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In some nonlinear dynamic systems, the addition of noise to a weak periodic signal can increase the
detectability of the signal, a phenomenon belonging to a class of noise-induced cooperative behavior known as
stochastic resonance~SR!. There has been much recent speculation on the possible role of SR in signal
processing by sensory neurons. However, most results have focused exclusively on increasing the output
signal-to-noise ratio~SNR! of time-periodic signals, even though many real-world signals~e.g., those encoun-
tered in some neurophysiological and communications applications! are not of this form. Here we consider a
generalization of SR, based on the Shannon mutual information between the transmitted and received signal.
This generalization can be applied to cases~e.g., the information transmitted by the output spike train of an
integrate-fire model neuron which we consider here!, involving aperiodic input signals for which the output
SNR might be ill-defined, uninformative, or irrelevant. Since the SR-like effect in the transmitted information
disappears with the optimal choice of model parameters, we suggest that such an effect is likely to be
particularly relevant to systems, e.g., neuronal populations, in which natural circuit constraints may render
parameter optimization impractical.@S1063-651X~96!50109-1#

PACS number~s!: 05.40.1j

Intuition suggests that when noise is added to a signal
prior to or during transmission across a communication
channel, the received signal will be more corrupted than if
the uncorrupted signal had been transmitted. The amount of
corruption is often quantified by the~suitably defined!
signal-to-noise ratio~SNR! of the output: for a linear chan-
nel, the output SNR decreases monotonically with increasing
noise intensity. For a large class of nonlinear channels, how-
ever, there is a seemingly paradoxicalincreasein the SNR,
up to a maximum, with added noise; this effect has been
widely studied under the occasionally misleading name of
stochastic resonance~SR! @1–3#. Underlying SR is some
form of thresholding in the communication channel; specifi-
cally, SR stems from a mismatch between the signal and the
threshold.

The classical SR formulation in terms of the output SNR
has two problems. First, SR is usually defined for systems
with sinusoidal inputs; but in many cases it would be of
interest to consider arbitrary input signals. A second and
more basic problem is that for a nonlinear system driven by
a broadband input signal, the output SNR may be either ill-
defined or uninformative. Only when the input signal is sinu-
soidal is it straightforward to compute the output SNR, at the
fundamental~or at any higher harmonic! of the input signal
frequency.

Information theory@4# provides a natural framework for
many problems in biological information processing@5#.
Here we describe an information-theoretic generalization of
SR that addresses the above-mentioned problems in the use
of the output SNR as an information measure for systems

subject to aperiodic inputs@6#. Within this framework, the
mutual information~MI ! I [s(t),z(t)] between the input sig-
nal s(t) and the output signalz(t) replaces the output SNR.
By analogy with the classical formulation, where SR is de-
fined as a peak in the SNR vs noise characteristic, within the
information-theoretic framework it is defined as a peak in the
MI vs noise relation. SR has recently been observed in the
cricket cercal system in the conventional manner, using the
output SNR as a response measure~for a sinusoidal input
signal!, and via the above-mentioned ‘‘resonance’’ in a
lower bound on the transinformation function~for a broad-
band stimulus! @7#. For the case of a fixed threshold~as in a
level crossing detector!, SR may be related to the well-
known ‘‘dithering’’ effect @8#. We note that other researchers
@9# have also suggested alternative measures of the response
of nonlinear neuron models, to aperiodic inputs.

The basic approach can be illustrated with a very simple
example. Consider a binary communication channel whose
output isy5u(x1n), where the signalx is a binary random
variable that is 1 with probabilityPx and21 with probability
Px̄512Px , andn is a Gaussian random variable with mean
zero and variancesn

2. The outputy is given by the threshold
function u~ ! as y51 if x1n.Q, and y521 otherwise,
where the constantQ denotes the threshold, and we define
Py and Pȳ512Py as the respective probabilities of these
two occurrences. Then we can compute the mutual informa-
tion I (X,Y) between the ensemblesX andY using the defi-
nition @4#

I ~X,Y!5H~Y!2H~YuX!, ~1!

whereH(Y)52^ log2PY&y52Pylog2Py2Pȳlog2Pȳ is the en-
tropy of Y, and
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H~YuX!52^ log2PYuX&x5Px~2Pyuxlog2Pyux

2Pȳ uxlog2Pȳ ux!1Px̄~2Pyu x̄ log2Pyu x̄

2Pȳ u x̄ log2Pȳ u x̄
! ~2!

is the conditional entropy ofY given X. Equation~1! is a
definition, while the expressions forH(Y) andH(YuX) ap-
ply only if the output distributionY is binary. For this simple
example, the relevant quantities are straightforward to com-
pute. For example, the output is 1 whenever either the signal
x is 1 and the noisen is smaller than 12Q, or x is 21 and
n is larger than212Q. Thus the probabilityPy of the event
y51 is the sum of these two conjunctions,

Py5
1

2FPxerfcS 12Q

snA2
D 1Px̄erfcS 212Q

snA2
D G ,

where the erfc arises from the cumulative density of the
Gaussian noise. Using similar arguments, we see that

Pyux5
1
2 erfcS 12Q

snA2
D , Pyu x̄5 1

2 erfcS 212Q

snA2
D

Pȳ ux512Pyux, andPȳ u x̄512Pyu x̄ .
Figure 1~top! shows the mutual informationI (X,Y) as a

function of the input noise variancesn
2 for four values of the

threshold,Q50, 1.25, 2.5, 5. ForQ50, in fact for all uQu
,1, the transmitted information is unity up to a critical noise
level and then falls off steeply; thus in the regimeuQu,1,
the channel works best without added noise. However for
uQu.1, i.e., whenQ exceeds the dynamic range@21,1# of
the inputx, in the absence of noise the outputy is indepen-
dent of the input andI (X,Y)50. As noise is added to induce
threshold crossings, the transmitted information increases to
a maximum, after which added noise degrades the signal.
Thus for every thresholdQ in this regime, there is an optimal
noise level that maximizes the transmitted information. Note,
however, that ifQ could be varied, then the maximum infor-
mation would be a monotonically decreasing function of
sn
2; indeed, it would be precisely the sigmoidal envelope

given by the optimal valueQ50 ~dashed line!. Thus the
SR-like effect can only be realized if the thresholdQ is nota
free parameter.

We can now apply these observations to a question of
substantial interest in neurophysiology. A typical neuron re-
ceives a continual barrage of synaptic inputs from other neu-
rons; with the exception of primary sensory transduction
neurons driven directly by external stimuli, this is theonly
input that the neuron receives. The signal generated by the
synaptic barrage is, in general, aperiodic. Since a necessary
~but not sufficient! condition for useful computation is that
the output of a neuron preserve information about its input, it
is reasonable to ask how the mutual information between a
neuron’s input and its output spike train depends on the input
noise, when the input signal is nonsinusoidal.

We consider a standard model of neuronal dynamics, the
‘‘leaky’’ integrate-and-fire model@10#. The inputy(t) to the
neuron is the sum of a signals(t) and some noisen(t),
y(t)5n(t)1s(t). The neuron dynamics are given byv̇(t)
5@v(t)/t#1y(t)1m, with initial condition v(t0)50 for
v(t),Q, wheret is the membrane time constant,m is the
steady state input,Q is the firing threshold, andv(t) denotes
the membrane voltage. Whenv(t)5Q, the neuron emits a
spikeand resets, deterministically, tov(t0). The outputx(t)
is completely characterized by a sequencet1 ,t2 ,...,t i ,... of
spikes, called thespike train, i.e., the times at which the
threshold was crossed. The sequence can equivalently be
represented by the list of interspike intervals~ISIs!
Ti5t i112t i . This model is completely Markovian: no his-
tory prior to the last reset is preserved. Note that if bothn(t)
ands(t) are Gaussian and white, theny(t) is also Gaussian
and white, and the distinction between ‘‘signal’’ and
‘‘noise’’ is purely a matter of definition: no measure based
solely on output statistics—such as the output SNR—could
provide a complete insight into the information being trans-
mitted.

We are interested inI [S(t),Z(t)], the mutual information
between the signal and the spike train, because it tells us how
much information~in bits/time! the spike train conveys about
the signal. In general this is a difficult quantity to compute,
because it involves the joint probability distribution of all
possible signals and resultant spike trains—a high-
dimensional distribution. However, if the ISIs are indepen-
dent, then we can express the information in terms ofP(T),
the probability distribution of a single ISI. Since by assump-
tion the neuronal dynamics are forgetful, correlations in the

FIG. 1. ~Top! Simple example of noise-induced increase in in-
formation transmission through a binary channel. Zero-mean
Gaussian noise is added to a binary inputx and the sum is thres-
holded atQ to produce a binary outputy. The mutual information
betweenx andy is plotted as a function of the noise variancesn

2 for
Q50 ~dashed curve!, Q51.25 ~top curve!, Q52.5 ~middle curve!
andQ55 ~bottom curve!. The dashedcurve represents the maxi-
mum information obtainable for each noise level.~Bottom! Noise-
induced increase in information through a spiking neuron. The mu-
tual information~3! between the output ‘‘spike train’’ and the input
is plotted as a function of the input SNR, defined as 11ss

2/sn
2. For

both curves,t520, Q520, the signal variance was fixed atss

5(0.4)2 and the noise variancesn
2 was varied to change the SNR.

For the solid curve, m50.8, while for thedashedcurve m50.9.
Note that the information has been normalized separately for each
curve: the normalization factor for thedashedcurve was five times
that for thesolid curve, and in absolute units always exceeds it. The
information rate was estimated by Monte Carlo methods.
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ISI distribution can only arise from correlations in the signal
itself; if we consider only input signalsS(t) drawn from a
white Gaussian distribution, and uncorrelated with the noise
N(t), then correlations cannot arise from the input and ISIs
are guaranteed to be independent. In this caseI „S(t),Z(t)…
can be expressed as the product ofI „S(t),T…, the mutual
information per spike between the signal and a single ISI,
and the average spike rateR̄51/̂ T& @which is calculated
directly from the distributionP(T)#,

I „S~ t !,Z~ t !…5R̄I „S~ t !,T…5R̄@H~T!2H„TuS~ t !…#, ~3!

where we have used the expression for the mutual informa-
tion given by Eq.~1!. The right-hand side is straightforward
to evaluate, since it depends only on the ISI distribution
P(T) and the conditional distributionP„Tus(t)…, rather than
the distribution of all spike trainsP„Z(t)….

In general, bothP(T) andP„Tus(t)… depend on the sta-
tistics of the signal and noise ensembles. Thus, the entropy
of the ISI distribution is H(T)52*0

`P(T)log2P(T)dT,
where we utilize a new realization of the signal and noise
aftereverythreshold crossing, ultimately computing the den-
sity functionP(T). The conditional entropy is similarly de-
fined in terms of the ISI distribution conditional on the signal

H„TuS~ t !…52K E
0

`

P„Tus~ t !…log2P„Tus~ t !…dTL
s~ t !

.

~4!

The evaluation of the conditional entropy can be thought of
as involving two steps. First, some particular realizations(t)
of the signal is generated. A different realization of the noise
is introduced following each threshold crossing and the con-
ditional density P„Tus(T)…, and hence the entropy
H„Tus(t)…, computed for that realization of the signal. This
quantifies the input-output ‘‘channel’’ and may be regarded
as a measure of the reliability of the response to the particu-
lar input s(t); in general, the reliability decreases as the
noise variance increases. This procedure is then repeated for
different realizations of the signals(t) drawn from the en-
semble, and the average over the signal ensemble is ob-
tained; this is the reliability averaged over the ensemble of
inputs. For any particular choice of signal and noise statis-
tics, the above expression can be estimated through Monte
Carlo methods.

We now consider the effect on the information rate of
added noise, where the noise levelat the inputis character-
ized by the SNR which is by definition,sy

2/sn
2511ss

2/sn
2.

Increasing the noisesn
2 while holding the signal variance

ss
2 fixed decreases the input SNR but increasessy

2. This
exerts two competing effects on the mutual information.
First, the increase insy

2 increases the spike rateR̄. Second,
the decrease in the input SNR decreases the information per
spike I „S(t),T…. The relative contribution of these two ef-
fects to the information rateR̄I „S(t),T… depends on the
model parameters. When the first effect dominates at low
noise and the second effect dominates at high noise, an SR-
like effect is observed.

Figure 1~bottom! ~solid curve! shows an example of an
SR-like relation between the input SNR and the transmitted
information ~shown in normalized units of bits/time!. We

have considered the regimemt,Q in which, for the weak
signal strengths considered here, the threshold crossings are
largely noise-induced andR̄!1/t for sn

250. This corre-
sponds~in the zero-noise limit! to a near-exponential ISI
distribution with maximal information transfer@11#. In this
so-called ‘‘Poisson regime,’’ the assumptions leading to~4!
are expected to be rigorous and the spike rate is a very sen-
sitive function ofsy

2, so that a small amount of added noise
greatly increases the spike rateR̄ but exerts only a moderate
amount on the information per spike. Thus, at low noise
~high SNR! the information rateincreaseswith added noise,
until the mutual information passes through a maximum.
This maximum is analogous to the maximum in the output
SNR in the classical formulation of SR, and is seen to occur
at an input SNR'2. We note that, for the solid curve of Fig.
1 ~bottom!, the productR̄t decreases from 1.0 to 0.01 with
increasing input SNR; at the maximum,R̄t50.1.

The SR-like maximum disappears outside the Poisson fir-
ing regime, i.e., when the conditionR̄!1/t is not met: the
effect is observed only when the noise-induced increase in
the firing rate compensates for the concomitant noise-
induced decrease in the information per spike. Thedashed
curve in Fig. 1 ~bottom! shows the effect of increasingR̄ by
increasingm. In this case, the signal is effectively supra-
threshold~although we still havemt,Q! and the information
rate is a monotonically increasing function of the input SNR.
Note that the information rate is shown in normalized units;
the actual peak information rate is five times lower for the
solid curve in which information rate was increased through
noise than for thedashedcurve in which the information rate
was increased by varying the threshold. The same effect is
obtained by increasingss

2 or decreasingQ. However, the
difference in scales between the curves of Fig. 1~bottom!
illustrates that when trying to enhance the detectability of a
weak signal in a noise background, the best results are ob-
tained by lowering the detector threshold, rather than by add-
ing more noise although, for nonlinear detectors, the latter
procedure has been shown to enhance the ‘‘detection prob-
ability’’ under the SR scenario@12#. We note that a SR-like
effect has recently been quantified, via the Fisher informa-
tion, in a similar model driven by a dc signal in white Gauss-
ian noise@13# as well as via a dynamical entropy@14# in a
sinusoidally driven Schmitt trigger.

In related work, DeWeese and Bialek used an
information-theoretic approach to study a different model of
neuronal dynamics@6#. They considered the linear-filtered
threshold crossing model and showed that if, as in our simple
example@Fig. 1 ~top! dashed curve# above, the model param-
eters~e.g., the threshold! were set to optimize information
rate, the rate was a monotonic function of the SNR of the
input, and no SR effect was observed. They therefore sug-
gested that adding noise could be viewed as a strategy for
overcoming an ‘‘incorrect’’ setting of model parameters.

Although, in the integrate-and-fire model that we have
considered, the SR similarly disappears with the appropriate
tuning of model parameters, SR-like effects may neverthe-
less be relevant to the nervous system when constraints make
it difficult or inappropriate to maximize the transmitted in-
formation. Consider the mammalian cortex, where apopula-
tion of neurons within a cortical column represents some
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sensory feature. Each neuron within the column transforms
similar inputs from thousands of other neurons into a single
output spike train; that is, the input entropy to each neuron
exceeds the maximum possible output entropy.

A caricature of this situation illustrates how constraints
might make SR-like effects relevant. Consider a small modi-
fication of the simple binary model analyzed above, where
we now allow the inputx to have higher entropy~e.g., by
drawing it from a continuous distribution! than the outputy;
hereyj is analogous to the output from thej th neuron in the
column, andx5( iui is the analog sum of the other input
elementsui ~outside the column! connected toyj . Under
these conditions, the signalx can be represented using an
ensemble ofN binary elements, each receiving the samex;
the question is howI , the information about the inputx
represented by the populationy, depends onN. Under the
most efficient population coding strategy, wherein each ele-
ment represents a binary ‘‘digit,’’ the informationI is di-
rectly proportional to the population size,I}N, but this op-
timum requires a sophisticated encoding-decoding scheme
that might be awkward to implement using simple summa-
tion elements wherein we limit ourselves to decoding
z5( j y j . A much simpler strategy involves simply adding
noise to each input, so thatI} logN1/25 1

2logN; this more ro-

bust approach satisfies only a constant factor of 2 in the
information. Thus the role of SR may not be to achieve the
globally optimal mutual information, which in this case
would require an implausibly sophisticated decoder, but
rather to make efficient use of the simplest architecture.

Most of the SR literature to date@1–3# has focused on
time-sinusoidal signals in Gaussian noise backgrounds.
While the output SNR may be an adequate measure for char-
acterizing the response to such signals, it is not, in general,
the most appropriate measure when considering more com-
plicated signals of the type considered in this work. The
‘‘conventional’’ SR effect may also be~for a sinusoidal input
signal! connected@15,16# with a synchronization between
the characteristic deterministic~the input signal period! and
stochastic~the Kramers rate for zero input signal! time scales
associated with the system. Clearly, the above-described
phenomena may be regarded as a generalization of the ‘‘con-
ventional’’ SR effect for more complex signals.
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