
E�cient Temporal Processing with BiologicallyRealistic Dynamic SynapsesThomas Natschl�ageryx, Wolfgang Maassy and AntonyZadorzy Institute for Theoretical Computer Science, Technische Universit�at Graz,Austria, ftnatschl,maassg@igi.tu-graz.ac.atz Cold Spring Harbor Laboratory, 1 Bungtown Rd, Cold Spring Harbor, NY91124, zador@cshl.orgAbstract. Synapses play a central role in neural computation: the strengths ofsynaptic connections determine the function of a neural circuit. In conventionalmodels of computation, synaptic strength is assumed to be a static quantitythat changes only on the slow time scale of learning. In biological systems,however, synaptic strength undergoes dynamic modulation on rapid time scalesthrough mechanisms such as short term facilitation and depression. Here wedescribe a general model of computation that exploits dynamic synapses, anduse a backpropagation-like algorithm to adjust the synaptic parameters. Weshow that such gradient descent su�ces to approximate a given quadratic �lterby a rather small neural system with dynamic synapses. We demonstrate thatwith this approach the nonlinear �lter considered in (Back and Tsoi, 1993) canbe approximated even better than by their model. Our numerical results arecomplemented by theoretical analysis which show that even with just a singlehidden layer such networks can approximate a surprisingly large large class ofnonlinear �lters: all �lters that can be characterized by Volterra series. This resultis robust with regard to various changes in the model for synaptic dynamics.1. IntroductionThe brain is able to solve hard computational problems that remain beyond thereach of the most powerful computers, but the key to its success remains unclear.One possibility is that the properties of neuronal wetware|as opposed, for exampleto the digital hardware found in a computer|enforce a style of computation thatis particularly well-suited to solving the kinds of problems important to survival.If this is true, then we may gain insight into the strategies employed by neuronalwetware by studying computational models that capture the essence of neural circuitry.This strategy has motivated the development of arti�cial neural network models ofcomputation. Like brains, neural networks are massively parallel networks composedof many simple repeating units. Neural networks share a number of characteristicswith brains, including fault tolerance, generalization, and the ability to learn (oradapt) to new inputs. Neural network models have been useful for understandingwhat kinds of algorithms are well-suited for brain-style computation.Neural networks have been widely applied to the processing of static stimuli.In recent years, however, there has been increasing focus on the dynamic aspects ofx To whom correspondence should be addressed.



E�cient Temporal Processing with Biologically Realistic Dynamic Synapses 2cortical processing. Spatiotemporal (Reid et al., 1997) and spectrotemporal (Kowalskiet al., 1996; deCharms and Merzenich, 1998) receptive �eld analysis, for example,reveal that the cortical neurons are sensitive to the temporal structure of sensoryinputs. Processing of real-world time-varying stimuli is a di�cult problem, andrepresents an unsolved challenge for arti�cial models of brain function.More than two decades of research on arti�cial neural networks has emphasizedthe central role of synapses in neural computation (Sejnowski, 1977; Hop�eld, 1982).In a conventional arti�cial neural network, all units (\neurons") are assumed to beidentical, so that the computation is completely speci�ed by the synaptic \weights,"i.e. by the strengths of the connections between the units. The identity of a neuralcircuit|including the circuit connectivity, which can be speci�ed by including nullweights|is thereby determined entirely by the matrix of synaptic connections. Thesynapses in most arti�cial neural network models are static: synaptic strength is fullycharacterized by a single value that remains �xed except on the slow time scale oflearning. In real nervous systems, by contrast, synapses show dynamics on short timescales, from milliseconds to seconds (Magleby, 1987; Abbott et al., 1997; Markram andTsodyks, 1996; Dobrunz and Stevens, 1999). Activity-dependent forms of short-termplasticity such as facilitation and depression modulate synaptic strength over a widerange.Here we propose that synaptic dynamics provide a natural substrate forthe processing of dynamic stimuli, and describe a novel arti�cial neural networkarchitecture that exploits synaptic dynamics (Little and Shaw, 1975; Tsodyks et al.,1998; Liaw and Berger, 1996). As in conventional arti�cial neural networks, synapticstrength determines the computation. In our framework, however, synaptic strengthchanges on the short time scale of each computation, and it is the balance of facilitationand depression that determines the temporal dynamics at each synapse and therebyforms the basis of each computation. To achieve the appropriate synaptic dynamics,we have used a conjugate gradient algorithm (Press et al., 1992) which is a generalizedform of the backpropagation learning algorithm (Hertz et al., 1991). The architecturewe propose represents a step toward understanding how neural circuits might processcomplex temporal patterns.The article is organized as follows. First we describe the dynamics of the singlesynapse model upon which the architecture is based (Section 2). Next we show howa small, 3-layer feed-forward network of units connected by such synapses can betrained to approximate a nonlinear input-output system (Section 3). This traininginvolves adjusting, by means of a conjugate gradient algorithm (Press et al., 1992), asubset of the parameters that govern the synaptic dynamics; these parameters mightbe subject to plasticity in biological systems through mechanisms such as long termpotentiation and depression. We also show that a such a 3-layer feed-forward networkwith biologically realistic synaptic dynamics yields performance comparable to that ofarti�cial networks that were previously designed to yield good performance in the timeseries domain without any claims of biological realism (Section 4). We then assesswhich parameters are essential to produce good network performance (Section 5).Finally we demonstrate that it is the synaptic rather than neuronal dynamics that areplaying the critical role in the computation by showing how the same computationcan be achieved with only two neurons in the hidden layer, as long as the neurons areconnected through multiple synapses (Section 6).
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1PSfrag replacementsB synapticoutput time stepsFigure 1. A single synapse can produce quite di�erent outputs for the sameinput. The response of a single synapse to a step increase in input activityapplied at time step 0 is compared for two di�erent parameter settings. In A, thesynapse responds with pure depression, while in B an initial facilitation precedesthe depression.2. Single SynapseWe begin by describing a formal model of a single synapse. The model we consideris a continuum version (Tsodyks et al., 1998) of that considerd in (Markram et al.,1998). It incorporates short term facilitation and depression.Synaptic strength depends on three quantities: presynaptic activity xj(t), a usedependent term pij(t) which may loosely related to presynaptic release probability,and postsynaptic e�cacy Wij . Synaptic dynamics arise from the dependence ofpresynaptic release probability on the history of presynaptic activity. Speci�cally, thee�ect of activity xj(t) in the jth presynaptic unit on the ith postsynaptic unit is givenby the product of the synaptic coupling between the two units and the instantaneouspresynaptic activity, xj(t) � pij(t) �Wij . The presynaptic activity xj(t) is a continuousvalue (constrained to fall in the range [0; 1]) rather than a discrete spike train, andcan be considered to represent an instantaneous �ring rate. The coupling is in turnthe product of a history-dependent \release probability" pij(t), and a static scalefactor Wij corresponding to the postsynaptic response or \potency" at the synapseconnecting j and i.The history-dependent component pij(t) is constrained to fall in the range [0; 1].This component in turn depends on two auxiliary history-dependent functions fij(t)and dij(t). The quantity dij(t) can be interpreted as the number of releasable synapticvesicles; it decreases with activity and thereby instantiates a form of use-dependentdepression. The quantity fij(t) represents the propensity of each vesicle to be released;like [Ca+2] in the presynaptic terminal, it increases with presynaptic activity xj(t) andthereby instantiates a form of facilitation. The details of the activity-dependence offij(t) and dij(t) are given in Appendix A.The input-output behavior of this model synapse depends on four the synapticparameters Uij ; Fij ; Dij and Wij , as described in Appendix A. The same input yieldsmarkedly di�erent outputs for di�erent values of these parameters. Fig. 1 comparesthe output of a single synapse in response to a step input, i.e. xj(t) = 1 for t > 0, fortwo sets of synaptic parameters. In Fig. 1A, the output begins at a maximal value andthen, declines to nearly zero while in Fig. 1B the response increases to a maximumand then decreases. These examples illustrate just two of the range of input-outputbehaviors that a single synapse can achieve.Note that the qualitative aspects of the results presented in this article do not



E�cient Temporal Processing with Biologically Realistic Dynamic Synapses 4critically depend on the particular model used for synaptic dynamics. In (Natschl�ager,1999) a continuum version of the model proposed in (Maass and Zador, 1999) isconsidered, and the results are indeed very similar.3. Processing dynamic signalsResearch on conventional arti�cial neural networks has emphasized tasks, such as theclassi�cation of static images, in which both the inputs and the outputs are devoidof temporal structure. However, ecologically relevant signals often have rich temporalstructure, and neural circuits must process these signals in real time. In many signalprocessing tasks, such as audition, almost all of the information is embedded in thetemporal structure. In the visual domain, movement represents one of the fundamentalfeatures extracted by the nervous system. In the following we refer to systems whichmap a time varying signal onto another time varying signal as �lter.The dynamic synapses we have described are ideally suited to process signals withtemporal structure (Fig. 2A). To illustrate this, we consider a simple class of signalsgiven by a quadratic �lter Q:kQx(t) = mXl=1 mXk=1hkl x(t � k�)x(t � l�); (1)where t is time, � is some time delay, x(t) is the input, and the �lter coe�cients hklform a arbitrarym�m matrixH (we assume in this article thatH is symmetric). Anexample of the input and output for one choice of quadratic parameters are shown inFigs. 2B and 2C, respectively. The �lter Q is an idealization of the kinds of complextransformations that are important to an organism's survival, such as those requiredfor motor control and the processing of time-varying sensory inputs. For example,the spectrotemporal receptive �eld of a neuron in the auditory cortex (deCharms andMerzenich, 1998; Kowalski et al., 1996) re
ects some complex transformation of soundpressure to neuronal activity. The real transformations actually required for survivalmay be very complex, but the simple �lter Q provides a useful starting point forassessing the capacity of this architecture to transform one time-varying signal intoanother.Can a network of units coupled by dynamic synapses implement the �lter Q? Wetested the approximation capabilities of a rather small network with just 10 hiddenunits (5 excitatory and 5 inhibitory ones), and one output (Fig. 2A). The output xi(t)of the ith unit is iven by xi(t) = �0@Xj Wij � pij(t) � xj(t)1A (2)where xj(t) is the input from the previous layers, pij(t) corresponds to the activity-dependent release probability, Wij to the static postsynaptic e�cacy, and � is eitherthe sigmoid function �(u) = 1=(1+exp(�u)) (in the hidden layers) or just the identityfunction �(u) = u (in the output layer). In the following we refer to such networksas dynamic networks. The dynamics of inhibitory synapses is described by the samek We adopt the common notation Fx(t) to denote the output that the �lter F gives at time t forthe input function x.
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8PSfrag replacementsD mse�103 mFigure 2. A network with units coupled by dynamic synapses can approximaterandomly drawn quadratic �lters. A Network architecture. The network had oneinput unit, 10 hidden units (5 excitatory, 5 inhibitory), and one output unit. Theactivation function at the hidden units was sigmoidal, but linear at the outputunit. B One of the input patterns used in the training ensemble. For clarity,only a portion of the actual input is shown. C Output of the network prior totraining, with random initialization of the parameters ( � ). Output of thedynamic network after learning ( ). The target (� � �) was the output ofthe quadratic �lter given by Eq. (1), the coe�cients hkl (1 � k; l � 10) of whichwere generated randomly by subtracting �=2 from a random number generatedfrom an exponential distribution with mean �. D Performance after networktraining. For di�erent sizes of H (H is a symmetric m �m matrix) we plottedthe average performance (mse measured on a test set) over 20 di�erent �lters Q,i.e. 20 randomly generated matrices H.model as that for excitatory synapses. For any particular temporal pattern applied atthe input and any particular choice of the synaptic parameters, this network generatesa temporal pattern as output. This output can be thought of, for example, as theactivity of a particular population of neurons in the cortex, and the target functionas the time series generated for the same input by some unknown quadratic �lter Q.The synaptic parameters Wij , Dij , Fij and Uij are chosen so that, for each input inthe training set, the network minimized the mean-square errorE[z; zQ] = 1N N�1Xt=0 (z(t)� zQ(t))2 (3)between its output z(t) and the desired output zQ(t) = Qx(t) speci�ed by the �lterQ. To achieve this minimization, we used a conjugate gradient algorithm (Press et al.,1992).{{ In order to apply such a conjugate gradient algorithm ones has to calculate the partial derivatives� E[z;zQ]� Uij , � E[z;zQ]� Dij , � E[z;zQ]� Fij and � E[z;zQ]�Wij for all synapses hiji in the network. When one performsthese rather straightforward calculations one gets equations which relates the derivatives � f(t)� U(indices omitted for clarity) at time t to the derivatives � f(t�1)� U at time t � 1 similar as in real-
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PSfrag replacementsCDbefore learningafter learningmean squared errorFigure 3. Performance of our model on the system identi�cation task used in(Back and Tsoi, 1993). The network architecture is the same as in Fig. 2. A Oneof the input patterns used in the training ensemble. B Output of the networkafter learning (|). The target (� ��) is the output of the �lter function givenby Eq. (4) and Eq. (5). C Comparison of the mean square error (in units of 10�3)achieved on test data by the model of Back and Tsoi (BT) and by the dynamicnetwork (DN). D Comparison of the number of adjustable parameters. Thenetwork model of Back and Tsoi (BT) utilizes slightly more adjustable parametersthan the dynamic network (DN).The training inputs were random signals, an example of which is shown in Fig. 2B.The test inputs were drawn from the same random distribution as the training inputs,but were not actually used during training. This test of generalization ensured that theobserved performance represented more than simple \memorization" of the trainingset. To avoid over�tting, minimization of E[z; zQ] was stopped when the error on avalidation set (distinct from training and test set) reached its �rst minimum. Fig. 2Ccompares the network performance before and after training. Prior to training, theoutput is nearly 
at, while after training the network output tracks the �lter outputclosely (E[z; zQ] = 0:0032).Fig. 2D shows the performance after training for di�erent randomly chosenquadratic �lters Q with di�erent dimensions m of H. Even for larger values of mthe relatively small network with 10 hidden units performs rather well. Note that aquadratic �lter of dimension m has m(m+1)=2 free parameters, whereas the dynamicnetwork has a constant number of 80 adjustable parameters. This shows clearly thatdynamic synapses enable a small network to mimic a wide range of possible quadratictarget �lters.4. Comparison with the model of Back and TsoiOur dynamic network model is not the �rst to incorporate temporal dynamics viadynamic synapses. Perhaps the earliest suggestion for a role for synaptic dynamicsin network computation was by (Little and Shaw, 1975). More recently, a numberof networks have been proposed in which synapses implemented linear �lters; inparticular (Back and Tsoi, 1993).To assess the performance of our network model in relation to the model proposedin (Back and Tsoi, 1993) we have analyzed the performance of our dynamic networkmodel for the same system identi�cation task that was employed as benchmark tasktime recurrent learning (Hertz et al., 1991, Section 7.3). The same holds for d(t) and the otherparameters D, F and W . Hence one can calculate the derivatives � f(t)� U in one \sweep" from t = 0to t = N .
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E�cient Temporal Processing with Biologically Realistic Dynamic Synapses 9presynaptic axon makes several independent contact with the postsynaptic target(Markram et al., 1997). We therefore tested a modi�ed architecture in which each axonmade several synapses. The parameters at each synapse were modi�ed independently.Fig. 5 shows a limiting case an architecture with high synapse multiplicity. Thenumber of plastic synapses is the same as in Fig. 5, but here instead of ten hidden unitsthere are only two. The performance of the network is as good as the performance ofthe network considered in Fig. 2 (compare Fig. 2D and Fig. 5D), emphasizing that itis the synaptic and not the neuronal dynamics that are the key to this architecture.If, as these results suggest, synapses can under some conditions replace neurons withlittle loss of computational power, the strong pressures to maximize wiring economy(Chklovskii, 1998) might favor synapse multiplicity.7. A Universal Approximation Theorem for Dynamic NetworksIn the preceding sections we had presented empirical evidence for the approximationcapabilities of our dynamic network model for computations in the time series domain.This gives rise to the question, what the theoretical limits of their approximationcapabilities are. The rigorous theoretical result presented in this section shows thatbasically there are no signi�cant a priori limits. Furthermore, in spite of the rathercomplicated system of equations that de�nes dynamic networks, one can give a precisemathematical characterization of the class of �lters that can be approximated by them.This characterization involves the following basic concepts.An arbitrary �lter F is called time invariant if a shift of the input functions bya constant t0 just causes a shift of the output function by the same constant t0.Another essential property of �lters is fading memory. A �lter F has fadingmemory if and only if the value of Fx(0) can be approximated arbitrarily closely bythe value of F ~x(0) for functions ~x that approximate the functions x for su�cientlylong bounded intervals [�T; 0].Interesting examples of linear and nonlinear time invariant �lters with fadingmemory can be generated with the help of representations of the formFx(t) = Z 10 : : :Z 10 x(t� �1) � : : : � x(t � �k)h(�1; : : : ; �k)d�1 : : : d�kfor measurable and essentially bounded functions x : R ! R (with h 2 L1). Onerefers to such an integral as a Volterra term of order k. Note that for k = 1 it yieldsthe usual representation for a linear time invariant �lter. The class of �lters thatcan be represented by Volterra series, i.e., by �nite or in�nite sums of Volterra termsof arbitrary order, has been investigated for quite some time in neurobiology (Riekeet al., 1997) and engineering (Schetzen, 1980).Theorem 1 Assume that X is the class of functions from R into [B0; B1] which satisfyjx(t) � x(s)j � B2 � jt � sj for all t; s 2 R, where B0; B1; B2 are arbitrary real-valuedconstants with 0 < B0 < B1 and 0 < B2. Let F be an arbitrary �lter that maps vectorsof functions x = hx1; : : : ; xni 2 Xn into functions from R into R.Then the following are equivalent:(a) F can be approximated by dynamic networks N de�ned by Eq. (2) and(A.1) to (A.4) (i.e., for any " > 0 there exists such network N such thatjFx(t)�Nx(t)j < " for all x 2 Xn and all t 2 R)



E�cient Temporal Processing with Biologically Realistic Dynamic Synapses 10(b) F can be approximated by dynamic networks according to Eq. (2) and(A.1) to (A.4) with just a single layer of sigmoidal neurons(c) F is time invariant and has fading memory(d) F can be approximated by a sequence of (�nite or in�nite) Volterra series.The proof of Theorem 1 relies on the Stone-Weierstrass Theorem, and is containedas the proof of Theorem 3.4 in (Maass and Sontag, 2000).The universal approximation result contained in Theorem 1 turns out to be ratherrobust with regard to changes in the de�nition of a dynamic network. Dynamicnetworks with just one layer of dynamic synapses and one subsequent layer of sigmoidalgates can approximate the same class of �lters as dynamic networks with an arbitrarynumber of layers of dynamic synapses and sigmoidal neurons.8. DiscussionOur central hypothesis is that rapid changes in synaptic strength, mediated bymechanisms such as facilitation and depression, are an integral part of neuralprocessing. We have proposed a general computational model in which such rapidchanges endow a neural circuit with the capacity to process temporal patterns.This model di�ers from most conventional models of neural computation, based onstatic synapses, in which synaptic strength changes during learning but not duringperformance. The architecture we propose provides a framework for studying howneural circuits compute in real time.We have used a simple task|a quadratic �lter|to illustrate the potential of thisarchitecture. This task allows us to focus on temporal dynamics, an essential aspect ofcortical computation that is absent from many arti�cial neural network formulations.In this task, the goal is to transform a time-varying input into the appropriate time-varying output; our results thereby complement (Buonomano and Merzenich, 1995),where synaptic dynamics are used to transform temporal patterns into spatial patterns.Such a transformation from one time-varying signal to another must be performed,for example, to generate the motor commands used involved in reaching, or in thereal-time recognition of speech sounds.Our very general framework di�ers from the more speci�c computational roles,such as gain control (Abbott et al., 1997), that have been proposed for synapticdynamics. Gain control is a mechanism that allows the input-output transformationto remain invariant over a wide range of input intensities. To achieve gain control,synaptic e�cacy rapidly adapts to compensate for changes in the neuronal �ringrate. Gain control thus represents an important special case of the larger role we areproposing for synaptic dynamics. Indeed, the conjugate gradient algorithm we haveused enables the present architecture to implement nearly arbitrary transformationsof one time-varying signal into another.In the supervised learning paradigm we have explored here, a neural circuit istrained to approximate a fully speci�ed input-output system, where both the inputsand the outputs are time-varying functions. We have focused on this paradigm notbecause we believe it is necessarily the best model for learning in neural circuits | weare not proposing that synapses in cortical circuits are subject to modi�cation by thekind of learning algorithm we have used | but rather because it is the best understoodparadigm. Our results represent part of the larger program of incorporating thekey features of neural circuits into simple and tractable mathematical formulations.
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REFERENCES 13Appendix A. Single Synapse ModelThe model is described in detail in (Tsodyks et al., 1998). For convinience we restatethe equations in our notation, which read as follows:pij(t) = fij(t) � dij(t) (A.1)d �fij(t)d t = � �fij(t)Fij + Uij � (1� �fij(t)) � xi(t) (A.2)d dij(t)d t = 1� dij(t)Dij � pij(t) � xi(t) (A.3)fij(t) = �fij(t) � (1� Uij) + Uij (A.4)with dij(0) = 1 and �fij(0) = 0. Eq. (A.2) models facilitation (with time constantFij), whereas Eq. (A.3) models the combined e�ects of synaptic depression (with timeconstant Dij) and facilitation. Hence, each synaptic connection is characterized bythe four parameters Uij , Dij , Fij and Wij .For the numerical results prested in this paper we consider a time discrete versionof the model de�ned by Eq. (A.1) to (A.4). In this setting we consider the dynamics�fij(t+�) = �fij(t)� �fij(t)Fij + Uij � (1� �fij(t)) � xi(t) (A.5)dij(t+�) = dij(t) + 1� dij(t)Dij � f+ij (t) � dij(t) � xi(t) (A.6)for �fij and dij , where � is some time delay.


