areas. Awell-infected brain area is defined as an areawhere > 50%of the area’s size is covered by cubelets infectedwith > 50 neurons.

Module analysis of connectivity networks
We utilized the Brain Connectivity Toolbox (https://sites.google.com/site/bctnet/) for module analysis in MATLAB.modularity_dir.m

was used to find modules in the connectivity matrix (directed graph), and modularity_und.m was used to find modules in the input/

output correlation matrix (undirected graph). In input/output correlation matrix, negative values were set to 0 before clustering. A res-

olution parameter g can be tuned to get smaller/more or larger/fewer modules. To determine the optimal g, we undersampled half of

the total projection neurons for 100 times, and performed clustering with various g. For each g, we calculated the average number of

modules over 100 undersampling trials, and quantified the inconsistency of clustering that was defined as the mean of Rand indices

between pairwise trials’ clustering results. The optimal g was chosen so that the inconsistency was low and the average number of

modules was stable (Figure S7F). All the analyses were done with the optimal g unless otherwise stated.

To generate the distance-dependent connection matrix, we first calculated connection strengths and physical distances for all cu-

belet pairs. We next grouped cubelet pairs into bins according to the distances (300 mm each bin), and calculated the mean connec-

tion strength in each bin. Then in the distance-dependent connection matrix, each element was set to the mean connection strength

of the bin it belonged to. To calculate the distance-independent connection matrix, the distance-dependent connection matrix was

subtracted from the original connection matrix. Negative values in the distance-independent connection matrix were set to 0 before

clustering. The distance between 2 cubelets was defined as the distance of their centroids.
e14 Cell 182, 1–12.e1–e17, July 9, 2020
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The dissimilarity of clustering results were quantified with 1� rand index (Rand, 1971).

For module analysis, only ipsilateral networks were analyzed, and non-significant (with Bonferroni multiple comparison correction)

cubelet-to-cubelet projections were set to 0.

Motif analysis of connectivity networks
clustering_coef_bd.m in the Brain Connectivity Toolbox was used to calculate the clustering coefficient. The connection matrix was

binarized for this analysis. For comparison, we generated random connection networks based on distance-dependent connection

probability rule: in the real network, we calculated the probability that cubelet i projected to cubelet j if their distance was d (in

300 mm bins); then the measured probabilities were used to generate 10000 random networks assuming each connection was

independent.

Three types of 2-node motifs and 16 types of 3-node motifs were counted in real cortical networks. Random networks were also

simulated to calculate the relative abundance of each motif in real networks. The relative abundance was calculated with:

Countrealðmotif iÞ � Countrandomðmotif iÞ
Countrandomðmotif iÞ :
Different models were used to generate random networks, and 1
0000 random networks were generated each:

In 2-node motif comparison, RNg was generated based on a global connection probability rule: in the real network, we calculated

the probability that cubelet i projected to cubelet j; then the measured probability was used to generate RNg assuming each connec-

tion was independent.

In 2-node motif comparison, RNdd was generated based on a distance-dependent connection probability rule: in the real network,

we calculated the probability that cubelet i projected to cubelet j if their distance was d (in 300 mm bins); then the measure proba-

bilities were used to generate RNdd assuming each connection was independent.

In 3-nodemotif comparison, RNg was generated based on a global 2-nodemotif probability rule: in the real network, we calculated

the probability of each 2-node motif between cubelet i and cubelet j, then the measured probability was used to generate RNg

assuming each 2-node motif was independent.

In 3-node motif comparison, RNdd was generated based on a distance-dependent 2-node motif probability rule: in the real

network, we calculated the probability of each 2-node motif between cubelet i and cubelet j if their distance was d (in 300 mm

bins), then the measured probabilities was used to generate RNdd assuming each 2-node motif was independent.

For all the analysis in this section, the distance between 2 cubelets was defined as the distance of their centroids.

For motif analysis, only ipsilateral networks were analyzed, and non-significant (with Bonferroni multiple comparison correction)

cubelet-to-cubelet projections were set to 0.

Analysis of activity-connectivity relationship
To preprocess widefield data, we used SVD to compute the 200 highest dimensions accounting for more than 86% of the variance in

the data. The original data matrix M (of size pixels 3 frames) was decomposed as

M = USV
, which returns ‘spatial components’ U (of size pixels3 compone
nts), ‘temporal components’ V (of size components 3 frames) and

singular values S (of size components 3 components) to scale components to match the original data. To determine the activity of

each cubelet, we calculated themean activity over all pixels belong to the same cubelet. The activity correlation was calculated using

activity data in all the time frames of all the trials. The spontaneous correlation was calculated using activity data from 0-1 s of all the

trials (note the initialization of each trial was at 2 ± 0.2 s). To calculate the noise correlation, we grouped them into left-correct (stimulus

location - result), right-correct, left-incorrect, and right-incorrect trial groups. The mean activity at a given time point over all the trials

in the same group was subtracted from the original activity data belonging to the corresponding trial group to calculate noises. All the

correlations were calculated as Pearson correlations.

For connectivity analysis, the reciprocal connection strength was calculated as the mean of logarithm of connection strengths in

two directions. To compare function data with connection data, we only included cubelet pairs that satisfied 1) number of infected

cells in both cubelets were greater than 50 in BRICseq, 2) both cubelets were well imaged (excluding non-surface areas like orbito-

frontal cortex/anterior cingulate cortex/retrosplenial cortex, and lateral areas like insular cortex), 3) the two cubelets in a pair were not

neighbors (neighbor connections were not analyzed in BRICseq).

To remove distance-dependent components from activity correlations, spontaneous correlations, noise correlations, connection

strengths, and input correlations, we grouped cubelets pairs into bins according to the distances (300 mm each bin), and calculated

the mean value of each variable in each bin. The mean value of each variable was then subtracted from the original data in the cor-

responding bins to calculate distance-independent components. The averaging and subtraction of connection strengths were per-

formed in the logarithmic scale. The distance between 2 cubelets was defined as the distance of their centroids.

To define training stages of the animals, we plotted the proportion of correct responses against the number of training days

throughout the whole training process for each animal, and fitted a sigmoid function to it. Values of the two asymptotes of the sigmoid
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function are determined as min andmax. Naive stages are defined as days when the proportion of correct responses is between min

and 5 percentile of the interval (min, max), while expert stages are defined as days when the proportion of correct responses is be-

tween 95 percentile of the interval (min, max) and max.

To reduce the variations brought by dissection and registration errors, we downsampled the cubelet-to-cubelet connection matrix

for analyses in this analysis (Equation 22). All the non-significant cubelet-to-cubelet connections were set to 0. P value = 0.05 (no

multiple comparison) was used for the criterion of significance here.

Analysis of connectivity-gene expression relationship
Pre-processing of the in situ hybridization data

The Allen in situ hybridization data (200 mm spatial resolution) were downloaded and registered to the coordinates of BRICseq cu-

belets in BL6-1 and BL6-2. The expression of gene X in cubelet Y was calculated as the average expression of gene X in all the voxels

located in cubelet Y. The expression was quantified as the sum of intensity of expressing pixels divided by the total number of pixels

(defined as energy in Allen in situ hybridization database). Only in situ hybridization data from coronal sections were used because

typically expression data in lateral brain areas are missing in sagittal sections. To select genes with high quality expression data for

later analysis, we calculated the correlation coefficients of the expression levels of the same genes between data from sagittal and

coronal sections across the shared cubelets, and only included 153 genes with Pearson r > 0.8. The selected genes also had higher

expression levels and dispersionmetrics (variance divided bymean) than the rest (data not shown), suggesting that these genes were

with high signal-to-noise ratios and high variance. The pre-processing of gene expression data resulted in gene expression matrices

G where each row represented a cubelet, and each column represented a filtered gene for BL6-1 and BL6-2.

Principal component analysis (PCA) of the connectivity data

To identify features that explained most of the connectivity data and were invariant between two brains (BL6-1 and BL6-2), we first

calculated cubelet-to-brain area connectivity matrixC based on BRICseq data of BL6-1 and BL6-2 (section ‘Compare BRICseq data

from multiple brains and compare BRICseq data with Allen connectivity atlas’; each source cubelet was considered as an observa-

tion represented in each row, and the projection strength to each target brain area was considered as a feature represented in each

column), and performed principal component analysis (PCA) onC1 (in what follows, the subscript 1 denotes BL6-1 and the subscript

2 denotes BL6-2). The eigenvector matrixW1 consisted of eigenvectors ofCT
1C1, and the loadingmatrixP1 was determinedwithP1 =

C1W1(Figures S5B and S5C). Next, we reconstructed cubelet-to-brain area connectivity fC1 using a subset of top PCs ~P1 with fC1 =
~P1W

�1
1 , whereW�1

1 denotes the inverse ofW1. To quantify how the subset of PCs explained the full data in BL6-1, we calculated the

Pearson r between fC1 and C1. To quantify how the subset of PCs explained the shared connectivity patterns between BL6-1 and

BL6-2, we first did coordinate transformation to predict cubelet-to-brain area connectivity of BL6-1 cubelets, C�
1, using cubelet-

to-brain area connectivity data in BL6-2, C2, assuming cubelets in BL6-2 are homogeneous (similar to section ‘Inferring cubelet-

to-brain area connections / brain area-to-brain area connections byweighted averaging’). Then the Pearson r between reconstructed

connectivity data in BL6-1, fC1 and the BL6-2-predicted connectivity data of BL6-1, C�
1 was calculated to quantify the shared con-

nectivity patterns between reconstructed BL6-1 and BL6-2.We found that top 10 PCswere able to explain a large fraction of the data

in BL6-1 as well as shared data between BL6-1 and BL6-2 (Figure 5A). Thus, in the following analysis, top 10 PC loadings were used

to represent projection patterns for all the cubelets in BL6-1 and BL6-2:P1 =C1W1,P2 =C2W1, and fP1 and fP2 are top 10 dimensions

of P1 and P2.

To reduce the variations brought by dissection and registration errors, we downsampled the cubelet-to-cubelet connection matrix

(Equation 22). All the non-significant cubelet-to-cubelet connections were set to 0. P value = 0.05 (no multiple comparison) was used

for the criterion of significance here.

Feature selection and linear regression

A greedy feature selection algorithm was applied to find feature gene set S, which predicted the loadings of top 10 projection PCs.

The feature selection started from an empty feature setS=B, and in each iteration, onemore feature gwas selected and added to the

feature set S=SWfgig, to minimize the mean squared error of a linear regression model that fit the PC loadings ~P with the expression

data of genes in the feature set GSWfgig:

g = argmingi

�
minU;LkGSWfgigU +L� ~P k

2

�

, where GSWfg g denotes the expression of genes in the set SWf
i
gig, U and L denote the coefficients and intercepts of the linear

regression model, and X2 denotes the L2-norm of the matrix X.

The feature selection process was stopped when 25 gene features were selected. To avoid overfitting, 5-fold cross-validation was

performed for the linear regression model to calculate the mean squared error during feature selection. Both the training data and the

testing data used for feature selection were from the mouse BL6-1. After feature selection, a linear regression model was used to fit

the PC loadings ~Pwith the expression of the selected feature genesGS with a training set (80%) fromBL6-1 (Figure 5D). The selected

feature genes and the fitting coefficients were next used to predict PC loadings in the testing set fromBL6-1 and the full set fromBL6-

2. The reconstructed cubelet-to-brain area projection data ~C was then calculated as ~C=maxð0; ~PW�1Þ, where W�1 is the inverse

of W.
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To quantify the predictability of the linear model, the Pearson correlation between observed loadings and predicted loadings was

calculated for each projection PC (Figure S5E). To quantify the overall performance of predicting cubelet-to-brain area connections,

we subtracted the column mean of the connectivity matrix C from C for both observed data and predicted data, and calculated the

Pearson correlation by pooling all the elements together (Figure 5B). The reason that we didn’t use the original data in C to calculate

the Pearson correlation is as follows: even when the predictorGS is completely unrelated toC, the linear regression model is still able

to predict the mean for each column of C (due to the intercept term). Thus, calculating the Pearson correlation using the raw data will

result in spurious correlations that arise from comparing a population comprised of subpopulations with different means.

Data shuffling and the null distribution

To determine the null performance of the feature selection and the linear prediction model, we shuffled the gene expression matrixG

within each column (each gene) for BL6-1. Next, we used the same algorithm as above to find a feature set S� that could predict

connectivity ~P with shuffled gene expression G�. Similarly, the feature selection was performed using data from BL6-1, with 5-

fold cross-validation. After finding the gene predictors, we fit the connectivity data ~P with the expression of the selected genes

G�
S using a training set (80%) from BL6-1, and quantified the predictability (Pearson r) of the linear model by using the fitting coeffi-

cients to predict the connectivity data in the testing set of BL6-1. The whole process was repeated for 100 times, to determine the

95% confidence interval of the null performance.

Analysis of Allen connectivity atlas

To address the possible concern that the finding of the low-dimensional genetic program is due to low spatial resolution of BRICseq,

we also performed similar analysis with Allen connectivity atlas (Oh et al., 2014). 126 experiments with injection sites belonging to the

isocortex in C57BL/6J mice were downloaded from Allen connectivity database. Only corticocortical projections were included for

further analysis, and the projection patterns were in 50 mm 3 50 mm 3 50 mm spatial resolution (987460 isocortex voxels in total).

Similar to BRICseq data, each injection experiment was considered as one observation, and the normalized projection strength

to each voxel (normalized to the total fluorescent intensity in the injection site) was considered as one variable (dimension). We per-

formed PCA on the projection data. As top 20 PCs account for 73% of the total variance, we chose to reconstruct (‘de-noise’) pro-

jection patterns using these 20 PCs. Next, we selected genes with high quality expression data (see section ‘Pre-processing of the in

situ hybridization data’), and calculated their expression patterns within each injection site. Similar methods to section ‘Feature

selection and linear regression’ were then used to predict projection patterns from gene expression data. Briefly, a greedy algorithm

was used to determine genes that are able to predict projection patterns with cross validation (80% of total data for training set), a

linear regression model was used to fit the PC loadings with the expression of the selected feature genes, and predicted projection

patterns were reconstructed using predicted PC loadings and compared with observed data.
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Supplemental Figures

Figure S1. Additional BRICseq Protocol, Related to Figure 1

A. Engineered Sindbis virus for BRICseq. (B). A 300 mm coronal slice in a mouse brain 44 hours after Sindbis injection. Scale bar, 500 mm. (C). A brain slice was

stained with Toluidine Blue for laser micro-dissection. Red lines show contours of dissected cubelets. (D). BRICseq pipeline.
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(legend on next page)
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Figure S2. Technical Notes on BRICseq, Related to Figure 2

A. Single cell projection patterns from 712 cells residing in an example cubelet (cubelet 53, in PTLp) in BL6-1. Each row is one cell, and each column is a target

cubelet. Cells are clustered by non-negative matrix factorization (10 clusters). (B). Dorsal view of projections of 3 example cells in cubelet 53 in BL6-1. The circles

indicate the location of the source cubelet. (C). Distribution of the number of single cell projection targets in BL6-1. (D). Template switching is one error source in

BRICseq. During PCR, a DNA strand being synthesizedmay use a new template during elongation, due to a shared sequence among all the templates. Details are

discussed in STAR Methods section ‘Correction of template switching’. E,F. Increasing the PCR volume from 25 mL to 2mL dramatically decreased template

switching rates. BRICseq was performed with samples from two brains, and 96 cubelets (48 from each) were pooled together for PCR and sequencing. (G). In

BL6-1, PCRwas performed in a 12mL system. Cubelets from a different BRICseq brain were added during PCR to estimate template switching rates. Increasing

UMI threshold helped further reduce errors caused by template switching. (H). Re-used barcode is another error source in BRICseq. If the same barcode is used

more than once to infect multiple neurons, somata of some of the infected neurons are mis-interpreted as axons. Details are discussed in STARMethods section

‘Correction of re-used barcodes’. (I). The diversity of viral barcodes needed for unique labeling.We assume 120 source cubelets are infected for this analysis, and

the barcodes in the viral library are uniformly distributed. The ratio of projection barcodes to ‘non-projection’ barcodes (see STARMethods section ‘Correction of

re-used barcodes’) in BL6-1 was used for calculation. Typical experiments performed for this study will have �600 projection cells per cubelet (shaded region),

resulting in a probability of unique barcodes equal to 92.6 and 99.8%, depending on whether the intermediate or high diversity viral library is used. J. Distribution

of barcode counts in batch 1 of viral library 2. K. Distribution of barcode counts in batch 2 of viral library 2. (L). To reduce re-used barcode errors, barcodes whose

counts were greater than a threshold (viral abundance threshold) in batch 1 of viral library 2 were excluded for analysis in BRICseq data. Here the plot shows the

effect of viral barcode threshold on the percentage of removed barcodes from BRICseq data (BL6-1), and the re-used ratio in the residual barcodes. (M). By

simulating the process of sampling barcodes from the viral library, ratio of re-used barcodes can be estimated. More specifically, if we define each barcode’s

firstmax and secondmax as the highest and second highest UMI counts among all the cubelets, the joint distribution of (firstmax, secondmax) of re-used

barcodes can also be calculated. Here we show the ratio of estimated re-used barcodes to total number of recovered barcodes in the (firstmax, secondmax)

space in BL6-1. Black lines indicate axon threshold (qaxon, 20) and soma threshold (qsoma, 250) used to reduce re-used barcode errors. Neurons are included for

analysis only when firstmax > qsoma and secondmax < qaxon. (N). The distribution of barcodes in the (firstmax, secondmax) space in BRICseq data (BL6-1). (O). The

distribution of molecule counts (abundance) of barcodes in BL6-1 raw data. (P). The distribution of the number of soma-called barcodes and total barcodes per

cubelet in BL6-1. (Q). The distribution of the total number of molecules of soma-called barcodes and total barcodes per cubelet in BL6-1. R,S. Volcano plots of

connection strengths and significance in BL6-1. To calculate p values, errors caused by template switching, re-used barcodes, and baseline contaminations are

considered. (T). The effect of the soma threshold on the ratio of incorrect soma calling. (A cubelet is considered as a source cubelet for a given barcode when the

abundance of the barcode is highest in this cubelet AND when the abundance of the barcode in the cubelet is greater than the soma threshold.) (U). The effect of

the number of infected cells in the source cubelet on themiminal detectable connection strength (sensitivity) for each cubelet-to-cubelet connection in BL6-1. (V).

An example in BL6-1 showing that the effects of fibers of passage are minimal. A cubelet in the perirhinal area and ectorhinal area projects to the contralateral

perirhinal area, without showing projections to brain areas underneath which axon fibers travel. W. Many factors including RNA extraction efficiency and

sequencing depth could potentially affect the measured connection strength in different experiments. We therefore normalized BRICseq data before cross-brain

comparisons to counteract these effects. To do so, we assumed that the underlying distribution of barcode abundance at infected somata are consistent across

animals, and any variation in the observed distributions is caused by technical variation between experiments. We then undersampled the detected RNA

molecules of a given brain to best approximate the soma barcode abundance distribution of another. As an illustration, the black line shows the histogram of the

barcode counts at each soma of mouse BL6-2. The blue line shows the same histogram for mouse BTBR-2. Due to the smaller number of infected neurons in

BTBR-2 and the resulting increased sequencing depth of this library, we detected on average higher barcode counts in BTBR-2 than BL6-2. The other three lines

(cyan, green and yellow) indicate the results of undersampling mouse BTBR-2 with 3 different rates. (X). The optimal undersampling rate is determined by

minimizing the sum of squared errors of distributions of barcode counts at soma between BL6-2 and undersampled BTBR-2. In this example, to compare BTBR-2

to BL6-2, undersampling rate 0.31 is optimal.
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Figure S3. Reproducibility and Accuracy of BRICseq, Related to Figure 3

A. Cubelet-to-cubelet connetion strengths in BL6-2. (B). The method to infer brain area-to-brain area connections by weighted averaging for source and targets.

Data in Figures 3A, 3B, S6K, and S6L are calculated in this way. (C). Brain area-to-brain area connection maps in BL6-1 (C1) and BL6-2 (C2) inferred by weighted

averaging. Figure 3A is generated based on them. (D). The method to infer cubelet-to-brain area connections by weighted averaging. Data in Figures 3C and 3D

are calculated in this way. (E)-(G). The method to infer brain area-to-brain area connections by constrained optimization. (E). Constrained optimization as-

sumptions andmethods. (F). Brain area-to-brain area connection in BL6-1 (F1) andBL6-2 (F2) inferred by constrained optimization. (G). Comparison of brain area-

to-brain area connection between BL6-1 and BL6-2 inferred by constrained optimization (Pearson R = 0.7354, linear regression p < 10�100). Red and blue bars

showmean ±SD. H-J. Examples comparing BRICseq results with Allen connectivity atlas. Left are dorsal views of Allen connectivity data; right are dorsal views of

BRICseq results. Each red dot represents the centroid of one injection site (Allen) or one source cubelet (BRICseq). The heatmap shows the mean projection

patterns from multiple injection sites or source cubelets.
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Figure S4. Function-Connection Relationship, Related to Figure 4

A. Scatterplot of input correlations and activity correlations. The input correlation is calculated as Pearson correlation of input to each pair of cublets. Red lines

showmedians. B. Residual activity correlation versus residual input correlation after removing distance-dependent components. Red lines showmedians. C. The

activity-connectivity correlation in naive animals was similar to that in expert animals. Each dot represents one pair of an imaged brain and a BRICseq brain, the x

axis and y axis represent the naive stage and expert stage, respectively. Error bars represent SEM across all imaging days. The identity line is in blue. Wilcoxon

signed-rank test, p = 0.002, n = 24 pairs. Naive animals: Pearson r = 0.67 ± 0.10; expert animals: Pearson r = 0.64 ± 0.08. D. The activity-connectivity correlation

considering directionality. For each pair of source cubelet and target cubelet, we calculated their spontaneous activity correlation with time lag Dt (lag of target

cubelet activity relative to source cubelet activity), and the connection strength (from the source cubelet to the target cubelet). Then all the pairs were pooled

together to calculate the Pearson correlation between activity correlation (with lag) and connectivity (with direction). The plot shows the dependence of activity-

connectivity correlation onDt, and the correlation peaks atDt = 0. Although technical reasons such as slow kinetics of calcium indicators and low sampling rate of

imaging (30Hz) may obscure fine temporal patterns of activity, this findingmay also suggest that there may not exist a simple rule that predicts temporal orders of

activity from corticocortical connectivity, due to the reciprocity of cortical area connectivity (Figure 7A), the complexity of dynamic networks, and unmapped

subcortical inputs. E-H. The scatterplots of spontaneous/noise correlations versus connection strengths/input correlations. (E) and (G) show the original data; (F)

and (H) show the data after removal of distance-dependent components. E-H. Red lines showmedians. For all the panels in this figure except (C), BRICseq data

from BL6-1 and imaging data from mouse mSM64, day E2 are shown as a typical example. rho, Spearman’s Rho; p, p value for rho.
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Figure S5. Gene Expression-Connection Relationship, Related to Figure 5

A, Analysis pipeline. B,C. The bases and loadings of projection PCs in BL6-1. (D). Comparisons between the predicted loadings with linear regression models

using top 10 predictor genes and the observed loadings for projection PCs 1-10 (BL6-1). (E). For projection PCs 1-10, the Pearson correlation coefficients

(Pearson r) between predicted loadings and observed loadings increasewith the numbers of predictor genes (for BL6-1). Error bars represent SD. F-G. Analysis of

relationship between gene expression and connectivity using Allen connectivity atlas. F. PCA of Allen connectivity data. Only corticocortical data were included

for this analysis, and the projection patterns were in 50 mm voxel resolution. Each injection experiment was considered as one observation, and the projection

strength to each voxel (normalized to the total fluorescent intensity in the injection site) was considered as one dimension. Top 20 PCs account for 73%of the total

variance. G. A greedy algorithmwas used to determine genes that are able to predict projection patterns in Allen connectivity atlas, similar to Figure 5 and (A). The

performance of linear regression models using selected gene predictors to predict projection patterns reconstructed with top 20 PCs. Only results from the

testing set (20%) are shown. Note that the performance began to plateau from about 10 gene predictors. Error bars represent SEM.
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Figure S6. Additional Comparison of BTBR and C57BL/6J Cortical Connectivity, Related to Figure 6

A. Anterograde fluorescence tracing from right retrosplenial cortice. Black arrows indicate injection sites. Yellow arrows indicate projection sites. Images are

shown in inverted grayscale. (B). Quantification of contralateral connection strengths in all 8 animals. Kruskal-Wallis test, p < 10�27. Tukey multiple comparison

test: n.s., p > 0.05; *p < 10�3. Error bars represent SD C. Distributions of nonzero commissural connections in BTBR mice. They were found exclusively in target

cubelets close to the midline, and thus likely represented dissection error and contamination from the ipsilateral hemispheres. (D). Cumulative density distri-

butions of connection strengths in 4 types of connections in BL6-1. Projection strengths of zeroes are plotted as 10�3 (�3 in the log scale). The likelihood that

homotopic or heterotopic ipsi+ connections are positive is much higher than heterotopic ipsi- connections, supporting a largely symmetric model of the mouse

cortex. E. Correlation between ipsilateral projection strength and contralateral projection strength for each target pair in heterotopic ipsi+ projections in BL6-1. r,

Pearson correlation; p, p value for r. F. Distance-dependent connection strength and connection probability in BL6-1. The lines are fitting curves. (Left, double

exponential fitting; right, single exponential fitting.) (G). Histograms of output/input correlation between pairwise cubelets in BL6-1. Output(input) correlations are

defined as Pearson correlations between output(input) from(in) pairs of cubelets. (H). Distance-dependent output/input correlation in BL6-1. Red lines show

medians. I. Distance-dependent connection strength and connection probability in BTBR-1. The lines are fitting curves. (Left, double exponential fitting; right,

single exponential fitting) (J). Distance-dependent input/output correlation in BTBR-1. The red lines show median input/output correlation. (K). Comparison of

ipsilateral brain area-to-brain area connection strengths between BL6-1 and BL6-2/BTBR-1. Black: BL6-1 versus BL6-2, Pearson R = 0.8245, linear regression

p < 10�100; green: BL6-1 versus BTBR-1, Pearson R = 0.7688, linear regression p < 10�100. (L). Comparison of ipsilateral brain area-to-brain area connection

strengths between all C57BL/6J mice and BTBR mice. The plot shows the histogram of Pearson correlation between pairs of brains.
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Figure S7. Additional Analysis of Topological Properties of the Ipsilateral Cortical Network, Related to Figure 7

A. Distribution of 2-node and 3-node motifs in cortical network in BL6-1 compared to randomly generated networks generated with the observed distance-

dependent low-order properties, RNdd. *p < 0.001. (B). Fractions of 2-node and 3-nodemotifs in cortical networks in BL6-1. (C). Distribution of 2-node and 3-node

(legend continued on next page)
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motifs in cortical network in BTBR-1 compared to randomly networks RNg. *p < 0.001 (in 10,000 simulation trials). D. Fractions of 2-node and 3-node motifs in

cortical networks in BTBR-1. E. Clustering coefficients of cortical networks in BL6-1 and BTBR-1 compared to random networks RNg. (F). In the clustering

algorithm, a parameter, g, can be tuned to adjust the size and number of modules. Here To determine g, the original data are undersampled for 100 times, and the

average number of modules and the index of consistency (1-Rand index) are calculated for each g in BL6-1. g = 0.9 was used. (G). Connection (Mc)/input

correlation (Mic)/output correlation (Moc) based modules in BL6-1. H. Comparison of Mc, Mic, andMoc in BL6-1. (I). As the distance between a pair of cubelets has

a strong effect on the connection strengths, the original connection matrix can be decomposed into a distance-dependent connection matrix and a distance-

independent connection matrix. Modules based on original (Mo), distance-dependent (Mdd), and distance-independent (Mdi) connection matrices in BL6-1 are

shown. (J). Comparison of Mo, Mdd, and Mdi in BL6-1. Mo is more similar to Mdi. (K). Modules clustered with different g in BL6-1. (L). Connection-based modules,

input correlation-based modules, and output correlation-based modules in BTBR-1. Note there is one blank row where only axons but no somata were detected

in any of its cubelets, probably due to missing of viral injections. (M). Comparison of Mc and Mic/Moc in BTBR-1. (N). Modules clustered with different g in BTBR.

Four major modules were found in the connection matrix: three modules in the somatosensory-somatomotor area, and one module in the anterior cingulate-

retrosplenial-visual area. Note the absence of the visual-auditory area module is likely due to injection artifacts: In the BTBR brain, the two cortical hemispheres

are physically separatedmuchmore rostrally than a C57BL/6Jmouse, and some cortical brain areas including the auditory cortex and part of the visual cortex are

more lateralized and infected with lower efficiencies. As cubelets with too few infected cells were excluded for analysis, the visual-auditory area was not

recovered as a module, as seen in BL6-1. Outlines of brain areas defined in Allen atlas are overlaid on top of the dorsal views of mouse brains except for BTBR

brains, because neuroanatomy in BTBR brains lookes distinct from C57BL/6J brains and coordinates in Allen atlas may not correctly reflect cytoarchitectonic

structures. (O). The names of cortical areas based on the Allen atlas. OB, olfactoryy bulb; FRP, frontal pole; PL, prelimbic area; ACA, anterior cingulate area; MO,

somatomotor area; SS, somatosensory area; PTLp, posterior parietal areas; RSP, retrosplenial area; VIS, visual area; AUD, auditory area; TEa, temporal as-

sociation areas; ECT, ectorhinal areas.
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