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Linearized Models of Calcium Dynamics: Formal Equivalence to the 
Cable Equation 
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The dynamics of calcium and other diffusible second mes- 
sengers play an important role in intracellular signaling. We 
show here the conditions under which nonlinear equations 
governing the diffusion, extrusion, and buffering of calcium 
can be linearized. Because the resulting partial differential 
equation is formally identical to the one-dimensional cable 
equation, quantities analogous to the input resistance, space 
constant, and time constant-familiar from the study of pas- 
sive electrical propagation-can be defined. Using simulat- 
ed calcium dynamics in an infinite cable and in a dendritic 
spine as examples, we bound the errors due to the lineari- 
zation, and show that parameter uncertainty is so large that 
most nonlinearities can usually be ignored: robust phenom- 
ena in the nonlinear model are also present in the linear 
model. 

[Key words: computer models, calcium dynamics, calcium 
imaging, cable theory, information processing, dendrites, 
spines] 

Computer models are gaining importance as a tool for exploring 
the role of calcium and other diffusible second messengers in 
intracellular signaling. They have complemented experimental 
techniques in a wide variety of systems, including the squid 
giant synapse (Zucker and Stockbridge, 1983; Yamada and 
Zucker, 1992), the bullfrog sympathetic ganglion (Yamada et 
al., 1989; Peng and Zucker, 1993), the crayfish neuromuscular 
junction (Delaney et al., 199 I), and hippocampal dendrites and 
spines (Connor et al., 1988; Regehr et al., 1989; Miiller and 
Connor, 1991; Jaffe et al., 1992; Malenka et al., 1992). Such 
models permit estimates of calcium dynamics under conditions 
when these dynamics are difficult or impossible to observe di- 
rectly with the experimental technology presently available. 

In this article we begin with an expression describing calcium 
concentration as a nonlinear function of three processes-dif- 
fusion, buffering, and pumping. We demonstrate that in certain 
limiting cases of interest, this equation is formally identical to 
the linear one-dimensional cable equation. Consequently, quan- 
tities analogous to the input resistance, the space constant, and 
the time constant-familiar to most neuroscientists from the 
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study of passive electrical propagation-can be simply defined 
for the reaction-diffusion equation. These quantities enhance 
our intuitive understanding of calcium dynamics by drawing 
upon experience from electrical cable theory. 

Materials and Methods 
We simulated two nonlinear models of calcium dynamics to illustrate 
the validity of the linearization. The two models differed primarily in 
geometry. The first was an infinite cylinder of radius a = 0.5 pm. The 
second was a spine consisting of two cylinders: a head of radius 0.25 
pm and length 0.3 pm, connected to a neck ofradius 0.05 pm and length 
1 pm (Zador et al., 1990). The spine neck was connected to a large 
dendritic compartment in which the calcium concentration was clamped 
either at rest (0.05 Frn; see Fig. 5) or at some higher value (see Fig. 6). 
As indicated in the text, calcium stimuli consisted of either a step to 
some magnitude or a double-exponential waveform. 

The parameters governing nonlinear calcium dynamics were the same 
in both models (see Table 3), with the exception that only the high- 
affinity pump was included in the infinite cable. The spine parameters 
were the same as those used in the report by Zador et al. (1990), with 
the difference that in the original model we considered a buffer with 
four binding sites, while for simplicity in the present model the buffer 
had only one site. The linearized model corresponding to each nonlinear 
model was obtained by calculating the membrane parameters R,,,, C,,,, 
and R, as described in Equation 15. 

Both the linearized (Eq. 12) and nonlinear (Eq. 3) equations were 
solved numerically using NEURON, kindly made available by M. Hines 
(Hines, 1989). NEURON is a software package specifically designed for 
detailed biophysical neuron simulations. All simulations were per- 
formed on a Sun Microsystems SPARC IPX workstation. The linear 
approximations were implemented using the standard built-in code for 
passive electrical dynamics and setting the membrane parameters R,,,, 
C,,,, and R, to the appropriate values given by Equation 15. Because 
NEURON uses a semi-implicit scheme, stable and second-order accurate 
in AWL for all values of the discrete time step At, the linearized equations 
could be solved very rapidly. 

The fully nonlinear model was a reimplementation in NEURON of the 
original (Zador et al., 1990) model. The pump and buffer were incor- 
porated as compiled “membrane mechanisms,” modified from the nmodl 
files included with standard distributions of NEURON. This implemen- 
tation made parameter variations very convenient. However, in contrast 
to the original implementation, the default NEURON implementation 
solves calcium diffusion with an explicit scheme (forward Euler). This 
scheme is numerically unstable in the linear case if the discrete time 
step At > 2(1 + p)(AY)lP,,,, where A,Y is the spatial discretization, and 
is only first-order accurate in time (i.e., the error is proportional to At 
rather than At’). Because of both this instability and inaccuracy, we used 
a very short time step (At = 0.5 Fsec) to achieve desired accuracy. Even 
with this inefficient numerical scheme, typical simulations for the non- 
linear equations required less than 1 hr. 

Analytical Results 
The reaction-d$iision equation 
In this section we will build up to a reaction-diffusion equation 
describing the dynamics of calcium-or any other mobile sub- 
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stance-as it diffuses through the interior of a one-dimensional 
structure in the presence of buffers and surface pumps. Our 
starting point is the one-dimensional diffusion equation with a 
source, 

ac(x,=, aqx, t) 
at a9 + 5$x, f), 

describing the concentration C(x, t) (in FM) at time t and position 
.Y in response to the applied current density i(x, t) (fA/pm’) in 
terms of the partial derivatives of C, the diffusion constant D 
(FmZ/msec) of ionic calcium, and the radius a of the cable (pm). 
We assume here that the geometry of the system, for instance 
a cylindrical apical dendrite of a pyramidal cell, justifies the use 
of the one-dimensional, rather than the three-dimensional, dif- 
fusion equation. In particular, we assume that gradients due to 
radial diffusion are much less than those due to longitudinal 
diffusion (see Discussion). 

The basic diffusion equation must be augmented to incor- 
porate the physiological handling of calcium in the nerve cell. 
We consider two additional processes. First, we include a simple 
calcium extrusion process P(C) that saturates at high [Ca?+]. 
Second, we incorporate a diffusible buffer described by the sec- 
ond-order kinetic equation 

Cal+ + B j M h ’ (2) 

where the rate constants f (in msec-I) and b (~~~‘rnsec--I) 
govern the equilibrium of free calcium Ca’+ (PM) and free buffer 
B (PM) with the bound buffer A4 (KM). Incorporating this into 
the diffusion equation and accounting for the diffusibility of the 
buffer, we obtain the system of equations 

ac 
-=D$$P(C)-fCB+bM+ii(x,t), at (3) 

dM 
-=D,>!$fCB-bM, 
at 

B,- = M(x, t) + B(s, t), (5) 

where D,, (pmzlmsec) is the diffusion constant of both the free 
and the bound buffer, and B, is the concentration oftotal buffer. 
Equation 3 specifies the rate of change in concentration of cal- 
cium as a function of diffusion, extrusion, buffer dynamics, and 
influx. Equation 4 gives the rate of change in bound buffer 
concentration as a function ofbuffer diffusion and buffer binding 
and unbinding. Equation 5 relates the concentrations of free to 
bound buffer: if, as we have assumed, the free and bound buffers 
diffuse at the same rate, then in the absence of buffer sources 
and sinks the total buffer concentration B,- is constant. 

Linearization 
In this section we show that under certain limiting conditions, 
in particular, low [Ca’+] and fast buffer, the system of nonlinear 
partial differential equations in Equations 3-5 reverts to a single 
linear partial differential equation-the cable equation-that has 
been thoroughly studied in the context of the voltage dynamics 
in neuronal structures (Jack et al., 1983; Rall, 1989). This re- 
duction allows us to define useful quantities analogous to those 
familiar from linear cable theory: the membrane time constant 
T, the space constant X, and the input resistance R,. In the 
following section we will use computer simulations to examine 
the validity of these assumptions in certain cases of biophysical 
interest. 

Pump. The pump we consider has the form 

P(C) = ? 1 +Cc,K , 
0 

where K,, (PM) is the dissociation constant between the pump 
and calcium, 2/a is the surface area-to-volume ratio in a cylinder 
of radius a, and the membrane pump parameter P,,, (Fm/msec) 
is equal to the product of the maximum pump rate (i.e., the 
maximum number of ions each pump molecule can extrude per 
unit time) and the pump surface density divided by the pump 
dissociation constant. The assumption of a pump dissociation 
constant (K,,), in contrast to the separate forward and reverse 
buffer binding constants used below, is valid if extrusion is slow 
relative to diffusion (Haynes and Mandveno, 1987). This pump 
is saturable, in the sense that ifthe concentration is high relative 
to the pump dissociation constant (i.e., C/K,, Z+ l), then P(C) 
approaches a constant; it behaves as a steady hyperpolarizing 
current flowing out across the membrane. At the other extreme, 
if the concentration is low relative to the pump dissociation 
constant (i.e., C/K,, << l), then extrusion becomes a linear func- 
tion of C, under these conditions P(C) is analogous to the leak 
term in the cable equation. In summary, 

‘(‘) = 
2P,,,C/a, C K 4, 
2P,,,K,,Ia, C B K,,. (7) 

Bu@r. Under suitable assumptions a buffer can also be in- 
corporated into the linearized equation. First we consider a 
nondiffusible second-order buffer whose binding kinetics are 
much faster than the diffusion of calcium. We then extend this 
approximation to diffusible buffers. In both cases we assume 
that the kinetics of buffering are much faster than the diffusion 
of calcium, that is, that Equations 3 and 4 describe a singularly 
perturbed system (Keener, 1988). While the results in the fol- 
lowing paragraph can be obtained rigorously using the methods 
described in Keener (1988) we opt here for a more intuitive 
presentation that retains the flavor of the derivation but omits 
some of the technical complications. 

Beginning with a nondiffusible buffer, that is, D,, = 0 in Equa- 
tion 4, we solve for M(t) while holding C constant to obtain 

M(t) = M, + (MO - M,)e-“T’l, 

where M, is the initial concentration of bound buffer, TV = (b + 
fC,-’ is the buffer time constant, and M, is the steady-state 
buffer concentration given by B,.fCT,,. If we assume that the 
buffer reaches equilibrium much faster than the diffusional pro- 
cesses, we can approximate Equation 4 with a quasi steady-state 
expression. Thus, near equilibrium (t > T,,, i.e., aM/at = 0), 
the concentration of bound buffer can be approximated by 

M, = B, ACT,, = SC, 
d 

where we have defined the buffer dissociation constant Kd = b/J 
Since we are for now neglecting buffer diffusion (D,, = 0), we 
observe that aM/at = fCB - bM. We can therefore use the chain 
rule to compute aM/at, 

aM ahfac B,K, dC ---= 
ar- ac at (K~ + cyst (9) 

and replace the term - fCB + bM in Equation 3 by this de- 
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rivative to arrive at as 

a(1 + P)ac(x, t) 
(10) ~~ 

2 at 

= 4D + mwcb-, 0 
2 ~ - P,,,C(x, 0 + K,P,,,Z(x, 0. a2 (13) 

Although this equation does not admit any simple closed-form 
solution, the entire effect of the buffer is captured within the 
nonlinear term 1 + B,K,,/(K,, + C)?, which acts like a nonlinear 
capacitance. The steady-state solutions of this equation do not Here we have introduced K, as the constant of proportionality 

depend on buffering. between a stationary current and the resultant sustained increase 

For both very high and very low calcium concentrations C, in concentration at the point of injection; this allows us to use 

this capacitive term becomes linear: the current 1(x, 1) (fA) rather than current density i(x, t). 
The advantage of this form is that it emphasizes the formal 

(1 + P,$= DZ- P(C) 

If the concentration is low relative to the buffer dissociation 
constant, C < K,,, then the effective capacitance is approximated 
by a linear term (I + p) = (1 + BJK,), with the dimensionless 
constant p = BJK,,. If the concentration is high, C 2 Kd, then 
the capacitance reverts to unity, effectively corresponding to b 
= 0. The approximation is valid if the buffer time constant is 
much shorter than the overall time constant due to diffusion. 

This linearization shows that the effect ofa nondiffusible buff- 
er at low concentration is to add a unitless factor p = BJK, to 
the effective “capacitance.” Even in the absence of buffering, 
that is, for B, = 0, there is still an effective capacitance of unity; 
capacitance is an intrinsic part of the diffusion equation. At low 
concentrations, a nondiffusible and instantaneous buffer will 
act to slow down diffusion by reducing D to Dl( 1 + p) (and by 
decreasing the action of the pump by the same amount), while 
at high concentrations it has no effect, since the buffer is mostly 
saturated at C > Kd. 

We now extend the linearized buffer scheme to include the 
effect of buffer diffusion, still assuming fast buffer kinetics and 
low calcium concentration (Junge and McLaughlin, 1987; Irving 
et al., 1990). We again use Equation 8 to describe the equilib- 
rium concentration of bound buffer M(x, t) as a function of the 
substrate concentration C(x, t) and the total buffer Bp Taking 
the requisite derivatives in the low calcium limit, we obtain 

equivalence between the linearized reaction-diffusion system 
and the linear cable equation. To see this, consider the propa- 
gation of voltage along a one-dimensional fiber of radius a, axial 
resistance R, , membrane resistivity R,,,, membrane capacitance 
C,,,, and input resistance R,, in response to a current 1(x, t) 
(Jack et al., 1983): 

c av(x, t) = aa~v(~, t) 
m at 

- $ V(x, t) + $+Z(x, t) 
2R, a2 ,), 

(14) 
,,z 

The two expressions are formally identical, in that the concen- 
tration Cplays the role ofvoltage V, ifthe following substitutions 
are made: 

R, ’ - P,,, 

c,,, H 41 + PI/2 

R;’ - (D + P&l 

R, ++ K, (15) 

In both cases, the current source is Z(x, t). 
In one-dimensional cable theory, it is convenient to define 

the space and time constants, X and T, characterizing the scale 
of spatial and temporal dynamics, respectively, and the input 
resistance R,, which determines the magnitude of the response 
to a sustained input. We can define analogous terms for our 
reactiondiffusion system. Using the standard expressions 
X = -2R,, r = R,,,C,,,, and the input resistance R, = 
(20))“~ V’~/ZT for an infinite cable, we have 

(1 + P)$ = (D + 84)~: - P(C), (12) 7( = 

where as before we have defined /3 = B,lK,. This shows that 
the effect of a diffusible buffer is simply to augment the substrate 
diffusion constant by an amount PD,,: the effective diffusion 
constant becomes D + PO,,. The effective diffusion constant 
increases because there are now two sources ofcalcium mobility: 
direct diffusion at a rate governed by the diffusion constant of 
free calcium D, and a kind of “covert” diffusion of bound cal- 
cium riding “piggyback” along with the buffer. 

Chemical dynamics and the cable equation 

Equation 12 describes the dynamics of calcium at very low or 
very high (for fi = 0) concentrations in a one-dimensional cable. 
The calcium diffuses with a rate controlled by D, is extruded at 
a rate P(C), and is in equilibrium with a mobile buffer. We now 
consider the low-concentration limit of this equation (0 = B,/ 
Kc,), for which the extrusion rate is a linear function of the 
concentration and the radius, P(C) = 2P,,,C/a (Eq. 7) in the 
presence of an externally applied point source current term 
Z(x. t). Multiplying through by a/2, we can rewrite Equation 12 

A,. = 4D + PQJ 
2p,,, ’ 

K, = 
(2&3/L 

r\/(D + NW’,,, 
(16) 

The space constant X, determines the spatial decrement of cal- 
cium in an infinite cable in response to a stationary current at 
,y = 0 as CO(‘-l’hl, We can also define the transfer resistance K,, 
(Carnevale and Johnston, 1982; Koch et al., 1982) as the ratio 
of the sustained change in concentration at location x, to the 
sustained current Z,(t) at location x, that gave rise to C(x,, t). If 
locations x, and x, are a distance x,, = x, - x, apart in an infinite 
cylinder, we have 

K = K ,, ,a3 ,-WA<. (17) 

Note that in this notation the input resistance is the transfer 
resistance from a point to itself, K,, = K,. 

Although the reaction+liffusion and cable equations are for- 
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Figure 1. Electrical and chemical space 
and time constants as a function of ra- 
dius in an infinite cable. The electrical 
(dashed lines) and chemical (solid lines) 
space (left) and time (right) constants 
are plotted as a function of fiber radius. 
The scaling behavior of the space con- 
stants is the same in both systems, but 
their magnitudes differ. The scaling be- 
havior of the time constants differs in 
the two systems. The standard param- 
eters were used (see Table 3). 
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mally equivalent, two differences should be noted. First, tran- 
sient behavior scales differently in the two systems: the electrical 
time constant is independent of the fiber radius, while the chem- 
ical time constant is a linear function of the radius (Table 1, 
Fig. 1). The second difference concerns the typical spatial scale 
of electrical and chemical gradients. In general, the chemical 
space constant is much shorter than the electrical one: 

A,. ez x (18) 

Table 2 compares the electrical and chemical space and time 
constants for infinite cables with radii 0.05, 0.5, and 5 pm, 
assuming our standard chemical and electrical parameters (see 
Materials and Methods and Table 3). With these parameters 
the chemical space constant is about three orders of magnitude 
shorter than the electrical one. Since the chemical space constant 
scales with the square root of the pump density (X, a l/E), 
the pump density would have to be reduced by six orders of 
magnitude for the two space constants to be similar. 

Numerical Simulations 
In order to compare the linearized reaction-diffusion system 
with the nonlinear system from which it was derived, we ex- 
amined their behavior in two test cases of interest. First we used 
the simplest of spatial structures-the infinite cable-to isolate 
the effect of each simplifying assumption independently of the 
others. We illustrate how the response of the nonlinear system 
(Eqs. 3-5) is bounded by the response of the linearized system 
in the low- and high-concentration limits. This provides an 
understanding of the kinds of errors introduced by the linear- 
ization. Second, we turn to a less idealized case-calcium dy- 
namics in a spine head following activation of NMDA recep- 
tors- to examine whether the qualitative conclusions derived 
from previous extensive study of a nonlinear mode1 (Zador et 

al., 1990; Koch and Zador, 1993) were preserved in the linear 
model, and to compare the errors introduced by the linearization 
with those expected from parameter uncertainty. 

Injinite cable 

We begin by examining the effect of nonlinearities due to pump 
saturation. The time course of calcium concentration C in re- 
sponse to an injected step of current 1, depends on whether 
dynamics are governed by the low- or high-concentration re- 
gime. In the low-concentration limit of Equation 12 we can use 
the standard (see, e.g., Jack et al., 1983; Rail, 1989) closed form 
solution of the corresponding electrical cable equation: 

(19) 

where erf( ) is the error function, erfc( ) = 1 - erS( ) its com- 
plement, and X = xl& and T = t/rc are normalized space and 
time. In the high-concentration limit the pump saturates, so we 
revert from the standard cable equation back to the diffusion 
equation (i.e., with the pump term set to zero). In a single com- 
partment, or for current applied uniformly across the infinite 
cable, the concentration rises linearly. However, in an infinite 
cable with a point source, we can find the response to a step 
injection of current by taking the limit as P,, -+ 0 of Equation 
19: 

k I 
C(x, t) = -y 

2ut/D(l + p) 

VG 
&/4Dr 

(20) 

Table 1. The definition of space and time constants and input resistance for the linear cable equation 
and the linearized reaction-diffusion equation at low concentrations C 

Snace constant Time constant Innut resistance 

Electrical v-cm R,,,C,,, (2a)-3/2mlx 
Chemical da@ + PDF’,,, 41 + twp,,, (2a)-3’2/r\/(D + pD,)P,, 

Note that the dependence on the fiber radius a of the input resistance and the space constant is the same for both 
systems, but the dependence of the time constant differs. 



where k, is a proportionality constant. Because neither rC. nor 
X,. is defined for a cable in the absence of pump (P,, = 0), the 
result is expressed directly in terms of the underlying physical 
variables (an additional term from Eq. 7 describing the negative 
current due to the saturated pump has been omitted, since in 
the high-concentration limit it is negligible compared with the 
input I,,). Note that the koc2 term, which replaces the chemical 
input resistance K, in the high-concentration limit, does not 
have the usual u31Z dependence that gives rise to the “312 power 
law” for matching resistances at branch points (Rail, 1989), but 
depends instead on a’. 

One important difference between the two limits is that in 
the unsaturated pump approximation the concentration ap- 
proaches some steady-state value (KJO at the site of injection), 
while in the saturated pump limit the concentration increases 
without bound. In a finite cable the concentration increases 
without bound whenever the input current exceeds the total 
extrusion capacity of the cable, which is governed by the pump 
and the total length of the cable. In an infinite cable the total 
extrusion capacity is infinite, so that at some distance from the 
source the concentration drops into the unsaturated regime. 

These two linear approximations bound the behavior of the 
nonlinear pump. For small inputs, the behavior is governed by 
Equatipn 19, which describes the unsaturated limit. For large 
inputs, the behavior is governed by Equation 20. The transition 
between these two limits is illustrated in Figure 2, where the 
isolation to the nonlinear system is computed for increasing 
stimuli at the origin and at four space constants from the origin 
in an infinite cable using our standard parameters (Table 3). For 
this and subsequent simulations of the infinite cable we adopt 

0 2 4 6 8 10 
Time (msec) 
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Table 2. Space and time constants and input resistances associated 
with the chemical and electrical dynamics in an infinite cable of 
indicated radius for our “standard” model (Table 3) 

a (wm) X,. (brn) T, (msec) K, (&fA) A (firn) 7 (msec) R, (Ma) 

0.05 0.27 1.38 0.151 224 20 14,200 
0.5 0.87 13.8 4.76 x lo- 707 20 450 
5.0 2.7 138 1.51 x IO-4 2240 20 14.2 

Notice that A, < A and the different scaling behavior of r( and T. The input 
resistance is given in equivalent units of 10” M/A for K, and in IO” V/A for R,. 

the convention that the linearized system is represented by dashed 
curves, and the response of the nonlinear system by so/id curves. 
The fact that the solid curves fall within the region bounded by 
the dashed curves shows how the linear equations in the low- 
and high-concentration limits bound the behavior of the non- 
linear system. The concentration has been normalized to give 
a steady-state of unity at the origin for the small-input case. For 
the smallest input I,, = 10m5 nA the simulated curve is super- 
imposed on the predicted curve for low concentration. Larger 
currents exceed this lower bound but always remain less than 
the upper bound predicted by the no-pump approximation. Note 
that the upper bound diverges to infinity as t * ~0. 

Figure 3 shows how buffer saturation affects the validity of 
the linearization. Because the buffer is assumed to be saturable, 
the effective capacitance decreases with increasing stimuli. For 
small stimuli (Z,, = 1O-4 nA) the time course of normalized 
concentration is well fit by the low-concentration linear approxi- 
mation. As the stimulus intensity increases, 7(. decreases, so the 

0 2 4 6 8 10 
Time (msec) 

Figure 2. The effect of pump saturation in an infinite cable. The time course of normalized ([Ca2+]/(K&)) calcium concentration in response to 
steady current injection into an infinite one-dimensional cable of radius a = 0.5 pm is compared at x = 0 (left) and x = 4Xc (right). The lower 
dushed curves show the low-concentration limit (see Table 3 for standard parameters). The upper dashed curves show the high-concentration limit, 
in which saturation effectively eliminates the effect of the pump (i.e., P,, = 0), allowing the concentration to diverge to infinity. The four solid curves 
show the simulated response of the nonlinear model (Eqs. 3-5) for four different input current magnitudes (I, = 1O-5 nA, I, = lO-4 nA, I, = lo-’ 
nA, Z0 = lo-’ nA). The lowermost solid curve shows the response to the smallest stimulus, for which the linearized equation with unsaturated pump 
provides a good approximation. The next three solid curves show the responses to progressively stronger stimuli, illustrating the effect of pump 
saturation. Note that the linear approximations completely bound the behavior of the full nonlinear system. The buffer has been set to zero (B,- = 
0) for these simulations in order to eliminate the confounding influences due to buffer saturation. 
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Figure 3. The effect of buffer saturation in an infinite cable. The effect of buffer saturation on the time course of normalized [Ca*+] is illustrated 
at x = 0 (left) and x = h, (right). The lower dashed curves show the time course for an unsaturated buffer (p = 10) in the linear approximation, 
while the upper dashed curves show time course for a fully saturated buffer (0 = 0) in the linear approximation. The four solid curves show the 
simulated response of the nonlinear model (Eqs. 3-5) for four different input current magnitudes. The lowermost solid curve shows the response to 
a stimulus that is sufficiently small (Z, = 10m4 nA) that the linearized equation with unsaturated buffer provides a good approximation. The next 
three so/id curves show the response to progressively stronger stimuli (Z, = lo-’ nA, 10m2 nA, and 10-l nA), illustrating the effect of buffer saturation. 
All curves at a given location eventually reach the same asymptotic value (not shown). In order to isolate the effect of buffer saturation alone, the 
pump (which has a lower dissociation constant than the buffer and so saturates at a lower value) has been modified to prevent saturation within 
this range of [Cal+]; in addition, the buffer kinetics have been speeded up to ensure buffer equilibrium (see Fig. 4). 

concentration rises faster, but the concentration always remains order to test the assumption of fast buffer kinetics underlying 
bounded by the ,f3 = 0 (no-buffer) limit. The same behavior is the equilibrium simplification (Eq. S), we compared the simu- 
observed one space constant away from the stimulus site. lated time course for buffers with slow and fast kinetics in the 

The effect of a buffer not at equilibrium is not conveniently low-concentration limit (Fig. 4). The kinetics of calmodulin un- 
incorporated into the linearized reaction+Iiffusion equation. In der physiological conditions have not been determined, so we 

Figure 4. Effect of noninstantaneous 
buffer. The effect of lags in buffer equi- 
librium on the time course of normal- 
ized [Caz+] is illustrated at x = 0 (Zefl) 
and x = X, (right). The current stimulus 1.0 
(Z, = 10m5 nA) is low enough that the 
low-calcium limit is valid. The dashed 
curve shows the time course of the lin- 
ear model assuming an instantaneous 7 0.8 
unsaturated buffer (p = IO). The two x 
solid curves illustrate the effect of slow 3 
buffer kinetics. For the upper solid curve (d 
the standard kinetics were speeded up 
by three orders of magnitude to guar- 

+” 0.6 

antee equilibrium. The speeded up for- 
“a 
u 

ward rate constant was f  = 5 PM ’ msec ’ U 
and the reverse constant was b = 50 a 
msec-I. so using r,, = I/( f  [Cal ‘1 + b) 
we can estimate the buffer time con- 

: 0.4 
I-2 

stant at about 20 psec. For the lower 
solid curve the standard kinetics were 5 
used, so r,, = 2 msec was roughly of the 
same scale as the response. The two 

$ z 0.2 
curves differ primarily in their behavior 
during the initial phase. Note that while 
the noninstantaneous buffer does not 
constitute a nonlinearity like the satu- 0.0 
rations considered earlier, it does cause 
a deviation from the cable approxi- 
mation. 

0 5 10 15 0 5 10 15 
Time (msec) Time (msec) 

0.25 



The Journal of Neuroscience, August 1994, M(8) 4711 

used values derived from in vitro studies (Klee and Haiech, 
1980; McBurney and Neering, 1987; see Table 3) for the ki- 
netics. As indicated by the previous figure, the analytic form 
predicts well the time course of the fast buffer. It also provides 
a relatively good approximation for most of the time course of 
the slow buffer, with the largest error during the initial equili- 
bration of the buffer. However, the predicted time course pro- 
vides neither an upper nor a lower bound for the simulated 
curve: the curves cross. This crossing does not depend on dif- 
fusion, and can in fact be observed for calcium injection into a 
single compartment with a noninstantaneous buffer. It results 
from the interaction of two time constants of similar magnitude 
resulting from a pair of coupled differential equations. If the 
time scale of buffer equilibration is close to that of diffusion, 
techniques are available for a more careful analysis of the early 
time course (Keener, 1988). 

We did not simulate the diffusible buffer. We note, however, 
that the effect of a diffusible buffer can be surprisingly large. 
Using D,, = 0.13 as the diffusion constant for calmodulin and 
@ = 10, we calculate the effective diffusion constant as D + /3Dh 
= 0.6 + 1.3 = 1.9 or about three times the usual constant. From 
Table 1 we see that this leads to a fl = 1.7-fold increase in 
the space constant X, and a decrease of identical magnitude in 
the input resistance K,. 

Calcium dynamics in a spine 

While it has only very recently been possible to image calcium 
dynamics in putative spines of hippocampal pyramidal cells 
following synaptic input and other manipulations (Guthrie et 
al., 199 1; Miiller and Connor, 1991; Jaffe and Brown, 1992) a 
number of computer simulations of calcium dynamics in spines 
have appeared (Gamble and Koch, 1987; Holmes, 1990; Holmes 
and Levy, 1990; Zador et al., 1990; Koch et al., 1992; Koch 
and Zador, 1993). Following an earlier proposal (Shepherd, 1974), 
these simulations suggested that spines create a microenviron- 
ment for localized changes in the concentrations of ions and 
second messengers. In order to test the utility ofour linearization 
procedure, we compared a nonlinear model ofcalcium dynamics 
in dendritic spines to the corresponding linearized reaction- 
diffusion equation. Based on the results of the previous section 
we did expect to observe quantitative differences between the 
two, especially for short times and/or at high [Caz+]. Of real 
concern is whether qualitative differences result. 

We used a nonlinear model of early induction of long-term 
potentiation (Zador et al., 1990; Koch and Zador, 1993) as the 
basis for the comparison. Our original model assumed that pre- 
synaptic activity activates two postsynaptic conductances lo- 
cated at the spine head: a fast, voltage-independent AMPA con- 
ductance and a slower, voltage-dependent NMDA conductance. 
At resting membrane potentials the NMDA channel is mostly 
blocked by Mg’+ ions. As the postsynaptic membrane is de- 
polarized, this block is relieved in a voltage-dependent manner, 
allowing passage of both monovalent cations and calcium ions. 
With this influx through the channel acting as a point current 
source, we then simulated the diffusion of calcium ions along 
the spine neck into the dendrite, their binding to a second-order 
buffer, and their extrusion into the extracellular space by two 
different calcium pumps (for more details, see Materials and 
Methods). 

For our present purposes it was sufficient to consider a sim- 
plified model corresponding to presynaptic stimulation in con- 
junction with a postsynaptic voltage clamp; this allowed us to 

Table 3. Symbols, units, and default parameter values of our 
“standard” model 

Time 
Distance 
[CaI+], 
Membrane potential 
Diffusion constant (calcium) 
Current source 
Spatial gradient of current 
[Bound buffer] 
Diffusion constant (buffer) 
Forward buffer rate 
Backward buffer rate 
Buffer dissociation constant (b/f) 
Total buffer concentration 
Derived buffer parameter (BJK,) 
Buffer time constant ((b + fC)-I) 

Pump parameter (high affinity) 
Low affinity (spine model only) 

Dissociation constant (high affinity) 
Low affinity (spine model only) 

Electrical time constant 
Electrical space constant 
Electrical input resistance (V/I) 
Chemical space constant 
Chemical time constant 
Chemical input resistance (C/Z) 
Axial resistance 
Membrane resistivity 
Membrane capacitance 
Radius 

msec 
m 
PM 
mV 
0.6 Frn’ msecc’ 
fA 
fA/fim 

PM 
0.13 pm* msec-’ 
0.05 PM-’ msec-I 
0.5 msecc’ 
10 PM 
100 /AM 

10 
msec 
0.2 pm msec-I 
0.1 pm msec- I 
0.5 /.LM 

10pM 

msec 
w 
MR 
pm 
msec 
PM fA-’ 
100Rcm 
20 kR cm’ 
1 /IF cm-l 

eliminate the details of the voltage dependence of the NMDA 
receptor channel by considering an injected subsynaptic calcium 
current I,,(t). The time course of this current was given by 

I,,(t) = Io(emrfhl - e-rfAl ). (21) 

This double-exponential expression mimics the time course of 
the NMDA-mediated synaptic current, with I,, governing the 
peak current and T, = 80 msec and 72 = 3 msec governing the 
time course (Zador et al., 1990). We compared a small stimulus 
of I, = 10 fA to a fivefold larger stimulus I,, = 50 fA; with the 
values of T, and r2 given, these correspond to peak currents of 
8.5 fA and 42 fA, respectively. 

Figure 5 compares the time courses of [Ca’+] at the spine 
head with the corresponding linearized models. The standard 
linearized model (lower dashed curves) offers a reasonable fit 
to the dynamics of the low-intensity stimulus (top panel), but 
offers only a poor approximation to the higher-intensity stim- 
ulus (bottom panel). However, for both stimulus intensities the 
solution remains bounded by the linear approximation with a 
IO-fold lower pump density (upper dashed curve). Because of 
the tremendous experimental difficulties involved in measuring 
the densities and affinities ofthe two calcium pumps in dendrites 
and spines, this factor of 10 in the pump density represents a 
very conservative estimate of our uncertainty in this parameter. 
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Figure 5. Time course of [Ca2+] at the 
spine head for high-intensity (bottom) 
and low-intensity (top) synaptic inputs. 
A calcium current with a slow time 
course comparable to that of the NMDA A 0 20 40 60 80 100 120 
receptor channel was applied to the 
spine head (see text). I0 = 10 fA cor- z 

Time (msec) 

responds to a peak current of 8.5 fA, 
while IO = 50 fA corresponds to a peak ‘$ 
current of 42.5 fA. The solid curves show 
the simulated time course for the full 4 a- 
nonlinear (Eqs. 3-5) model using the 

a 
6: 

//-- -----__ --__ . 
r 1’ 

--__ 
standard parameters in Table 3. The --__ / 
dashed curves show that the response of 
the associated linearized models for the 
standard parameters (lower dashed 
curves; K, = 4.2 x IO-’ &fA) and a 
IO-fold reduction in the pump density 
(upper dashed curves; K, = 2.8 x IO-’ 
pcM/fA) bound the response of the full 
model. 

40 60 a0 100 120 
Time (msec) 

A similar argument can be made for other parameters (e.g., total 
buffer concentration B,). This shows how variation of even a 
single parameter within its range of experimental uncertainty 
can have a greater effect on the dynamics than does the line- 
arization. In other words, the quantitative error due to linear- 
ization is smaller than the error due to uncertainty in the un- 
derlying parameters. 

Note that during about the first 5 msec the nonlinear model 
with the standard (slow) buffer kinetics slightly overshoots the 
linear model because of the lag in buffer equilibration. This 
same phenomenon was noted for the infinite cable (see Fig. 4). 
Thus, for very short times the linearized model does not com- 
pletely bound the solution. 

The 10 msec time-to-peak of Zcu(t) is slow compared to the 
two chemical time constants-6.9 and 1.4 msec-associated 
with the spine head (a = 0.25 pm) and the spine neck (a = 0.05 
pm), respectively (Table 2). We can use the parameters of the 
linear model to estimate directly the peak concentration by 
multiplying the chemical input resistance at the spine head by 
the peak current. Using K, = 4.2 x 1 O- 2 @fA, we obtain C,,, 
= 0.35 KM for the low-intensity stimulus and Cpeak = 1.8 KM for 
the higher-intensity stimulus. For the low-intensity stimulus this 
rough calculation overestimates the actual peak of the linear 
model by about 25%, but in fact underestimates of the actual 
peak (0.44 PM) for the nonlinear model by only 20%. 

That spines amplify calcium currents can be seen by com- 
paring the chemical input resistance at the spine head to the 
input resistance directly at the dendritic shaft. At the spine head, 
the input resistance is 4.2 x lo-’ pM/fA for the standard model, 
while at a dendrite of radius a = 0.5 pm it is IO-fold smaller 
(Km = 4.8 x 1O-X pM/fA) (Table 2). In other words, a calcium 
current injected into the spine head leads to roughly a IO-fold 
larger increase in calcium concentration than the same current 
applied at the dendritic shaft. 

Another qualitative property noted in the nonlinear model is 
the ability of spines to iso/ute the head from sustained changes 
occurring in the dendritic shaft (Zador et al., 1990; Koch and 
Zador, 1993). Figure 6 illustrates the decay of calcium along the 

spine head and neck while the calcium concentration in the 
dendrite is clamped to 0.6 PM or 5.0 FM. For the standard 
parameters, the 1 Frn spine neck has a space constant of X, = 
0.27 pm (Table 2). Since the spine neck is about four space 
constants long, we observe that the steady-state calcium con- 
centration at the spine head decays to approximately exp(-4), 
or about 2% of its dendritic value. The linear model (lower 
dashed curve) with standard parameters provides an adequate 
quantitative fit to the lower but not to the higher-concentration 
clamp experiment. Decreasing P,, by 10 (upper dashed curve) 
increases X,. by m, and leads to a sustained value of [Caz+] 
above the curve obtained for the nonlinear model. There is 
experimental evidence that some spines may not be isolated 
from their parent dendrite (Guthrie et al., 1991; Miiller and 
Connor, 199 I). These results are completely consistent with the 
linearized model developed here, if they result from actual spine 
parameters or geometry that lay outside of the narrow range 
considered here. 

Discussion 
Over the last decade, in biophysics as in many other fields, there 
has been a trend toward more computationally intensive sim- 
ulations. In the context of calcium dynamics, this has led to an 
exploration of the complexities of nonlinear diffusional systems 
in up to three spatial dimensions (Zucker and Stockbridge, 1983; 
Coss and Perkel, 1985; Simon and Llinas, 1985; Zucker and 
Fogelson, 1986; Gamble and Koch, 1987; Yamada et al., 1989; 
Holmes and Levy, 1990; Sala and Hernandez-Cruz, 1990; Zador 
et al., 1990; Meyer and Stryer, 199 1; Carnevale and Rosenthal, 
1992). One of the main reasons for the growing dominance of 
the computational approach is the widespread availability of 
very fast computers, which has opened a wider range of prob- 
lems to analysis. For many problems the solution cannot be 
computed analytically but can be found numerically. In other 
cases, even when a closed form solution does exist it may still 
be more convenient to find the solution by numerical methods. 

The linearized model presented here may therefore appear 
from a historical perspective a step backward. However, the 
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Figure 6. Attenuation of [Ca?+] along 
the spine neck and head while concen- 
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Distance from dendritic shaft (PM) 
densities completely bound the re- 
sponse of the full model. 

motivation for developing the linearized model was not to make 
computation faster or more efficient, but rather to provide a 
framework for understanding the more complex behavior of 
nonlinear dynamics. In a typical nonlinear model with several 
dozen free parameters, it is often very difficult to discern which 
parameters are critical, and what effects they have; this process 
usually requires extensive trial and error. Further, even once 
extensive familiarity has been gained with the behavior of a 
nonlinear model in some parameter regime, it is often difficult 
to assess the range of validity of the results, or to offer more 
than anecdotal evidence of the results. The linearized model 
provides a convenient set of conceptual parameters (K,, TV, A,.) 
that are much easier to manipulate and comprehend, and be- 
cause of the formal correspondence with the well-studied elec- 
trical cable equation, we can draw upon the tremendous expe- 
rience that has accumulated. 

The linearization also addresses a too often neglected ques- 
tion: which nonlinearities are required to obtain the qualitative 
behavior reported? As we have illustrated, it is often precisely 
the qualitative features of the nonlinear model-that is, those 
that are robust to large variations in the free parameters, within 
the bounds of experimental uncertainty-that are preserved 
within the linear model. In fact, many of the nonlinearities that 
characterize calcium dynamics tend to be monotonic-typically 
saturation phenomena-that do not cause the qualitative be- 
havior to deviate in any surprising way from the linear. 

Validity of linearized reaction-d@iision equation 
We are primarily concerned here with the dynamics of calcium 
in dendritic cables. The length of these structures is typically 
one or two orders of magnitudes larger than their radius, jus- 
tifying the dimensional reduction of the three-dimensional dif- 
fusion equation to a one-dimensional one. Rall(1969) compared 
the membrane potential derived as the solution of Laplace’s 
equation in three-dimensional cylindrical coordinates with one- 
dimensional cable theory, concluding that the radial contribu- 
tions of the membrane potential of a dendrite or axon decay 

lo4 times faster than the components of the membrane potential 
along the axis (see also Eisenberg and Johnson, 1970). A similar 
analysis for the diffusion equation shows that the one-dimen- 
sional approximation is valid as long as (1) the radius is shorter 
than the length, a < 1; and (2) the equilibration times for buf- 
fering and radial diffusion are short compared to longitudinal 
diffusion. These conditions may be violated in some situations 
of physiological interest, such as buffered diffusion over a few 
fractions ofa micron or within fractions ofa millisecond (Simon 
and Llinls, 1985; Zucker and Fogelson, 1986; Roberts, 1993) 
and “domain” models for Ca2+ inactivation of Ca’+ channels 
(Sherman et al., 1990; Imredy and Yue, 1992). At these spatial 
and temporal scales inhomogeneities in the radial direction will 
certainly arise. The analysis will be further complicated if there 
are variations in parameters such as buffer concentration along 
the radial axis; under such conditions some average value of 
the parameter must be used. Nevertheless, the simple reaction- 
diffusion equation derived here is useful for analyzing calcium 
dynamics in dendrites and spines (Connor et al., 1988; Tank et 
al., 1988; Guthrie et al., 1991; Regehr and Tank, 1992), and 
can be extended to include diffusion and buffering in a spherical 
cell body (Connor et al., 1988; Yamada et al., 1989; Sala and 
Hernhndez-Cruz, 1990; Carnevale and Rosenthal, 1992). 

There are many conditions under which nonlinearities can 
not be neglected; we call these essential nonlinearities. For ex- 
ample, in the study of electrical signal propagation it is clear 
that the nonlinearities of voltage-dependent membrane chan- 
nels are essential to the generation of action potentials. Similar 
nonlinear models have been proposed to explain calcium waves 
and oscillations seen in astrocytes and other cells (Meyer and 
Stryer, 199 1; Berridge, 1993). Multiple cooperative binding steps 
to calcium buffers, such as calmodulin with its four binding 
sites, may serve to sharpen the relationship between concentra- 
tion and certain biochemical reactions, such as autophosphor- 
ylation (Lisman, 1985); this sharpening may be thought of as 
implementing a threshold type of nonlinearity (Koch and Pog- 
gio, 1983, 1987). In some cases, the time dependence of an 



4714 Zador and Koch l Linearized Models of Calcium Dynamics 

essential nonlinearity may be neglected; in such cases, the phe- 
nomenon may be modeled as a linear system system followed 
by a static nonlinearity. 

Space- and time-constants of reactiona’jiision equation 
Recognition of its equivalence to the electrical cable equation 
offers insight into the interpretation of the reaction-diffusion 
equation (see also Sejnowski and Quian, 1992). The pump P, 
acts like a membrane conductance R,,m’, since calcium ions 
“leak” through the membrane: the greater the pump density, 
the greater the decrement per unit distance of calcium. The 
buffer, like a capacitance, acts as a storage device. Specifically, 
the buffer adds to the capacitance by an amount equal to the 
total concentration of buffer divided by its affinity, /3 = BJK,. 
Because all ofthe calcium that binds to the buffer may ultimately 
be released into its free state again, the buffer affects only the 
transient behavior (neglecting the effect of buffer diffusion on 
the effective diffusion constant D + @Db). Note, however, that- 
in marked contrast to the electrical cable equation-the buffer 
does not completely determine the transient behavior: if the 
buffer concentration is zero, the effective capacitance is unity, 
while if the membrane capacitance is zero, the result is a purely 
resistive grid with no transient behavior. Finally, recalling a 
classical result from statistical physics (see, e.g., Hille, 1992), 
the diffusion coefficient D is analogous to the inverse of axial 
resistance, R,m’. Just as the axial resistance determines the spread 
of potential along the longitudinal axis, so the diffusion constant 
determines the rate of calcium flux along the longitudinal axis. 

Equation 13 also allows us to define a space constant Xc, a 
time constant ~c, and an input resistance K,. At least two sig- 
nificant differences exist between X,. and TV and their electrical 
analogs (see Tables 1, 2). First, given reasonable values of cal- 
cium pump densities (Hille, 1992) the chemical space constant 
is much greater than its electrical counterpart (Table 2). Thus, 
while the spatial extent of steady-state voltage gradients in pas- 
sive dendritic trees is of the same order of magnitude as the tree 
itself (Rail, 1989) concentration gradients remain much more 
localized. This results in an important difference between the 
electrical and chemical behavior of spines (Shepherd, 1974; Har- 
ris and Stevens, 1989): experimentally evoked changes in cal- 
cium concentration at the dendritic shaft may not be paralleled 
in the spine (Guthrie et al., 1991) because the chemical space 
constant may be of the same order of magnitude as the spine 
neck. 

A further difference is that transient behavior scales differently 
in the two systems. As shown in Table 1, the chemical time 
constant is proportional to the fiber radius, rc 0: a, while the 
electrical time constant T is independent of fiber radius. Thus, 
chemical dynamics are slower in larger cables. The difference 
between the two systems arises from the nature of the capaci- 
tative terms. In electrical dynamics both capacitance and leak 
are properties of the membrane that scale with surface area. In 
chemical dynamics the leak due to surface pumps is a membrane 
property that scales with surface area, while the capacitance is 
an intrinsic property of the cable that scales with volume. Since 
it is the ratio of the capacitance and the leak that gives rise to 
7 in both cases, the scahng properties differ. Therefore, the time 
scales ofcalcium and voltage dynamics are comparable for small 
cylinders, but can differ greatly for thicker dendrites. 

By contrast, both the input resistance (R, a a-)/I, K, 0~ a-3’2) 
and the space constant (X a \/;;, X,- o( ti) scale identically in 
the two systems. Since the chemical input resistance has the 

same a)‘* dependence as the electrical input resistance, it too 
obeys the “3/2 power law” (Rall, 1989) for matching impe- 
dances at branch points. The definition of a transfer resistance 
(Eq. 17) allows one to define calcium attenuation coefficient 
between points i and j, that is, the ratio of sustained (or peak) 
Cat location x, to sustained (or peak) Cat location x, (Camevale 
and Johnston, 1982; Koch et al., 1982). In particular, this allows 
the “morphoelectrotonic”-or in this case “morphocalciton- 
ic”-transform to be applied to any dendritic tree (Zador et al., 
199 l), so that the morphology of the tree can be recast in units 
of calcium attenuation. 

We believe that application ofthese techniques will ultimately 
help us better understand the role that calcium-or any other 
diffusible second messenger-plays in information processing 
in the dendritic trees. 
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