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Abstract. Synapses play a central role in neural computation: the strengths of
synaptic connections determine the function of a neural circuit. In conventional
models of computation, synaptic strength is assumed to be a static quantity
that changes only on the slow time scale of learning. In biological systems,
however, synaptic strength undergoes dynamic modulation on rapid time scales
through mechanisms such as short term facilitation and depression. Here we
describe a general model of computation that exploits dynamic synapses, and
use a backpropagation-like algorithm to adjust the synaptic parameters. We
show that such gradient descent suffices to approximate a given quadratic filter
by a rather small neural system with dynamic synapses. We demonstrate that
with this approach the nonlinear filter considered in (Back and Tsoi, 1993) can
be approximated even better than by their model. Our numerical results are
complemented by theoretical analysis which show that even with just a single
hidden layer such networks can approximate a surprisingly large large class of
nonlinear filters: all filters that can be characterized by Volterra series. This result
is robust with regard to various changes in the model for synaptic dynamics.

1. Introduction

The brain is able to solve hard computational problems that remain beyond the
reach of the most powerful computers, but the key to its success remains unclear.
One possibility is that the properties of neuronal wetware—as opposed, for example
to the digital hardware found in a computer—enforce a style of computation that
is particularly well-suited to solving the kinds of problems important to survival.
If this is true, then we may gain insight into the strategies employed by neuronal
wetware by studying computational models that capture the essence of neural circuitry.
This strategy has motivated the development of artificial neural network models of
computation. Like brains, neural networks are massively parallel networks composed
of many simple repeating units. Neural networks share a number of characteristics
with brains, including fault tolerance, generalization, and the ability to learn (or
adapt) to new inputs. Neural network models have been useful for understanding
what kinds of algorithms are well-suited for brain-style computation.

Neural networks have been widely applied to the processing of static stimuli.
In recent years, however, there has been increasing focus on the dynamic aspects of
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cortical processing. Spatiotemporal (Reid et al., 1997) and spectrotemporal (Kowalski
et al., 1996; deCharms and Merzenich, 1998) receptive field analysis, for example,
reveal that the cortical neurons are sensitive to the temporal structure of sensory
inputs. Processing of real-world time-varying stimuli is a difficult problem, and
represents an unsolved challenge for artificial models of brain function.

More than two decades of research on artificial neural networks has emphasized
the central role of synapses in neural computation (Sejnowski, 1977; Hopfield, 1982).
In a conventional artificial neural network, all units (“neurons”) are assumed to be
identical, so that the computation is completely specified by the synaptic “weights,”
i.e. by the strengths of the connections between the units. The identity of a neural
circuit—including the circuit connectivity, which can be specified by including null
weights is thereby determined entirely by the matrix of synaptic connections. The
synapses in most artificial neural network models are static: synaptic strength is fully
characterized by a single value that remains fixed except on the slow time scale of
learning. In real nervous systems, by contrast, synapses show dynamics on short time
scales, from milliseconds to seconds (Magleby, 1987; Abbott et al., 1997; Markram and
Tsodyks, 1996; Dobrunz and Stevens, 1999). Activity-dependent forms of short-term
plasticity such as facilitation and depression modulate synaptic strength over a wide
range.

Here we propose that synaptic dynamics provide a natural substrate for
the processing of dynamic stimuli, and describe a novel artificial neural network
architecture that exploits synaptic dynamics (Little and Shaw, 1975; Tsodyks et al.,
1998; Liaw and Berger, 1996). As in conventional artificial neural networks, synaptic
strength determines the computation. In our framework, however, synaptic strength
changes on the short time scale of each computation, and it is the balance of facilitation
and depression that determines the temporal dynamics at each synapse and thereby
forms the basis of each computation. To achieve the appropriate synaptic dynamics,
we have used a conjugate gradient algorithm (Press et al., 1992) which is a generalized
form of the backpropagation learning algorithm (Hertz et al., 1991). The architecture
we propose represents a step toward understanding how neural circuits might process
complex temporal patterns.

The article is organized as follows. First we describe the dynamics of the single
synapse model upon which the architecture is based (Section 2). Next we show how
a small, 3-layer feed-forward network of units connected by such synapses can be
trained to approximate a nonlinear input-output system (Section 3). This training
involves adjusting, by means of a conjugate gradient algorithm (Press et al., 1992), a
subset of the parameters that govern the synaptic dynamics; these parameters might
be subject to plasticity in biological systems through mechanisms such as long term
potentiation and depression. We also show that a such a 3-layer feed-forward network
with biologically realistic synaptic dynamics yields performance comparable to that of
artificial networks that were previously designed to yield good performance in the time
series domain without any claims of biological realism (Section 4). We then assess
which parameters are essential to produce good network performance (Section 5).
Finally we demonstrate that it is the synaptic rather than neuronal dynamics that are
playing the critical role in the computation by showing how the same computation
can be achieved with only two neurons in the hidden layer, as long as the neurons are
connected through multiple synapses (Section 6).
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Figure 1. A single synapse can produce quite different outputs for the same
input. The response of a single synapse to a step increase in input activity
applied at time step 0 is compared for two different parameter settings. In A, the
synapse responds with pure depression, while in B an initial facilitation precedes
the depression.

2. Single Synapse

We begin by describing a formal model of a single synapse. The model we consider
is a continuum version (Tsodyks et al., 1998) of that considerd in (Markram et al.,
1998). It incorporates short term facilitation and depression.

Synaptic strength depends on three quantities: presynaptic activity z;(t), a use
dependent term p;;(t) which may loosely related to presynaptic release probability,
and postsynaptic efficacy W;;. Synaptic dynamics arise from the dependence of
presynaptic release probability on the history of presynaptic activity. Specifically, the
effect of activity z;(t) in the j*" presynaptic unit on the i*" postsynaptic unit is given
by the product of the synaptic coupling between the two units and the instantaneous
presynaptic activity, x;(t) - pi; (t) - Wi;. The presynaptic activity z;(¢) is a continuous
value (constrained to fall in the range [0, 1]) rather than a discrete spike train, and
can be considered to represent an instantaneous firing rate. The coupling is in turn
the product of a history-dependent “release probability” p;;(t), and a static scale
factor W;; corresponding to the postsynaptic response or “potency” at the synapse
connecting j and 1.

The history-dependent component p;;(t) is constrained to fall in the range [0, 1].
This component in turn depends on two auxiliary history-dependent functions f;;(t)
and d;;(t). The quantity d;;(t) can be interpreted as the number of releasable synaptic
vesicles; it decreases with activity and thereby instantiates a form of use-dependent
depression. The quantity f;;(t) represents the propensity of each vesicle to be released,;
like [Ca™?] in the presynaptic terminal, it increases with presynaptic activity z;(t) and
thereby instantiates a form of facilitation. The details of the activity-dependence of
fij(t) and d;;(t) are given in Appendix A.

The input-output behavior of this model synapse depends on four the synaptic
parameters U;;, Fyj, D;; and Wj;, as described in Appendix A. The same input yields
markedly different outputs for different values of these parameters. Fig. 1 compares
the output of a single synapse in response to a step input, i.e. z;(t) =1 for ¢ > 0, for
two sets of synaptic parameters. In Fig. 1A, the output begins at a maximal value and
then, declines to nearly zero while in Fig. 1B the response increases to a maximum
and then decreases. These examples illustrate just two of the range of input-output
behaviors that a single synapse can achieve.

Note that the qualitative aspects of the results presented in this article do not
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critically depend on the particular model used for synaptic dynamics. In (Natschlager,
1999) a continuum version of the model proposed in (Maass and Zador, 1999) is
considered, and the results are indeed very similar.

3. Processing dynamic signals

Research on conventional artificial neural networks has emphasized tasks, such as the
classification of static images, in which both the inputs and the outputs are devoid
of temporal structure. However, ecologically relevant signals often have rich temporal
structure, and neural circuits must process these signals in real time. In many signal
processing tasks, such as audition, almost all of the information is embedded in the
temporal structure. In the visual domain, movement represents one of the fundamental
features extracted by the nervous system. In the following we refer to systems which
map a time varying signal onto another time varying signal as filter.

The dynamic synapses we have described are ideally suited to process signals with
temporal structure (Fig. 2A). To illustrate this, we consider a simple class of signals
given by a quadratic filter Q:||

m

Qux(t) :sz:h,kl z(t —kA)z(t —LA), (1)

=1 k=1

where t is time, A is some time delay, z(t) is the input, and the filter coefficients hy,
form a arbitrary m x m matrix H (we assume in this article that H is symmetric). An
example of the input and output for one choice of quadratic parameters are shown in
Figs. 2B and 2C, respectively. The filter Q is an idealization of the kinds of complex
transformations that are important to an organism’s survival, such as those required
for motor control and the processing of time-varying sensory inputs. For example,
the spectrotemporal receptive field of a neuron in the auditory cortex (deCharms and
Merzenich, 1998; Kowalski et al., 1996) reflects some complex transformation of sound
pressure to neuronal activity. The real transformations actually required for survival
may be very complex, but the simple filter Q provides a useful starting point for
assessing the capacity of this architecture to transform one time-varying signal into
another.

Can a network of units coupled by dynamic synapses implement the filter Q7 We
tested the approximation capabilities of a rather small network with just 10 hidden
units (5 excitatory and 5 inhibitory ones), and one output (Fig. 2A). The output ;(t)
of the i*" unit is iven by

zi(t) = o ZWZ-_; “pij(t) - (1) (2)

where z;(t) is the input from the previous layers, p;;(t) corresponds to the activity-
dependent release probability, W;; to the static postsynaptic efficacy, and o is either
the sigmoid function o(u) = 1/(1+exp(—u)) (in the hidden layers) or just the identity
function o(u) = u (in the output layer). In the following we refer to such networks
as dynamic networks. The dynamics of inhibitory synapses is described by the same

|| We adopt the common notation Fz(t) to denote the output that the filter F gives at time ¢ for
the input function z.
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Figure 2. A network with units coupled by dynamic synapses can approximate
randomly drawn quadratic filters. A Network architecture. The network had one
input unit, 10 hidden units (5 excitatory, 5 inhibitory), and one output unit. The
activation function at the hidden units was sigmoidal, but linear at the output
unit. B One of the input patterns used in the training ensemble. For clarity,
only a portion of the actual input is shown. C Output of the network prior to
training, with random initialization of the parameters (—o— ). Output of the
dynamic network after learning (——). The target (— — —) was the output of
the quadratic filter given by Eq. (1), the coefficients hy; (1 < k,I < 10) of which
were generated randomly by subtracting p/2 from a random number generated
from an exponential distribution with mean g. D Performance after network
training. For different sizes of H (H is a symmetric m X m matrix) we plotted
the average performance (mse measured on a test set) over 20 different filters Q,
i.e. 20 randomly generated matrices H.

model as that for excitatory synapses. For any particular temporal pattern applied at
the input and any particular choice of the synaptic parameters, this network generates
a temporal pattern as output. This output can be thought of, for example, as the
activity of a particular population of neurons in the cortex, and the target function
as the time series generated for the same input by some unknown quadratic filter Q.
The synaptic parameters W;;, D;;, F;; and U;; are chosen so that, for each input in
the training set, the network minimized the mean-square error

1 N-1

Blz,z0] = + > (=(t) — zo(1)) (3)

t=0

between its output z(t) and the desired output zg(t) = Qz(t) specified by the filter

Q. To achieve this minimization, we used a conjugate gradient algorithm (Press et al.,
1992).9

§ In order to apply such a conjugate gradient algorithm ones has to calculate the partial derivatives
d E[z,2g] 8 E[z,29] JE[z,29] d 8 Elz,
5 ;A Sw

§0;; °' 8Di; °

,24‘2] for all synapses (ij) in the network. When one performs
ij

these rather straightforward calculations one gets equations which relates the derivatives 3 (1)

U
(indices omitted for clarity) at time ¢ to the derivatives % at time t — 1 similar as in real-
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Figure 3. Performance of our model on the system identification task used in
(Back and Tsoi, 1993). The network architecture is the same as in Fig. 2. A One
of the input patterns used in the training ensemble. B Output of the network
after learning (). The target (— — —) is the output of the filter function given
by Eq. (4) and Eq. (5). C Comparison of the mean square error (in units of 1073)
achieved on test data by the model of Back and Tsoi (BT) and by the dynamic
network (DN). D Comparison of the number of adjustable parameters. The
network model of Back and Tsoi (BT) utilizes slightly more adjustable parameters
than the dynamic network (DN).

The training inputs were random signals, an example of which is shown in Fig. 2B.
The test inputs were drawn from the same random distribution as the training inputs,
but were not actually used during training. This test of generalization ensured that the
observed performance represented more than simple “memorization” of the training
set. To avoid overfitting, minimization of E[z,zg] was stopped when the error on a
validation set (distinct from training and test set) reached its first minimum. Fig. 2C
compares the network performance before and after training. Prior to training, the
output is nearly flat, while after training the network output tracks the filter output
closely (F[z,zg0] = 0.0032).

Fig. 2D shows the performance after training for different randomly chosen
quadratic filters Q with different dimensions m of H. Even for larger values of m
the relatively small network with 10 hidden units performs rather well. Note that a
quadratic filter of dimension m has m(m+ 1)/2 free parameters, whereas the dynamic
network has a constant number of 80 adjustable parameters. This shows clearly that
dynamic synapses enable a small network to mimic a wide range of possible quadratic
target filters.

4. Comparison with the model of Back and Tsoi

Our dynamic network model is not the first to incorporate temporal dynamics via
dynamic synapses. Perhaps the earliest suggestion for a role for synaptic dynamics
in network computation was by (Little and Shaw, 1975). More recently, a number
of networks have been proposed in which synapses implemented linear filters; in
particular (Back and Tsoi, 1993).

To assess the performance of our network model in relation to the model proposed
in (Back and Tsoi, 1993) we have analyzed the performance of our dynamic network
model for the same system identification task that was employed as benchmark task

time recurrent learning (Hertz et al., 1991, Section 7.3). The same holds for d(¢) and the other
parameters D, F' and W. Hence one can calculate the derivatives 6;((;)
tot=N.

in one “sweep” from t = 0
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Figure 4. Impact of different synaptic parameters on the learning capabilities
of a dynamic network. The size of a square (the “impact”) is proportional to
the inverse of the mean squared error averaged over N trials. A In each trial
(N =100) a different quadratic filter matrix H (m = 6) was randomly generated
as described in Fig. 2. Along the diagonal one can see the impact of a single
parameter, whereas the off-diagonal elements (which are symmetric) represent
the impact of changing pairs of parameters. B The impact of subsets of size three
is shown where the labels indicate which parameter is not included. C Same
interpretation as for panel A but the results shown (N = 20) are for the filter
used in (Back and Tsoi, 1993) (Eq. (4) and Eq. (5)). D Same interpretation as
for panel B but the results shown (N = 20) are for the same filter as in panel C.

in (Back and Tsoi, 1993). The goal of this task is to learn the filter F
zr(t) = Fa(t) = sin(u(t)) (4)
where u(t) is the solution to the difference equation

u(t) — 1.99u(t — A) + 1.572u(t — 2 A) — 0.4583u(t —3A) =

5
= 0.0154x(t) + 0.0462z(t — A) + 0.0462z(t — 2 A) + 0.0154x(t — 3A) | (5)

for some time delay A . Hence, u(t) is the output of a linear filter applied to the input

The result is summarized in Fig. 3. It can clearly be seen that our network model
(see Fig. 2A for the network architecture) is able to learn this particular filter. The
mean square error (mse) on the test data is 0.0010, which is slightly smaller than the
mse of 0.0013 reported in (Back and Tsoi, 1993). Note that the network Back and Tsoi
used to learn the task had 130 adjustable parameters (13 parameters per IIR synapse,
10 hidden units) whereas our network model had only 80 adjustable parameters (all
parameters U;;, Fj;, D;; and W;; were adjusted during learning).

This shows that a very simple feedforward network with biologically realistic
synaptic dynamics yields performance comparable to that of artificial networks that
were previously designed to yield good performance in the time series domain without
any claims of biological realism.

5. Which Parameters Matter?

It remains an open experimental question which synaptic parameters are subject
to use-dependent plasticity, and under what conditions. For example, long term
potentiation appears to change synaptic dynamics between pairs of layer 5 cortical
neurons (Markram and Tsodyks, 1996) but not in the hippocampus (Selig et al.,
1999). We therefore wondered whether plasticity in the synaptic dynamics is essential
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Figure 5. Dynamic synapses can substitute for neurons. A Network architecture.
In contrast to the network in Fig. 2, this network had only 2 hidden units
(one excitatory and one inhibitory), but with higher synapse multiplicity (5
synapses/axon). B One of the input patterns used in the training ensemble.
For clarity, only a portion of the actual input is shown. C Output of the network
prior to training, with random initialization of the parameters (—e— ). Output of
the dynamic network after learning (——). The target (— — —) was the output of
the quadratic filter given by Eq. (1), the coefficients hy; (1 < k,1 < 10) of which
were generated randomly by subtracting p/2 from a random number generated
from an exponential distribution with mean g. D Performance after network
training. For different sizes of H (H is a symmetric m X m matrix) we plotted
the average performance (mse measured on a test set) over 20 different filters Q,
i.e. 20 randomly generated matrices H.

for a dynamic network to be able to learn a particular target filter. To address
this question, we compared network performance when different parameter subsets
were optimized using the conjugate gradient algorithm, while the other parameters
were held fixed. In all experiments, the fixed parameters were chosen to ensure
heterogeneity in presynaptic dynamics.

Fig. 4 shows that changing only the postsynaptic parameter W has comparable
impact to changing only the presynaptic parameters U or D, whereas changing only
F has little impact on the dynamics of these networks (see diagonal of Fig. 4A and
Fig. 4C). However, to achieve good performance one has to change at least two
different types of parameters such as {W,U} or {W, D} (all other pairs yield worse
performance). Hence, neither plasticity in the presynaptic dynamics (U, D, F') alone
nor plasticity of the postsynaptic efficacy (W) alone was sufficient to achieve good
performance in this model.

6. Multiple Neurons and Multiple Synapses

So far we have assumed that each axon makes only one synapse onto its postsynaptic
target. While such connectivity is common in the hippocampus (Harris and Stevens,
1989), in the neocortex and elsewhere the multiplicity is often higher, so that a single
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presynaptic axon makes several independent contact with the postsynaptic target
(Markram et al., 1997). We therefore tested a modified architecture in which each axon
made several synapses. The parameters at each synapse were modified independently.

Fig. 5 shows a limiting case an architecture with high synapse multiplicity. The
number of plastic synapses is the same as in Fig. 5, but here instead of ten hidden units
there are only two. The performance of the network is as good as the performance of
the network considered in Fig. 2 (compare Fig. 2D and Fig. 5D), emphasizing that it
is the synaptic and not the neuronal dynamics that are the key to this architecture.
If, as these results suggest, synapses can under some conditions replace neurons with
little loss of computational power, the strong pressures to maximize wiring economy
(Chklovskii, 1998) might favor synapse multiplicity.

7. A Universal Approximation Theorem for Dynamic Networks

In the preceding sections we had presented empirical evidence for the approximation
capabilities of our dynamic network model for computations in the time series domain.
This gives rise to the question, what the theoretical limits of their approximation
capabilities are. The rigorous theoretical result presented in this section shows that
basically there are no significant a priori limits. Furthermore, in spite of the rather
complicated system of equations that defines dynamic networks, one can give a precise
mathematical characterization of the class of filters that can be approximated by them.
This characterization involves the following basic concepts.

An arbitrary filter F is called time invariant if a shift of the input functions by
a constant tg just causes a shift of the output function by the same constant #g.

Another essential property of filters is fading memory. A filter F has fading
memory if and only if the value of Fz(0) can be approximated arbitrarily closely by
the value of FZ(0) for functions Z that approximate the functions z for sufficiently
long bounded intervals [T, 0].

Interesting examples of linear and nonlinear time invariant filters with fading
memory can be generated with the help of representations of the form

Fa(t) :'/()Oo...’/()oom(trl)....-m(tTk)h,(ﬁ,... ,TR)dm .. dTy,

for measurable and essentially bounded functions z : R — R (with h € L'). One
refers to such an integral as a Volterra term of order k. Note that for £ = 1 it yields
the usual representation for a linear time invariant filter. The class of filters that
can be represented by Volterra series, i.e., by finite or infinite sums of Volterra terms
of arbitrary order, has been investigated for quite some time in neurobiology (Rieke
et al., 1997) and engineering (Schetzen, 1980).

Theorem 1 Assume that X is the class of functions from R into [By, B1] which satisfy
|z(t) — z(s)| < By - |t — s| for all t,s € R, where By, By, By are arbitrary real-valued
constants with 0 < By < By and 0 < By. Let F be an arbitrary filter that maps vectors
of functions x = (x1,... ,x,) € X" into functions from R into R.

Then the following are equivalent:

(a) F can be approzimated by dynamic networks N defined by Eq. (2) and
(A.1) to (A.4) (i-e., for any € > O there emists such network N such that
|Fz(t) — Nz(t)| <e for allz € X™ and all t € R)
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(b) F can be approzimated by dynamic networks according to Eq. (2) and
(A.1) to (A.4) with just a single layer of sigmoidal neurons

(¢) F is time invariant and has fading memory

(d) F can be approximated by a sequence of (finite or infinite) Volterra series.

The proof of Theorem 1 relies on the Stone-Weierstrass Theorem, and is contained
as the proof of Theorem 3.4 in (Maass and Sontag, 2000).

The universal approzimation result contained in Theorem 1 turns out to be rather
robust with regard to changes in the definition of a dynamic network. Dynamic
networks with just one layer of dynamic synapses and one subsequent layer of sigmoidal
gates can approximate the same class of filters as dynamic networks with an arbitrary
number of layers of dynamic synapses and sigmoidal neurons.

8. Discussion

Our central hypothesis is that rapid changes in synaptic strength, mediated by
mechanisms such as facilitation and depression, are an integral part of neural
processing. We have proposed a general computational model in which such rapid
changes endow a neural circuit with the capacity to process temporal patterns.
This model differs from most conventional models of neural computation, based on
static synapses, in which synaptic strength changes during learning but not during
performance. The architecture we propose provides a framework for studying how
neural circuits compute in real time.

We have used a simple task a quadratic filter to illustrate the potential of this
architecture. This task allows us to focus on temporal dynamics, an essential aspect of
cortical computation that is absent from many artificial neural network formulations.
In this task, the goal is to transform a time-varying input into the appropriate time-
varying output; our results thereby complement (Buonomano and Merzenich, 1995),
where synaptic dynamics are used to transform temporal patterns into spatial patterns.
Such a transformation from one time-varying signal to another must be performed,
for example, to generate the motor commands used involved in reaching, or in the
real-time recognition of speech sounds.

Our very general framework differs from the more specific computational roles,
such as gain control (Abbott et al., 1997), that have been proposed for synaptic
dynamics. Gain control is a mechanism that allows the input-output transformation
to remain invariant over a wide range of input intensities. To achieve gain control,
synaptic efficacy rapidly adapts to compensate for changes in the neuronal firing
rate. Gain control thus represents an important special case of the larger role we are
proposing for synaptic dynamics. Indeed, the conjugate gradient algorithm we have
used enables the present architecture to implement nearly arbitrary transformations
of one time-varying signal into another.

In the supervised learning paradigm we have explored here, a neural circuit is
trained to approximate a fully specified input-output system, where both the inputs
and the outputs are time-varying functions. We have focused on this paradigm not
because we believe it is necessarily the best model for learning in neural circuits  we
are not proposing that synapses in cortical circuits are subject to modification by the
kind of learning algorithm we have used — but rather because it is the best understood
paradigm. Our results represent part of the larger program of incorporating the
key features of neural circuits into simple and tractable mathematical formulations.
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Since our formalism is a natural extension of artificial neural networks, it should be
possible to derive comparable results from other paradigms, including unsupervised
and reinforcement learning.

Analytical results show that the class of nonlinear filters that can be approximated
by dynamic networks, even with just a single hidden layer of sigmoidal neurons, is
remarkably rich. It contains every time invariant filter with fading memory, hence
arguable every filter that is potentially useful for a biological organism.

The computer simulations we performed show that rather small dynamic networks
are not only able to perform interesting computations on time series, but their
performance is comparable to that of previously considered artificial neural networks
that were designed for the purpose of yielding efficient processing of temporal signals.
We have tested dynamic networks on tasks such as the learning of a randomly chosen
quadratic filter, as well as on the system identification task used in (Back and Tsoi,
1993), to illustrate the potential of this architecture. The results are very encouraging.

Acknowledgements

We would like to thank Lynn Dobrunz, Virginia de Sa and Zachary Mainen for
comments, and TZ would like to thank Chuck Stevens for his generous support.
This work was supported by the Salk Sloan Foundation for Theoretical Neuroscience,
project P12153 of the Fonds zur Forderung wissenschaftlicher Forschung, and the
NeuroCOLT project of the EC.

References

Abbott, L., Varela, J., Sen, K., and S.B., N. (1997). Synaptic depression and cortical
gain control. Science, 275:220-4.

Back, A. D. and Tsoi, A. C. (1993). A simplified gradient algorithm for ITR synapse
multilayer perceptrons. Neural Computation, 5:456—462.

Buonomano, D. and Merzenich, M. (1995). Temporal information transformed into a
spatial code by a neural network with realistic properties. Science, 267:1028-30.

Chklovskii, D. B. (1998). Binocular disparity and the pattern of ocular dominance
stripes in primates. Soc. Neurosci. Ab., 24:645.

deCharms, R. and Merzenich, M. (1998). Optimizing sound features for cortical
neurons. Science, 280:1439 43.

Dobrunz, L. and Stevens, C. F. (1999). Response of hippocampal synapses to natural
stimulation patterns. Neuron, 22:157 66.

Harris, K. and Stevens, J. (1989). Dendritic spines of CA1l pyramical cells in the
rat hippocampus: Serial electron microscopy with reference to their biophyscial
characteristics. J. Neurosci., 9:2982 2997.

Hertz, J., Krogh, A., and Palmer, R. (1991). Introduction to the Theory of Neural
Computation. Addison-Wesley.

Hopfield, J. J. (1982). Neural networks and physical systems with emergent collective
computational abilities. Proc. Nat. Acad. Sci. USA, 79:2554-2558.

Kowalski, N., Depireux, D., and Shamma, S. (1996). Analysis of dynamic spectra in
ferret primary auditory cortex. i. characteristics of single-unit responses to moving
ripple spectra. J. Neurophys., 76:3503-23.



REFERENCES 12

Liaw, J.-S. and Berger, T. (1996). Dynamic synapse: A new concept of neural
representation and computation. Hippocampus, 6:591 600.

Little, W. and Shaw, G. (1975). A statistical theory of short and long term memory.
Behavioural Biology, 14:115 33.

Maass, W. and Sontag, E. D. (2000). Neural systems as nonlinear filters. Neural
Computation. in press.

Maass, W. and Zador, A. (1999). Dynamic stochastic synapses as computational units.
Neural Computation, 11:903 917.

Magleby, K. (1987). Short term synaptic plasticity. In Edelman, G. M., Gall, W. E.,
and Cowan, W. M., editors, Synaptic function. Wiley, New York.

Markram, H., Lubke, J., Frotscher, M., Roth, A., and B., S. (1997). Physiology and
anatomy of synaptic connections between thick tufted pyramidal neurones in the
developing rat neocortex. J. Phsysiol, 500:409 40.

Markram, H. and Tsodyks, M. (1996). Redistribution of synaptic efficacy between
neocortical pyramidal neurons. Nature, 382:807 10.

Markram, H., Wang, Y., and Tsodyks, M. (1998). Differential signaling via the same
axon of neocortical pyramidal neurons. PNAS, 95:5323-5328.

Natschlager, T. (1999). Efficient Computation in Networks of Spiking Neurons —
Simulations and Theory. PhD thesis, Graz University of Technology. Accessible
via http at www.neurocolt.com as NeuroCOLT2 Technical Report 1999-050.

Pearlmutter, B. (1989). Learning state space trajectories in recurrent neural networks.
Neural Computation, 1(2):263-269.

Press, W. H., Teukolsky, S. A., Vetterling, W. T., and Flannery, B. P., editors (1992).
Numerical Recipes in C, chapter 10, pages 394-455. Cambridge University Press.

Reid, R., Victor, J., and Shapley, R. (1997). The use of m-sequences in the analysis of
visual neurons: linear receptive field properties. Visual Neuroscience., 14:1015—
27.

Rieke, F., Warland, D., de Ruyter van Steveninck, R., and Bialek, W. (1997). Spikes:
FEzxploring the neural code. MIT Press.

Schetzen, M. (1980). The Volterra and Wiener Theories of Nonlinear Systems. Wiley,
New York.

Sejnowski, T. J. (1977). Statistical constraints on synaptic plasticity. J. Theor. Biol.,
69:385-3809.

Selig, D., Nicoll, R., and Malenka, R. (1999). Hippocampal long-term potentiation
preserves the fidelity of postsynaptic responses to presynaptic bursts. J. Neurosci.,
19:1236-46.

Tsodyks, M., Pawelzik, K., and Markram, H. (1998). Neural networks with dynamic
synapses. Neural Computation, 10:821-835.



REFERENCES 13
Appendix A. Single Synapse Model

The model is described in detail in (Tsodyks et al., 1998). For convinience we restate
the equations in our notation, which read as follows:

pij(t) = fij(t) - di; (t) (A1)
dfi;(t)  fi(t) :

it Fy + Uij - (1= fi; (1) - zi(2) (A.2)
dd{;jf(t) - _l;i:; () — pij(t) - @i(t) (A.3)

fii(t) = fi;(t) - (1 = Uij) + Uy (A4)

with d;;(0) = 1 and f;;(0) = 0. Eq. (A.2) models facilitation (with time constant
F;;), whereas Eq. (A.3) models the combined effects of synaptic depression (with time
constant D;;) and facilitation. Hence, each synaptic connection is characterized by
the four parameters U,jj, D,jj, F,j and W,j

For the numerical results prested in this paper we consider a time discrete version
of the model defined by Eq. (A.1) to (A.4). In this setting we consider the dynamics

Fatt+2) = Fy) - 210 oy - ) - m (A5)
dij(t + A) = di;(t) + %ﬁ?(” — [ () - dij(2) - xi(t) (A.6)

for fi; and d;;, where A is some time delay.



